首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Canonical Wnt/beta-catenin signaling regulates the activation of the myogenic determination gene Myf5 at the onset of myogenesis, but the underlying molecular mechanism is unknown. Here, we report that the Wnt signal is transduced in muscle progenitor cells by at least two Frizzled (Fz) receptors (Fz1 and/or Fz6), through the canonical beta-catenin pathway, in the epaxial domain of newly formed somites. We show that Myf5 activation is dramatically reduced by blocking the Wnt/beta-catenin pathway in somite progenitor cells, whereas expression of activated beta-catenin is sufficient to activate Myf5 in somites but not in the presomitic mesoderm. In addition, we identified Tcf/Lef sequences immediately 5' to the Myf5 early epaxial enhancer. These sites determine the correct spatiotemporal expression of Myf5 in the epaxial domain of the somite, mediating the synergistic action of the Wnt/beta-catenin and the Shh/Gli pathways. Taken together, these results demonstrate that Myf5 is a direct target of Wnt/beta-catenin, and that its full activation requires a cooperative interaction between the canonical Wnt and the Shh/Gli pathways in muscle progenitor cells.  相似文献   

2.
3.
4.
5.
6.
Wnt and Sonic Hedgehog (Shh) signals are known to pattern the somite into dermomyotomal, myotomal and sclerotomal cell fates. By employing explants of presomitic mesoderm cultured with constant levels of Wnt3a conditioned medium and increasing levels of Shh, we found that differing levels of Shh signaling elicit differing responses from somitic cells: the lowest level of Shh signaling allows dermomyotomal gene expression, intermediate levels induce loss of dermomyotomal markers and activation of myogenic differentiation, and higher levels induce loss of myotomal markers and activation of sclerotomal gene expression. In addition, we have found that in the presence of high levels of Wnt signaling, instead of inducing sclerotomal markers, Shh signals act to maintain the expression of dermomyotomal and myotomal markers. One of the sclerotomal genes induced by high levels of Shh signaling is Nkx3.2. Forced expression of Nkx3.2 blocks somitic expression of the dermomyotomal marker Pax3 both in vitro and in vivo. Conversely, forced expression of Pax3 in somites can block Shh-mediated induction of sclerotomal gene expression and chondrocyte differentiation in vitro. Thus we propose that varying levels of Shh signaling act in a morphogen-like manner to elicit differing responses from somitic cells, and that Pax3 and Nkx3.2 set up mutually repressing cell fates that promote either dermomyotome/myotome or sclerotome differentiation, respectively.  相似文献   

7.
8.
Sonic hedgehog (Shh), produced by the notochord and floor plate, is proposed to function as an inductive and trophic signal that controls somite and neural tube patterning and differentiation. To investigate Shh functions during somite myogenesis in the mouse embryo, we have analyzed the expression of the myogenic determination genes, Myf5 and MyoD, and other regulatory genes in somites of Shh null embryos and in explants of presomitic mesoderm from wild-type and Myf5 null embryos. Our findings establish that Shh has an essential inductive function in the early activation of the myogenic determination genes, Myf5 and MyoD, in the epaxial somite cells that give rise to the progenitors of the deep back muscles. Shh is not required for the activation of Myf5 and MyoD at any of the other sites of myogenesis in the mouse embryo, including the hypaxial dermomyotomal cells that give rise to the abdominal and body wall muscles, or the myogenic progenitor cells that form the limb and head muscles. Shh also functions in somites to establish and maintain the medio-lateral boundaries of epaxial and hypaxial gene expression. Myf5, and not MyoD, is the target of Shh signaling in the epaxial dermomyotome, as MyoD activation by recombinant Shh protein in presomitic mesoderm explants is defective in Myf5 null embryos. In further support of the inductive function of Shh in epaxial myogenesis, we show that Shh is not essential for the survival or the proliferation of epaxial myogenic progenitors. However, Shh is required specifically for the survival of sclerotomal cells in the ventral somite as well as for the survival of ventral and dorsal neural tube cells. We conclude, therefore, that Shh has multiple functions in the somite, including inductive functions in the activation of Myf5, leading to the determination of epaxial dermomyotomal cells to myogenesis, as well as trophic functions in the maintenance of cell survival in the sclerotome and adjacent neural tube.  相似文献   

