首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
DNA mismatch repair maintains genomic stability by detecting and correcting mispaired DNA sequences and by signaling cell death when DNA repair fails. The mechanism by which mismatch repair coordinates DNA damage and repair with cell survival or death is not understood, but it suggests the need for regulation. Since the functions of mismatch repair are initiated in the nucleus, we asked whether nuclear transport of MLH1 and PMS2 is limiting for the nuclear localization of MutLalpha (the MLH1-PMS2 dimer). We found that MLH1 and PMS2 have functional nuclear localization signals (NLS) and nuclear export sequences, yet nuclear import depended on their C-terminal dimerization to form MutLalpha. Our studies are consistent with the idea that dimerization of MLH1 and PMS2 regulates nuclear import by unmasking the NLS. Limited nuclear localization of MutLalpha may thus represent a novel mechanism by which cells fine-tune mismatch repair functions. This mechanism may have implications in the pathogenesis of hereditary non-polyposis colon cancer.  相似文献   

2.
The DNA mismatch repair system (MMR) maintains genome stability through recognition and repair of single-base mismatches and small insertion-deletion loops. Inactivation of the MMR pathway causes microsatellite instability and the accumulation of genomic mutations that can cause or contribute to cancer. In fact, 10-20% of certain solid and hematologic cancers are MMR-deficient. MMR-deficient cancers do not respond to some standard of care chemotherapeutics because of presumed increased tolerance of DNA damage, highlighting the need for novel therapeutic drugs. Toward this goal, we generated isogenic cancer cell lines for direct comparison of MMR-proficient and MMR-deficient cells. We engineered NCI-H23 lung adenocarcinoma cells to contain a doxycycline-inducible shRNA designed to suppress the expression of the mismatch repair gene MLH1, and compared single cell subclones that were uninduced (MLH1-proficient) versus induced for the MLH1 shRNA (MLH1-deficient). Here we present the characterization of these MMR-inducible cell lines and validate a novel class of rhodium metalloinsertor compounds that differentially inhibit the proliferation of MMR-deficient cancer cells.  相似文献   

3.
Wang X  Fan J  Liu D  Fu S  Ingvarsson S  Chen H 《PloS one》2011,6(10):e25913
The highly repetitive Alu retroelements are regarded as methylation centres in the genome. Methylation in the gene promoters could be spreading from them. Promoter methylation of MLH1 is frequently detected in cancers, but the underlying mechanism is unclear. The aim of this study is to understand whether the methylation in the Alu elements is associated with promoter methylation in the MLH1 gene. Bisulfite genomic sequencing was used to analyse the CpG sites of the 5' end (promoter, exon 1 and Alu-containing intron 1) of the MLH1 gene in colorectal cancer cells and tissues, and gastric cancer tissues. Hypomethylation in the Alu elements and hypermethylation in the promoters and the regions between the promoters and the Alu elements were detected in two cancer cell lines and seven cancer tissues. However, demethylation or hypomethylation of the MLH1 promoter and regions between promoter and the Alu elements, and hypermethylation in the Alu elements, were identified in the normal tissues. MLH1 promoter methylation may spread from Alu elements that are located in intron 1 of the MLH1 gene. The trans-acting elements binding to the mutation sites could play a role in the methylation spreading.  相似文献   

