首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of the present study was to compare the ovarian follicular response, cumulus-oocyte complex (COC) collection rate, and maturational status of COC collected from alpacas subsequent to treatment with two different superstimulatory protocols. Alpacas (n=7 per group) were treated with: (1) 200mg of FSH im divided bid for 3d, plus a single i.v. dose of 1000IU hCG 24h after the last FSH treatment, or (2) 1200IU of eCG as a single i.m. dose, plus a single i.v. dose of 1000IU of hCG on day 3 after eCG treatment (day 0=start of superstimulatory treatment). At 20-24h post-hCG treatment, the ovaries were surgically exposed and COC were collected by needle aspiration of all follicles > or =6mm. The FSH and eCG treatment groups did not differ with respect to the number of follicles > or =6mm at the time of COC collection (20.0+/-7.5 versus 27.0+/-3.3; P=0.5), the number of COC collected (26.2+/-8.4 versus 23.3+/-3.7; P=0.7), or the collection rate per follicle aspirated (89% versus 87%; P=0.7). No differences were detected between FSH- and eCG-treated alpacas in the number of expanded COC collected per alpaca (11.5+/-2.9 versus 8.8+/-2.8; P=0.54), the number of expanded COC in metaphase II (8.5+/-1.9 versus 6.0+/-2.1; P=0.1), or the number of compact COC with > or =3 layers of cumulus cells (12.5+/-4.3 versus 14.3+/-2.6; P=0.72). A greater proportion (P<0.05) of compact COC collected after FSH treatment matured in vitro to the metaphase II stage than after eCG treatment. Eight expanded alpaca COC were fertilized in vitro with llama sperm, three of which were fixed and stained 18h after exposure to sperm and five were cultured in vitro. Two of the three stained oocytes were in the pronuclear stage, and all five of the cultured oocytes developed to the two-cell and morula stages at 2 and 7 days, respectively, after in vitro fertilization. In summary, FSH and eCG treatments were equally effective for ovarian superstimulation and oocyte collection. Cumulus-oocyte complexes were collected from more than 80% of follicles aspirated during laparotomy. Nearly one third of the COC collected after superstimulation were in metaphase II, and more than 70% of the remaining COC progressed to metaphase II after in vitro maturation for 26h, bringing the mean number of oocytes available for in vitro fertilization to 16 per alpaca. Preliminary results support the hypothesis that alpaca oocytes obtained after superstimulation in the absence of progesterone are developmentally competent since morulae developed from all five COC fertilized and cultured in vitro.  相似文献   

2.
Superstimulation in donor cows increases the number of cumulus-oocyte complexes (COC), but when compared to in vivo maturation, in vitro maturation results in only half as many blastocysts after prolonged in vitro culture. The objective of this study was to establish a superstimulation protocol that would produce a maximal number of competent COC for standard in vitro embryo production. During experiment 1, eight cyclic Holstein heifers were superstimulated with four doses of FSH. Half the heifers received an injection of LH 6 h before ovum pick-up (OPU). The COC were collected following OPU either 33 or 48 h following the last FSH injection (coasting period). During experiment 2, six cyclic Holstein heifers were superstimulated with six doses of FSH, and in half the heifers, LH was administered 6 h before OPU. The COC were collected following ultrasound-guided transvaginal aspiration of both ovaries 48 h after the last FSH injection (coasting period). The COC originating from follicles with a diameter of 5 mm or more (n = 180 for experiment 1 and 57 for experiment 2) were subjected to standard in vitro maturation, fertilization, and development. When animals were administered four doses of FSH, 48 h of coasting resulted in significantly more 5- to 10-mm follicles (P < 0.01) than 33 h of coasting. If a 33-h coasting period was used, administration of LH 6 h before OPU resulted in a significant increase in both percentage of blastocysts and embryo production rate at Days 7 and 8 (P < or = 0.05) of in vitro culture. If a 48-h coasting period was used, LH injection did not affect the rates of blastocyst production. When donors were administered six doses of FSH with a 48-h coasting period, the highest results, although not significant (P < 0.08), were obtained when animals received LH 6 h before OPU, with 80% +/- 9% (mean +/- SEM) blastocysts and 0.8 +/- 0.09 embryo produced per COC retrieved per heifer at Day 8 of culture. Never has in vitro technology been so close to producing 100% developmentally competent COC.  相似文献   