9.
10.
Muscles of the body and bones of the axial skeleton derive from specialized regions of somites. Somite development is influenced by adjacent structures. In particular, the dorsal neural tube and the overlying ectoderm have been shown to be necessary for the induction of myogenic precursor cells in the dermomyotome. Members of the Wnt family of signaling molecules, which are expressed in the dorsal neural tube and the ectoderm, are postulated to be responsible for this process. It is shown here that ectopically implanted Wnt-1-, -3a-, and -4-expressing cells alter the process of somite compartmentalization in vivo. An enlarged dorsal compartment results from the implantation of Wnt-expressing cells ventrally between the neural tube/notochord and epithelial somites, at the expense of the ventral compartment, the sclerotome. Thus, ectopic Wnt expression is able to override the influence of ventralizing signals arising from notochord and floor plate. This shift of the border between the two compartments was identified by an increase in the domain of Pax-3 expression and a complete loss of Pax-1 expression in somites close to the ectopic Wnt signal. The expanded expression of MyoD and desmin provides evidence that it is the myotome which increases as a result of Wnt signaling. Paraxis expression is also drastically amplified after implantation of Wnt-expressing cells indicating that Wnts are involved in the formation and maintenance of somite epithelium and suggesting that Paraxis is activated through Wnt signaling pathways. Taken together these results suggest that ectopic Wnts disturb the normal balance of signaling molecules within the somite, resulting in an enhanced recruitment of somitic cells into the myogenic lineage.  相似文献   

11.
12.
13.
14.
We report the cloning of two new quail myogenic cDNAs, quail myogenic factor 2 (qmf2) and qmf3, which encode helix-loop-helix proteins homologous to mammalian myogenic factors myogenin and myf-5. In situ hybridization has been used to investigate the developmental expression of qmf2 and qmf3, as well as qmf1, the quail homologue to mammalian MyoD1, during the formation of the brachial somites. These studies show that qmf1 and qmf3 are activated sequentially in medially localized somite cells, immediately following somite formation but prior to myotome formation. qmf1, qmf2, and qmf3 are expressed in the myotome of compartmentalized somites. These findings suggest that determination of the myogenic cell lineage in quail somites is a progressive process controlled by influences of the neural tube on the expression of the qmf regulatory genes in newly forming somites.  相似文献   

15.
16.
17.
We prepared a specific antiserum to the qBrn-2 protein and examined the developmental distribution of this protein during quail somitic myogenesis. In contrast to its mammalian homolog N-Oct-3, qBrn-2 exhibited an impressive spatio-temporal profile in somitic myogenesis, in addition to the orthodox expression observed in the developing neural tube. In somites, qBrn-2 was expressed in the outer epithelial cells, but not in the core cells. During the somite differentiation, qBrn-2 expression was enhanced and restricted to myotome. The location of qBrn-2 expression seemed to overlap with that of myf5 and myoD in myotome. However, in cells that just began to express myf5 or myoD, qBrn-2 expression was not obvious. As embryonic development proceeded, qBrn-2 positive cells in myotome migrated dorsally and ventrally, and qBrn-2 expression was still observed at dorsal and ventral muscle masses in the forelimb. On the basis of our observations, it seems that qBrn-2 may play important roles in the determination, differentiation and migration of muscle precursor cells, in addition to its known roles in neurogenesis.  相似文献   

18.
19.
Intrinsic signals regulate the initial steps of myogenesis in vertebrates   总被引:8,自引:0,他引:8  
In vertebrates, despite the evidence that extrinsic factors induce myogenesis in naive mesoderm, other experiments argue that the initiation of the myogenic program may take place independent of these factors. To resolve this discrepancy, we have re-addressed this issue, using short-term in vivo microsurgery and culture experiments in chick. Our results show that the initial expression of the muscle-specific markers Myf5 and MyoD is regulated in a mesoderm-autonomous fashion. The reception of a Wnt signal is required for MyoD, but not Myf5 expression; however, we show that the source of the Wnt signal is intrinsic to the mesoderm. Gain- and loss-of-function experiments indicate that Wnt5b, which is expressed in the presomitic mesoderm, represents the MyoD-activating cue. Despite Wnt5b expression in the presomitic mesoderm, MyoD is not expressed in this tissue: our experiments demonstrate that this is due to a Bmp inhibitory signal that prevents the premature expression of MyoD before somites form. Our results indicate that myogenesis is a multistep process which is initiated prior to somite formation in a mesoderm-autonomous fashion; as somites form, influences from adjacent tissues are likely to be required for maintenance and patterning of early muscles.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号