4.
Wu Q  Vasquez KM 《PLoS genetics》2008,4(9):e1000189
DNA interstrand crosslinks (ICLs) are among the most toxic types of damage to a cell. For this reason, many ICL-inducing agents are effective therapeutic agents. For example, cisplatin and nitrogen mustards are used for treating cancer and psoralen plus UVA (PUVA) is useful for treating psoriasis. However, repair mechanisms for ICLs in the human genome are not clearly defined. Previously, we have shown that MSH2, the common subunit of the human MutSα and MutSβ mismatch recognition complexes, plays a role in the error-free repair of psoralen ICLs. We hypothesized that MLH1, the common subunit of human MutL complexes, is also involved in the cellular response to psoralen ICLs. Surprisingly, we instead found that MLH1-deficient human cells are more resistant to psoralen ICLs, in contrast to the sensitivity to these lesions displayed by MSH2-deficient cells. Apoptosis was not as efficiently induced by psoralen ICLs in MLH1-deficient cells as in MLH1-proficient cells as determined by caspase-3/7 activity and binding of annexin V. Strikingly, CHK2 phosphorylation was undetectable in MLH1-deficient cells, and phosphorylation of CHK1 was reduced after PUVA treatment, indicating that MLH1 is involved in signaling psoralen ICL-induced checkpoint activation. Psoralen ICLs can result in mutations near the crosslinked sites; however, MLH1 function was not required for the mutagenic repair of these lesions, and so its signaling function appears to have a role in maintaining genomic stability following exposure to ICL-induced DNA damage. Distinguishing the genetic status of MMR-deficient tumors as MSH2-deficient or MLH1-deficient is thus potentially important in predicting the efficacy of treatment with psoralen and perhaps with other ICL-inducing agents.  相似文献   

5.
6.
The human DNA mismatch repair (MMR) protein MLH1 has essential roles in the correction of replication errors and the activation of cell cycle checkpoints and cytotoxic responses to DNA damage that contribute to suppression of cancer risk. MLH1 functions as a heterodimer with the PMS2 protein, and steady state levels of PMS2 are very low in MLH1-deficient cells. Unique to MLH1 among MutL-homolog proteins, and conserved in identified eukaryotic MLH1 proteins, is the so-called C-terminal homology domain (CTH). The function of these C-terminal 20-30 amino acids is not known. We investigated the effect of a C-terminal truncation of human MLH1 (MLH1-L749X) on mammalian MMR by testing its activity in MLH1-deficient cells. We found the CTH to be essential for suppression of spontaneous mutation, activation of a cytotoxic response to 6-thioguanine, and maintenance of normal steady state levels of PMS2. Co-expression in doubly mutant Mlh1-/-; Pms2-/- fibroblasts showed that MLH1-L749X was unable to stabilize PMS2. Over-expression of MLH1-L749X did not reduce stabilization of PMS2 mediated by wild-type MLH1, indicating that truncation of the CTH reduces the ability to compete with wild-type MLH1 for interaction with PMS2. Lack of PMS2 stabilization also was observed with a previously reported pathogenic truncation (MLH1-Y750X), but not with two different point mutations in the CTH. Biochemical assays demonstrated that truncation of the CTH reduced the stability of heterodimers, although MLH1-L749X retained significant capacity for interaction with PMS2. Thus, the CTH of human MLH1 is necessary for error correction, checkpoint signaling, and for promoting interaction with, and the stability of, PMS2. Analysis of the CTH role in stabilizing PMS2 was facilitated by a novel intracellular assay for MLH1-PMS2 interaction. This assay should prove useful for identifying additional amino acids in MLH1 and PMS2 necessary for interaction in cells, and for determining the functional consequences of MLH1 mutations identified in human cancers.  相似文献   

7.
DNA mismatch repair ensures genomic stability by correcting biosynthetic errors and by blocking homologous recombination. MutS-like and MutL-like proteins play important roles in these processes. In Escherichia coli and yeast these two types of proteins form a repair initiation complex that binds to mismatched DNA. However, whether human MutS and MutL homologs interact to form a complex has not been elucidated. Using immunoprecipitation and Western blot analysis we show here that human MSH2, MLH1, PMS2 and proliferating cell nuclear antigen (PCNA) can be co-immunoprecipitated, suggesting formation of a repair initiation complex among these proteins. Formation of the initiation complex is dependent on ATP hydrolysis and at least functional MSH2 and MLH1 proteins, because the complex could not be detected in tumor cells that produce truncated MLH1 or MSH2 protein. We also demonstrate that PCNA is required in human mismatch repair not only at the step of repair initiation, but also at the step of repair DNA re-synthesis.  相似文献   