3.
4.
This study aimed to evaluate the in vitro and in vivo viability of vitrified and non-vitrified embryos derived from eCG and FSH treatments in rabbit does. Ninety-six nulliparous does were randomly subjected to consecutive superovulation treatments with eCG (20 IU/kg body weight intramuscularly (i.m.), eCG group), FSH (3 x 0.6 mg/doe at 24 h intervals i.m., FSH group), or without superovulation treatment (control group). Does were artificially inseminated 3 days later and ovulation was induced immediately by hCG (75 IU/doe intravenous). Seven experimental groups were differentiated: first FSH and eCG treatment, second FSH and eCG treatment, eCG-interchanged group (does with previous FSH treatment), FSH-interchanged group (does with previous eCG treatments) and control group. Embryos were collected in vivo by laparoscopy 76-80 h post-insemination in the first and second recovery cycles and post mortem in the third recovery cycles. The ovulation rate was significantly higher in does treated with the first-FSH than in those treated with eCG or in control does (25.2+/-2.0 versus 19.2+/-1.4 to 11.0+/-1.5, and 12.2+/-1.2, first-FSH, first-eCG to second-eCG and control groups, respectively, P < 0.05). Significant differences were observed in the total recovery influenced by ovulation rate in each group (20.3+/-2.2 to 9.4+/-1.2, first-FSH to control groups). Embryo donor rate (donor with at least one normal embryo) was similar among groups with an overall of 75.1%. The number of normal embryos recovered per doe with at least one normal embryo increased significantly in relation to ovulation rate (17.7+/-2.2 to 8.41+/-3, first-FSH and control groups). The vitrification of embryos negatively affected their in vitro development to hatched blastocyst in all groups (88.1% versus 48%, P > 0.05). However, after embryo transfer, this negative effect was only observed in superovulated vitrified embryos (16.8 and 12.8% versus 39.4% total born rate from eCG, FSH and control vitrified groups, P < 0.05). Results indicated that the primary treatments with eCG or FSH increased the number of normal embryos recovered per donor doe, but these embryos are more sensitive to vitrification protocols.  相似文献   

5.
In bovine in vitro embryo production, the IVM step is rather successful with 80% of the oocytes reaching the MII stage. However, the extent to which the process limits the yield of viable embryos is still largely unknown. Therefore, we compared embryonic developmental capacity during IVC of IVF oocytes which had been matured in vitro with those matured in vivo. In vitro maturation was carried out for 22 h using oocytes (n = 417) obtained from 2- to 8-mm follicles of ovaries collected from a slaughterhouse in M199 with 10% fetal calf serum (FCS), 0.01 IU/mL LH, and 0.01 IU/mL FSH. In vivo matured oocytes (n = 219) were aspirated from preovulatory follicles in eCG/PG/anti-eCG-superovulated heifers 22 h after a fixed time GnRH-induced LH surge; endogenous release of the LH surge was suppressed by a Norgestomet ear implant. This system allowed for the synchronization of the in vitro and in vivo maturation processes and thus for simultaneous IVF of both groups of oocytes. The in vitro developmental potential of in vivo matured oocytes was twice as high (P < 0.01) as that of in vitro matured oocytes, with blastocyst formation and hatching rates 11 d after IVC of 49.3 +/- 6.1 (SEM; n = 10 heifers) vs 26.4 +/- 1.0% (n = 2 replicates), and 39.1 +/- 5.1% vs 20.6 +/- 1.4%, respectively. It is concluded that IVM is a major factor limiting in the in vitro production of viable embryos, although factors such as the lack of normal preovulatory development of IVM oocytes contributed to the observed differences.  相似文献   

6.
The capacity of heifer calves of a late sexually maturing Zebu (Bos indicus) genotype to respond to superstimulation with FSH at a young age and in vitro oocyte development were examined. Some calves were treated with a GnRH agonist (deslorelin) or antagonist (cetrorelix) to determine whether altering plasma concentrations of LH would influence follicular responses to FSH and oocyte developmental competency. Brahman calves (3-mo-old; 140 +/- 3 kg) were randomly assigned to 3 groups: control (n = 10); deslorelin treatment from Day -8 to 3 (n = 10); and cetrorelix treatment from Day -3 to 2 (n = 10). All calves were stimulated with FSH from Day 0 to 2, and were ovariectomized on Day 3 to determine follicular responses to FSH and to recover oocytes for in vitro procedures. Before treatment with FSH, heifers receiving deslorelin had greater (P < 0.001) plasma LH (0.30 +/- 0.01 ng/ml) than control heifers (0.17 +/- 0.02 ng/ml), while plasma LH was reduced (P < 0.05) in heifers treated with cetrorelix (0.13 +/- 0.01 ng/ml). Control heifers had a surge release of LH during treatment with FSH, but this did not occur in heifers treated with deslorelin or cetrorelix. All heifers had large numbers of follicles > or = 2 mm (approximately 60 follicles) after superstimulation with FSH, and there were no differences (P > 0.10) between groups. Total numbers of oocytes recovered and cultured also did not differ (P > 0.05) for control heifers and heifers treated with deslorelin or cetrorelix. Fertilization and cleavage rates were similar for the 3 groups, and developmental rates to blastocysts were also similar. Zebu heifers respond well to superstimulation with FSH at a young age, and their oocytes are developmentally competent.  相似文献   

7.
The objective was to evaluate the developmental competence of cumulus-oocyte complexes (COC) collected by follicular aspiration in llamas treated with FSH or eCG. Llamas were assigned randomly to two groups (n = 16 per group) and treated, at the time of ovarian follicular wave emergence, with either: 1) 25 mg of FSH im, twice daily for 4 d; or 2) 1000 IU of eCG as a single i.m. dose. The start of gonadotropin treatment was considered Day 0. Both groups were given 5 mg of Armour Standard LH im on Day 6, and COC were collected by follicle aspiration on Day 7. Expanded COC collected from FSH- (n = 157) and eCG-treated llamas (n = 151) were fertilized in vitro using epididymal sperm, and presumptive zygotes were in vitro cultured in SOF medium for 8 d. The FSH and eCG treatment groups did not differ with respect to: the number of follicles ≥7 mm (16.0 ± 2.7 vs 14.0 ± 1.9, respectively; P = 0.5); the number of COC collected (11.5 ± 1.9 vs 9.7 ± 1.2; P = 0.4); the number of expanded COC (9.8 ± 1.4 vs 9.4 ± 1.2; P = 0.8); or the percentage of presumptive zygotes which developed into 2 to 8 cell stage embryos (65.3 vs 63.1), morulas (46.2 vs 42.5), or blastocysts (23.1 vs 20.5; P > 0.05). In conclusion, FSH and eCG treatments were equally effective for recovery of a high number of expanded COC which were used directly for in vitro fertilization. Furthermore, rate of embryo development was not significantly affected by the gonadotropin treatment used.  相似文献   

8.
The effects of FSH, LH, and epidermal growth factor (EGF) on the dynamics of nuclear maturation and subsequent embryo development were examined in pig oocytes cultured either conventionally or after preincubation with cycloheximide (CHX). In conventional culture, FSH or EGF significantly increased the rate of attainment of metaphase II (MII) for both gilt (50.0%+/-4.2% and 54.8%+/-4.3%, respectively; control, 5.8%+/-1.8%; P<0.001) and sow (87.6%+/-3.4% and 78.8%+/-3.9%, respectively; control, 7.8%+/-2.5%; P<0.001) oocytes. Gilt oocytes treated with both FSH and EGF showed an additive response (93.7%+/-2.1%). Treatment with LH had no effect. Preincubation with CHX caused the majority (84-100%) of both gilt and sow oocytes to undergo germinal vesicle breakdown. Compared to those treated with LH and/or EGF (both>80%), fewer FSH-treated oocytes reached metaphase I (43.8%+/-5.3%, P<0.001) by 14 h and MII (48.4%+/-5.9%, P<0.001) by 24 h, although the majority (71%) did mature to MII by 36 h after removal of CHX. After in vitro fertilization, higher proportions of both CHX-pretreated and untreated, FSH-exposed oocytes cleaved (71.3%+/-2.9% and 75.3%+/-3.1%, respectively) compared with those not treated with FSH (37.7%+/-3.0% and 43.0%+/-2.9%, respectively; P<0.001). Pretreatment with CHX significantly increased blastocyst yield for both FSH-treated (32.8%+/-2.0% and 10.3%+/-1.5%, respectively; P<0.001) and untreated (16.7%+/-1.5% and 9.4%+/-1.2%, respectively; P<0.001) oocytes. Polyspermy rates were unaffected. In conclusion, pig oocytes meiotically arrested by CHX before maturation retain and improve their developmental competence. FSH stimulates nuclear maturation but slows meiotic progression.  相似文献   