8.
Hereditary nonpolyposis colorectal cancer (HNPCC) is due to defects in DNA mismatch repair (MMR) genes MSH2, MLH1, MSH6, and to a lesser extent PMS2. Of 466 suspected HNPCC families, we defined 54 index patients with either tumors of high microsatellite instability (MSI-H) and/or loss of expression for either MLH1, MSH2, and/or MSH6, but without a detectable pathogenic point mutation in these genes. This study cohort was augmented to 64 patients by 10 mutation-negative index patients from Amsterdam families where no tumors were available. Deletion/duplication screening using the multiplex ligation-dependent probe amplification (MLPA) revealed 12 deletions in MSH2 and two deletions in MLH1. These deletions constitute 17% of pathogenic germline alterations but elucidate the susceptibility to HNPCC in only 22% of the mutation-negative study cohort, pointing towards other mutation mechanisms for an inherited inactivation of MLH1 or MSH2. We describe here four novel deletions. One novel and one known type of deletion were found for three and two unrelated families, respectively. MLPA analysis proved a reliable method for the detection of genomic deletions in MLH1 and MSH2; however, sequence variations in the ligation-probe binding site can mimic single exon deletions.  相似文献   

9.
Loss of DNA mismatch repair due to mutation or diminished expression of the MLH1 gene is associated with genome instability and cancer. In this study, we used a yeast model system to examine three circumstances relevant to modulation of MLH1 function. First, overexpression of wild-type MLH1 was found to cause a strong elevation of mutation rates at three different loci, similar to the mutator effect of MLH1 gene inactivation. Second, haploid yeast strains with any of six mlh1 missense mutations that mimic germ line mutations found in human cancer patients displayed a strong mutator phenotype consistent with loss of mismatch repair function. Five of these mutations affect amino acids that are homologous to residues suggested by recent crystal structure and biochemical analysis of Escherichia coli MutL to participate in ATP binding and hydrolysis. Finally, using a highly sensitive reporter gene, we detected a mutator phenotype of diploid yeast strains that are heterozygous for mlh1 mutations. Evidence suggesting that this mutator effect results not from reduced mismatch repair in the MLH1/mlh1 cells but rather from loss of the wild-type MLH1 allele in a fraction of cells is presented. Exposure to bleomycin or to UV irradiation strongly enhanced mutagenesis in the heterozygous strain but had little effect on the mutation rate in the wild-type strain. This damage-induced hypermutability may be relevant to cancer in humans with germ line mutations in only one MLH1 allele.  相似文献   

10.
Emerging evidence suggests that Sirtuin 6 (SIRT6) functions as a longevity assurance gene by promoting genomic stability, regulating metabolic processes and attenuating inflammation. Here, we examine the effect of SIRT6 activation on cancer cells. We show that SIRT6 overexpression induces massive apoptosis in a variety of cancer cell lines but not in normal, non-transformed cells. This cell death requires the mono-ADP-ribosyltransferase but not the deacetylase activity of SIRT6 and is mediated by the activation of both the p53 and p73 apoptotic signaling cascades in cancer cells by SIRT6. These results suggest that SIRT6 is an attractive target for pharmacological activation in cancer treatment.  相似文献   

11.
Analysis of candidate genes for prostate cancer   总被引:1,自引:0,他引:1  
Considerable evidence demonstrates that genetic factors are important in the development and aggressiveness of prostate cancer. To identify genetic variants that predispose to prostate cancer we tested candidate SNPs from genomic regions that show linkage to prostate cancer susceptibility and/or aggressiveness, as well as genes that show a significant difference in mRNA expression level between tumor and normal tissue. Cases had histologically verified prostate cancer. Controls were at least 65 years old, never registered a PSA above 2.5 ng/ml, always had digital rectal examinations that were not suspicious for cancer, and have no known family history of prostate cancer. Thirty-nine coding SNPs and nine non-coding SNPs were tested in up to 590 cases and 556 controls resulting in over 40,000 SNP genotypes. Significant differences in allele frequencies between cases and controls were observed for ID3 (inhibitor of DNA binding), p = 0.05, HPN (hepsin), p = 0.009, BCAS1 (breast carcinoma amplified sequence 1), p = 0.007, CAV2 (caveolin 2), p = 0.007, EMP3 (epithelial membrane protein 3), p < 0.0001, and MLH1 (mutL homolog 1), p < 0.0001. SNPs in three of these genes (BCAS1, EMP3 and MLH1) remained significant in an age-matched subsample.  相似文献   