9.
10.
The main objective of this study was to investigate the effectiveness of certain progestagen-gonadotrophin treatments on synchronization of estrus in sheep. In Experiment I, 30 Chios ewes were treated at the beginning of the breeding season with medroxyprogesterone acetate (MAP) intravaginal sponges for 12 days and a single i.m. treatment of either FSH (Group 1,10 IU, n = 8; Group 2, 5 IU, n = 8; Group 3, 2.5 IU, n = 8) or eCG (Group 4, 400 IU, n = 6) at the time of sponge removal. Ten days after sponge removal laparotomy was performed to record ovarian response. Clinical estrus was observed in more (though not at a significant level) FSH treated than eCG treated sheep (62.5% versus 33.3%). Administration of 400 IU eCG resulted in the highest mean number of CL perewe ovulating (2.8 +/- 0.2), with administration of 10 IU FSH producing the next best results (2.1 +/- 0.3). Statistically significant differences in the mean number of CL per ewe ovulating were found only between ewes in Group 3 (1.7 +/- 0.4) and Group 4 (2.8 +/- 0.2) (P < 0.05). In Experiment II, 53 Chios and 30 Berrichon ewes were treated during the mid-breeding season with MAP intravaginal sponges for 12 days and a single i.m. treatment of either 10 IU FSH (27 Chios and 16 Berrichon ewes) or 400 IU eCG (26 Chios and 14 Berrichon ewes), at the time of sponge removal. Ewes that were in estrus on Days 2-4 and 19-23 after sponge removal were mated to fertile rams. No significant differences were recorded between treatment or breed groups in the proportions of ewes observed in estrus after treatment. In the Berrichon breed, FSH administration resulted in higher lambing rates (93.8% versus 57.1%, P < 0.05) and higher mean number of lambs born per ewe exposed to rams (1.4 +/- 0.2 versus 0.8 +/- 0.2, P < 0.05) than that of eCG. After treatment with eCG, the mean number of lambs born per ewe exposed to rams was higher in the Chios than the Berrichon breed (1.4 +/- 0.2 versus 0.8 +/- 0.2, P < 0.05). After treatment with FSH, the lambing rate was higher in the Berrichon than the Chios breed (93.8% versus 63.0%, P < 0.05). In conclusion, a single FSH treatment (5 or 10 IU) at the end of progestagen treatment appears to be more effective than eCG for the induction of synchronized estrus in sheep at the beginning of the breeding season, with no cases of abnormal ovarian response observed. During the mid-breeding season FSH (10 IU) appears to be equally as effective as eCG (400 IU) in respect of lambing rate and mean number of lambs born per ewe.  相似文献   

11.
Bormann CL  Ongeri EM  Krisher RL 《Theriogenology》2003,59(5-6):1373-1380
Only a small proportion of goat oocytes selected for in vitro oocyte maturation (IVM) can successfully complete cytoplasmic maturation and support embryonic development. To produce goat blastocysts more efficiently in vitro, it is necessary to identify factors required during oocyte maturation. The objective of this study was to determine the role of vitamins during maturation of caprine oocytes in semi-defined medium on subsequent developmental capacity in vitro. Cumulus oocyte complexes (COCs) collected from a local abattoir were matured in synthetic oviductal fluid (SOF) medium supplemented with BSA, LH, FSH, and EGF in the presence or absence of MEM vitamins for 24 h. The COCs were co-incubated with frozen-thawed sperm in Bracket and Oliphant fertilization medium for 18-22 h. Embryos were cultured in G1.2 medium for 72 h followed by culture in G2.2 medium for an additional 72 h. Addition of vitamins significantly increased (P<0.05) overall blastocyst development (16.4+/-1.2% versus 12.3+/-1.1%), and tended to increase (P<0.06) the percentage of cleaved embryos (61.4+/-3.0% versus 52.7+/-2.6%). Addition of MEM vitamins to SOF maturation medium significantly increased (P<0.05) mean blastocyst cell number compared with control medium (107.7+/-6.0 versus 85.1+/-6.3). Hatched blastocysts tended to have increased (P<0.06) cell numbers in the vitamin-treated group (150.5+/-8.4 versus 123.4+/-8.8). These results suggest that addition of vitamins during oocyte maturation is beneficial for subsequent blastocyst development and viability.  相似文献   

12.
Men H  Monson RL  Rutledge JJ 《Theriogenology》2002,57(3):1095-1103
We investigated the effect of meiotic stages and two maturation protocols on bovine oocyte's resistance to cryopreservation. Oocytes at germinal vesicle breakdown (GVBD) and metaphase II (MII) stage as well as oocytes matured for 22 h in media supplemented with FSH or LH were vitrified by the open pulled straw method. After warming, oocytes underwent additional 16 h (GVBD group) or 2 h (MII group) maturation. Then they were subjected to in vitro fertilization and culture. Some oocytes that matured in the medium supplemented with LH were subjected to parthenogenetic activation after vitrification to determine their developmental potential in absence of fertilization. Survival of oocytes after vitrifying/warming was determined after 22 h in fertilization medium. Cleavage and blastocyst formation rates were used to assess their developmental competence. In both experiments, a portion of unvitrified MII oocytes were subjected to in vitro fertilization and culture as control groups. In Experiment 1, similar cleavage rates were obtained for both GVBD and MII oocytes (53.56 versus 58.01%, P > 0.05). However, significantly higher proportion of cleaved embryos from vitrified MII oocytes developed into blastocysts than those from vitrified GVBD oocytes (1.06 versus 8.37%, respectively, P < 0.01). In Experiment 2, vitrified MII oocytes matured in medium supplemented with LH were superior to vitrified MII oocytes matured in FSH supplementation not only in cleavage rates (61.13 versus 50.33%), but in blastocyst formation rates (11.79 versus 5.19%, P < 0.01) as well. Cleavage and blastocyst formation rates of parthenogenetically activated oocytes were similar to those that were fertilized. Nevertheless, the vitrifying/ warming process significantly compromised the oocytes' developmental capacity since the vitrified oocytes showed significant reduction in both cleavage and blastocyst rates compared to those of not vitrified controls in both experiments (P < 0.01). We showed that oocytes at different maturation stages respond to cryopreservation differently and MII stage oocytes have better resistance to cryopreservation than GVBD stage oocytes. The maturation protocols also influence oocyte's ability to survive cryopreservation. Poor developmental potential after vitrification seem to have resulted from the cryodamage to the oocyte itself. These results suggested the importance of maturation on the developmental competence of cryopreserved oocytes.  相似文献   

13.
Effects of LH and FSH on the maturation of pig oocytes in vitro   总被引:4,自引:0,他引:4  
This research was designed to investigate the effects of LH and FSH (50 ng/ml) on pig oocyte maturation in vitro. The following parameters were studied: a) the degree of heterologous coupling between cumulus cells and oocytes, evaluated by measuring the (3)H-uridine and (3)H-choline uptake in cumulus enclosed oocytes; b) meiotic maturation; c) cytoplasmatic maturation, evaluated by analyzing the ability of the oocytes to promote male pronucleus formation after in vitro fertilization. Despite the marked cumuli expansion induced by gonadotropins, uridine uptake was not influenced by LH or FSH. By contrast, choline uptake in LH-treated oocytes was significantly higher than in FSH-treated or control oocytes (3199 cpm +/- 251 vs 1686 cpm +/- 142, P<0.01). Gonadotropins accelerated meiotic progression, and after 30 hours of culture the percentage of oocytes at the germinal vesicle stage was significantly lower (P<0.01) in LH-(24%, 24 102 ) and FSH-(20%, 18 90 ) treated oocytes than in control oocytes (76%, 64 84 ). After 44 hours of culture, the percentage of oocytes reaching the MII stage was significantly higher (P<0.01) in the presence of LH (76%, 92 120 ) and FSH (86%, 92 108 ) than in the controls (35%, 40 116 ). The percentage of oocytes capable of sustaining male pronucleus formation was similar in the control (48.4%, 63 132 ) and FSH-treated oocytes (44.3%, 51 116 ), while it was markedly increased (P<0.01) by the addition of LH (72.7%, 143 197 ). The data reported indicate that in vitro pig oocytes tend to undergo meiotic maturation even in the absence of hormones. However, in our in vitro system, LH and FSH accelerated and facilitated meiotic progression, and LH selectively improved cytoplasmic maturation which is required to promote the formation of a male pronucleus.  相似文献   