12.
The DNA mismatch repair (MMR) system is a major DNA repair pathway whose function is critical for the correction of DNA biosynthetic errors. MMR is initiated by the binding of MutS proteins to mismatches and unpaired nucleotides followed by the recruitment of MutL proteins. The major MutL activity in eukaryotes is performed by MutLα, the heterocomplex of MLH1-PMS1 in yeast and plants and MLH1-PMS2 in humans. We here report the effect the expression of Arabidopsis PMS1 protein exerts on Saccharomyces cerevisiae genomic stability. A strain carrying specific microsatellite instability reporter systems was chosen for the study. The plant protein failed to complement the hypermutator phenotype of a pms1 deficient strain but increased approximately 14-fold and 2,000-fold the mutation rates of his7-2 and lys2::InsE-A 14 loci of MMR proficient strains when compared to wild-type strains, respectively. Overexpressing AtMLH1 in the AtPMS1-overproducing strain generated an increase in mutation rate comparable to that of AtPMS1 expression alone. Deletion of the C-terminal residues implicated in protein–protein interaction and including the putative endonuclease sequence of AtPMS1 completely eliminated the mutator phenotype. Taken together, these results indicate that the plant proteins affect yeast genomic stability, very possibly altering protein–protein interactions that are necessary to complete repair.  相似文献   

13.
14.

Background

To improve the outcome of patients suffering from gastric cancer, a better understanding of underlying genetic and epigenetic events in this malignancy is required. Although CpG island methylator phenotype (CIMP) and microsatellite instability (MSI) have been shown to play pivotal roles in gastric cancer pathogenesis, the clinical significance of these events on survival outcomes in patients with gastric cancer remains unknown.

Methods

This study included a patient cohort with pathologically confirmed gastric cancer who had surgical resections. A cohort of 68 gastric cancers was analyzed. CIMP and MSI statuses were determined by analyzing promoter CpG island methylation status of 28 genes/loci, and genomic instability at 10 microsatellite markers, respectively. A Cox’s proportional hazards model was performed for multivariate analysis including age, stage, tumor differentiation, KRAS mutation status, and combined CIMP/MLH1 methylation status in relation to overall survival (OS).

Results

By multivariate analysis, longer OS was significantly correlated with lower pathologic stage (P = 0.0088), better tumor differentiation (P = 0.0267) and CIMP-high and MLH1 3'' methylated status (P = 0.0312). Stratification of CIMP status with regards to MLH1 methylation status further enabled prediction of gastric cancer prognosis.

Conclusions

CIMP and/or MLH1 methylation status may have a potential to be prognostic biomarkers for patients with gastric cancer.  相似文献   

15.
Kim YM  Choe CG  Cho SK  Jung IH  Chang WY  Cho M 《BMB reports》2010,43(10):693-697
Hereditary non-polyposis colorectal cancer (HNPCC) is an autosomal dominant syndrome characterized by predisposition to early-onset cancers. HNPCC is caused by heterozygous loss-of-function mutations within the mismatch repair genes MLH1, MSH2, MSH6, PMS1, and PMS2. We genotyped the MLH1 and MSH2 genes in patients suffering from Lynch syndrome and in 11 unrelated patients who were diagnosed with colorectal cancer and had subsequently undergone surgery. Five Lynch syndrome patients carried germline mutations in MLH1 or MSH2. Two of these were identified as known mutations in MLH1: deletion of exon 10 and a point mutation (V384D). The remaining three patients exhibited novel mutations: a duplication (937_942dupGAAGTT) in MLH1; deletion of exons 8, 9, and 10; and a point mutation in MLH1 (F396I) combined with multiple missense mutations in MSH2 (D295G, K808E, Q855P, and I884T). The findings underline the importance of efficient pre-screening of conspicuous cases.  相似文献   