14.
The objective of the study was to establish an effective ovarian superstimulatory protocol and subsequently obtain oocytes from bison by transvaginal ultrasound-guided follicular aspiration. Two experiments involving 22 wood bison were done during the breeding season (September to December). In experiment 1, the bison were given a luteolytic dose of prostaglandin (Day 0) and underwent follicular ablation (Day 8) to induce ovarian synchrony. Synchronized bison were then assigned randomly to two groups (n = 11 per group) and given either 200 mg FSH diluted in saline sc, or 200 mg FSH diluted in a proprietary slow-release formulation (SRF) im on Days 9 and 11. Prostaglandin was given to both groups on Day 11 followed by 25 mg LH on Day 13. Oocytes were collected by transvaginal ultrasound-guided aspiration of follicles ≥5 mm on Day 14. In experiment 2, bison were synchronized as in experiment 1 and assigned randomly to one of two groups (n = 11 per group) and given either a single dose of 2500 IU eCG im on Day 9, or 200 mg FSH sc on Days 9 and 11. Prostaglandin was given to both groups on Day 11, and LH (25 mg) was given on Day 13. Oocyte collection was done as described in experiment 1. Cumulus-oocyte-complexes (COC) were classified according to morphologic characteristics. In experiment 1, more follicles ≥5 mm were detected on Day 14 in bison treated with FSH versus eCG (12.2 ± 1.73 vs. 5.8 ± 0.52; P < 0.05), and more COC were collected from FSH-treated animals (7.2 ± 1.41 vs. 3.4 ± 0.62; P < 0.05). In experiment 2, the FSH-saline and FSH-SRF groups had a similar number (mean value ± standard error of the mean) of follicles ≥5 mm on Day 14 (12.4 ± 1.49 vs. 13.8 ± 1.24, respectively) and a similar number of COC were collected (6.5 ± 1.13 vs. 6.3 ± 0.96, respectively). The proportion of COC collected per follicle aspirated and the percentage of compact, expanded, and denuded oocytes did not differ between groups in either experiment 1 or 2. In summary, a two-dose regimen of FSH diluted in saline and given sc or in a SRF and given im induced a similar ovarian response in wood bison, whereas a single dose of eCG resulted in a significantly lower ovarian response. Overall, COC were collected from 55% of follicles after transvaginal, ultrasound-guided needle aspiration in wood bison.  相似文献   

15.
Porcine FSH/LH stimulation successfully induced development of multiple large (>or=4mm) antral follicles in 10 of 11 common wombats. A mean of 5.5 metaphase II (MII) oocytes were aspirated from wombats that were stimulated during the follicular phase of the oestrous cycle (n=3) or after pouch young removal (n=3). Three subadults (n=3) and two anoestrus adults did not produce MII oocytes despite pFSH/pLH administration. In vitro maturation of immature oocytes at the time of aspiration doubled the number of MII oocytes that could be collected from pFSH/pLH stimulated wombats. Immature oocytes with cumulus attached, matured more readily to the MII stage than immature oocytes without cumulus. Following intracytoplasmic sperm injection (ICSI), approximately 5% of the oocytes that were MII at the time of collection cleaved. Approximately 5% of those that were matured by in vitro maturation (IVM) formed two polar bodies following ICSI, although they not cleave. Parthenogenesis cannot be excluded. This demonstrates that assisted reproductive technologies may be applicable to the common wombat.  相似文献   

16.
This study investigated the effects of a purified follicle stimulating hormone (FSH) preparation supplemented with three different amounts of bovine luteinizing hormone (bLH) and a commercially available FSH with a high LH contamination on superovulatory response, plasma LH and milk progesterone levels in dairy cows. A total of 112 lactating Holstein-Friesian crossbred dairy cows were used for these experiments; the cows were randomly assigned to treatment groups consisting of purified porcine FSH (pFSH) supplemented with bLH. Group 1 was given 0.052 IU LH 40 mg armour units (AU) FSH (n = 6); Group 2 was given 0.069 IU LH (n = 32); Group 3 received 0.423 IU LH (n = 34); while Group 4 cows (n = 36) were superovulated with a commercially available FSH-P((R)). This compound appeared to contain 8.5 IU LH 40 mg AU FSH according to bioassay measurement. All animals received a total of 40 mg AU FSH at a constant dose twice daily over a 4-d period. Levels of milk progesterone and plasma LH were determined during the course of superovulatory treatment. The Group 1 treatment did not reveal multiple follicular growth, and no embryos were obtained. Superovulation of Group 3 cows resulted in significantly (P<0.05) more corpora lutea (CL; 12.6+/-1.1) and fertilized ova (5.1+/-1.3) compared with Groups 2 and 4 (10.1+/-0.9 and 2.6+/-0.6, 9.0+/-0.9 and 2.7+/-0.5, respectively). Due to a high percentage of degenerated embryos (33%) Group 3 yielded only one more transferable embryo than Groups 2 and 4. Among groups, LH levels differed in the period prior to induction of luteolysis and were similar thereafter. The progesterone pattern following FSH LH administration reflected the amount of LH supplementation. Milk progesterone levels on the day prior to embryo collection were correlated to the number of CLs and recovered embryos. It is concluded that under the conditions of our experiment superovulation with 0.423 IU LH 40 mg AU FSH may yield a significantly improved superovulatory response in dairy cows. It is further suggested that LH supplementation exerts its effects mainly on follicular and oocyte maturation during the period prior to luteolysis.  相似文献   

17.
Superovulatory response in a bovine model of reproductive aging   总被引:1,自引:0,他引:1  
Two experiments were done to test the hypotheses that aging in cattle is associated with a reduced number of follicles recruited into an ovarian follicular wave, and a reduction in the ovarian response to gonadotropin treatment. Older cows (13-16 years of age) and their daughters (3-6 years of age) were treated with FSH for ovarian superstimulation four times over two consecutive years (31 and 33 superstimulations in old and young cows, respectively, experiments and years combined). In Experiment 1, ovulation was induced using LH. In Experiment 2, cumulus-oocyte complexes were collected by ultrasonographic-guided follicle aspirations before expected ovulations. The ovarian follicular and ovulatory responses were monitored daily by ultrasonography. Fewer 2-5mm follicles (P<0.01) were detected at the expected time of follicular wave emergence in older cows than in their daughters. After superstimulation, older cows had fewer follicles >or=6mm (P<0.01), and tended (P=0.1) to have fewer ovulations than their daughters (32+/-4 versus 40+/-3, respectively). There was a positive correlation in the response of individual cows to successive superstimulatory treatments (r>0.8; P<0.0001) and the number of detected ovulations from one year to the next (r=0.6; P=0.04). In conclusion, aging was associated with fewer 2-5mm follicles at follicular wave emergence and a lesser follicular and ovulatory response after superstimulatory treatment. The follicular and ovulatory response after superstimulation was repeatable within individuals, regardless of age.  相似文献   

18.
The potential to use a GnRH agonist bioimplant and injection of exogenous LH to control the time of ovulation in a multiple ovulation and embryo transfer (MOET) protocol was examined in buffalo. Mixed-parity buffalo (Bubalus bubalis; 4-15-year-old; 529 +/- 13 kg LW) were randomly assigned to one of five groups (n = 6): Group 1, conventional MOET protocol; Group 2, conventional MOET with 12 h delay in injection of PGF2alpha; Group 3, implanted with GnRH agonist to block the preovulatory surge release of LH; Group 4, implanted with GnRH agonist and injected with exogenous LH (Lutropin, 25 mg) 24 h after 4 days of superstimulation with FSH; Group 5, implanted with GnRH agonist and injected with LH 36 h after superstimulation with FSH. Ovarian follicular growth in all buffaloes was stimulated by treatment with FSH (Folltropin-V, 200 mg) administered over 4 days, and was monitored by ovarian ultrasonography. At the time of estrus, the number of follicles >8 mm was greater (P < 0.05) for buffaloes in Group 2 (12.8) than for buffaloes in Groups 1(8.5), 3 (7.3), 4 (6.1) and 5 (6.8), which did not differ. All buffaloes were mated by Al after spontaneous (Groups 1-3) or induced (Groups 4 and 5) ovulation. The respective number of buffalo that ovulated, number of corpora lutea, ovulation rate (%), and embryos + oocytes recovered were: Group 1 (2, 1.8 +/- 1.6, 18.0 +/- 13.6, 0.2 +/- 0.2); Group 2 (4,6.1 +/- 2.9, 40.5 +/- 17.5, 3.7 +/- 2.1); Group 3 (0, 0, 0, 0); Group4 (6, 4.3 +/- 1.2, 69.3 +/- 14.2, 2.0 +/- 0.9); and Group 5 (1, 2.5 +/- 2.5, 15.5 +/- 15.5, 2.1 +/- 2.1). All buffaloes in Group 4 ovulated after injection of LH and had a relatively high ovulation rate (69%) and embryo recovery (46%). It has been shown that the GnRH agonist-LH protocol can be used to improve the efficiency of MOET in buffalo.  相似文献   