16.
DNA repair proteins maintain DNA integrity; polymorphisms in genes coding for these proteins can increase susceptibility to colorectal cancer (CRC) development. We analyzed a possible association of MLH1 -93G>A and 655A>G and XRCC1 Arg194Trp and Arg399Gln polymorphisms with CRC in Mexican patients. Genomic DNA samples were obtained from peripheral blood of 108 individuals with CRC (study group) at diagnosis and 120 blood donors (control group) from Western Mexico; both groups were mestizos. The polymorphisms were detected by PCR-RFLP. Association was estimated by calculating the odds ratio (OR). We found that the MLH1 and XRCC1 polymorphisms were in Hardy- Weinberg equilibrium. The MLH1 655A>G polymorphism in the 655G allele was associated with a 2-fold increase risk for CRC (OR = 2.04 and 95% confidence interval (95%CI) = 1.12-3.69; P < 0.01), while the MLH1 -93G>A polymorphism allele was associated with a protective effect (OR = 0.60, 95%CI = 0.40-0.89; P = 0.01 in the -93A allele and OR = 0.32, 95%CI = 0.13-0.79; P = 0.01 in the AA genotype). The XRCC1 Arg194Trp and Arg399Gln polymorphisms did not show any significant associations. In conclusion, we found that MLH1 -93G>A and 655A>G polymorphisms are associated with CRC in Mexican patients.  相似文献   

17.
Emerging evidence suggests that Sirtuin 6 (SIRT6) functions as a longevity assurance gene by promoting genomic stability, regulating metabolic processes and attenuating inflammation. Here, we examine the effect of SIRT6 activation on cancer cells. We show that SIRT6 overexpression induces massive apoptosis in a variety of cancer cell lines but not in normal, non-transformed cells. This cell death requires the mono-ADP-ribosyltransferase but not the deacetylase activity of SIRT6 and is mediated by the activation of both the p53 and p73 apoptotic signaling cascades in cancer cells by SIRT6. These results suggest that SIRT6 is an attractive target for pharmacological activation in cancer treatment.Key words: cancer, SIRT6, p53, p73, DNA damage  相似文献   

18.
Lynch syndrome (LS) is a tumor predisposing condition caused by constitutional defects in genes coding for components of the mismatch repair (MMR) apparatus. While hypermethylation of the promoter of the MMR gene MLH1 occurs in about 15% of colorectal cancer samples, it has also been observed as a constitutional alteration, in the absence of DNA sequence mutations, in a small number of LS patients. In order to obtain further insights on the phenotypic characteristics of MLH1 epimutation carriers, we investigated the somatic and constitutional MLH1 methylation status of 14 unrelated subjects with a suspicion of LS who were negative for MMR gene constitutional mutations and whose tumors did not express the MLH1 protein. A novel case of constitutional MLH1 epimutation was identified. This patient was affected with multiple primary tumors, including breast cancer, diagnosed starting from the age of 55 y. Investigation of her offspring by allele specific expression revealed that the epimutation was not stable across generations. We also found MLH1 hypermethylation in cancer samples from 4 additional patients who did not have evidence of constitutional defects. These patients had some characteristics of LS, namely early age at onset and/or positive family history, raising the possibility of genetic influences in the establishment of somatic MLH1 methylation.  相似文献   

19.
20.
In eukaryotes, the DNA replication factor PCNA is loaded onto primer-template junctions to act as a processivity factor for DNA polymerases. Genetic and biochemical studies suggest that PCNA also functions in early steps in mismatch repair (MMR) to facilitate the repair of misincorporation errors generated during DNA replication. These studies have shown that PCNA interacts directly with several MMR components, including MSH3, MSH6, MLH1, and EXO1. At present, little is known about how these interactions contribute to the mismatch repair mechanism. The interaction between MLH1 and PCNA is of particular interest because MLH1-PMS1 is thought to act as a matchmaker to signal mismatch recognition to downstream repair events; in addition, PCNA has been hypothesized to act in strand discrimination steps in MMR. Here, we utilized both genetic and surface plasmon resonance techniques to characterize the MLH1-PMS1-PCNA interaction. These analyses enabled us to determine the stability of the complex (K(D) = 300 nM) and to identify residues (572-579) in MLH1 and PCNA (126,128) that appear important to maintain this stability. We favor a model in which PCNA acts as a scaffold for consecutive protein-protein interactions that allow for the coordination of MMR steps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号