19.
The objective was to enhance the inherent developmental ability of bovine oocytes retrieved by ultrasound-guided transvaginal aspiration. Various hormonal regimes were utilized to produce partially matured oocytes in vivo, in order to improve embryo development following IVF. In the first experiment, a two-by-two factorial design was used with FSH (multiple versus single dose) and im administration of LH (yes versus no) 6h prior to OPU. In all protocols (which lasted for nine consecutive weeks), ovarian stimulation was performed in the presence of a CIDR. One FSH administration was adequate for ovarian stimulation (9.33+/-0.7 and 10.14+/-0.7 follicles per cow per OPU session); however, multiple injections increased (P<0.05) follicular response (12.97+/-0.7 and 13.97+/-0.7). In the second experiment, a two-by-two factorial design was used to compare the effects, during ovarian stimulation, of the presence or absence of CIDR, and iv treatment with LH 6h prior to OPU (yes versus no), on oocyte competence (judged by blastocyst development rates following IVF). Presence of CIDR during superstimulation had no effect on the follicular response. Administration of LH 6h prior to OPU increased (P<0.05) the oocytes of higher morphological grades, and in the absence of a CIDR, improved (P<0.05) blastocyst development rate. Treatment with LH, 6h prior to OPU without the use of CIDR during ovarian stimulation, resulted in 2.89+/-0.4 blastocysts per cow per OPU session as compared to 1.56+/-0.4, 1.56+/-0.4 and 1.33+/-0.4 for all other groups. In conclusion, compared to single administration, multiple FSH administration increased (P<0.05) available follicles for aspiration. Moreover, when ovarian stimulation in the absence of CIDR was followed by administration of LH 6h prior to OPU, it increased (P<0.05) the number of blastocysts per OPU session.  相似文献   

20.
The time course of nuclear maturation of oocytes was examined in brushtail possums, Trichosurus vulpecula. Oocytes were recovered from ovarian follicles > 2 mm in diameter after pregnant mares' serum gonadotrophin/porcine luteinizing hormone (PMSG/LH) treatment (in vivo matured) or 72 hr after PMSG treatment (in vitro matured). Oocytes recovered from small (< 2 mm) and large (> 2 mm) follicles were also assessed for their ability to mature in vitro. Staining with the DNA-specific dye Hoechst 33342 was used to assess the stage of nuclear development by fluorescence microscopy. The process of nuclear maturation progressed rapidly in vivo, as oocytes collected at 20-27 hr post-LH all had a GV, but by 28-29.5 hr post-LH approximately a third of eggs were MII. By 30-hr post-LH, more than 70% of oocytes had reached MII stage and all ovulated eggs were MII. In vitro, all oocytes were at germinal vesicle stage at the start of culture. After 24 hr of culture, 67% of oocytes had progressed to metaphase I/anaphase I of meiosis. After 36 hr, 25% of oocytes had completed maturation to metaphase II, increasing to 52% after 48 hr. Maturation of oocytes after 48 hr in culture was unaffected by the presence or absence of granulosa cells, PMSG or LH/porcine follicle stimulating hormone (FSH). More oocytes from large follicles (55%) completed maturation by 48 hr than from small follicles (15%). The potential of oocytes to mature after 48 hr in culture was dependent on the follicle harvested having reaching a critical diameter of 1.5 mm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号