首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Severe attack by the fungal pathogen Synchytrium decipiens frequently occurs in natural populations of the annual plant Amphicarpaea bracteata (Leguminosae) in eastern North America. Field transplant experiments indicate that there is significant population differentiation in the plant-fungus association over distances of 1 km or greater: plants transplanted back into their population of origin become heavily infected, while foreign plants from populations 1 or 100 km away experience little or no infection, even though these foreign plants are subject to heavy fungal attack in their native populations. To investigate the fine structure of population differentiation, progeny of A. bracteata plants collected at six sites at 30 m intervals along a transect were inoculated with a single strain of S. decipiens in a controlled environment. Fungal lesions were initiated in all 36 plant progeny groups tested, yet there was highly significant, 5-fold variation among plants from different sites in the mean number of fungal lesions developing per plant. In addition, all fungal lesions aborted without maturing spores on all plants from one site on the transect. Fungal lesion abortion rates averaged only 9% on plants from the other five sites. Such local population differentiation in plant-pathogen compatibility may be related to A. bracteata's high degree of self-pollination. Limited long-distance recombination in A. bracteata due to self-pollination and spatially restricted pollen flow may be a major factor preventing the evolution of increased plant resistance to fungal attack.  相似文献   

2.
Polymorphism existed at 58% of the enzyme loci examined (11/19) in one population of the highly self-pollinated annual legume Amphicarpaea bracteata. Due to extreme gametic disequilibrium among loci, genetic variation in this population was structured into a small number of multilocus genotypes. Over 97% of the plants sampled could be grouped into two classes (biotypes “A” and “B”), each consisting of a few highly similar genotypes. The two classes had mutually exclusive sets of alleles at nine loci. These classes differed sharply in their disease resistance toward one isolate of the specialist fungal pathogen Synchytrium decipiens from their native habitat. All biotype A plants were strongly susceptible, and all biotype B plants were resistant. When plants of both biotypes were exposed to this pathogen in a greenhouse, the resistant biotype (B) exhibited a significantly higher growth rate. The strong association between plant disease-resistance phenotypes and allozyme variants implies that pathogen attack could be a major selective agent influencing the evolution of neutral or near-neutral alleles at enzyme loci in this plant.  相似文献   

3.
Conventional wisdom holds that parasites evolve more rapidly than their hosts and are therefore locally adapted, that is, better at exploiting sympatric than allopatric hosts. We studied local adaptation in the insect-transmitted fungal pathogen Microbotryum violaceum and its host plant Silene latifolia. Infection success was tested in sympatric (local) and allopatric (foreign) combinations of pathogen and host from 14 natural populations from a metapopulation. Seedlings from up to 10 seed families from each population were exposed to sporidial suspensions from each of four fungal strains derived from the same population, from a near-by population (< 10 km distance), and from two populations at an intermediate (< 30 km) and remote (< 170 km) distance, respectively. We obtained significant pathogen X plant interactions in infection success (proportion of diseased plants) at both fungal population and strain level. There was an overall pattern of local maladaptation of this pathogen: average fungal infection success was significantly lower on sympatric hosts (mean proportion of diseased plants = 0.32 ± 0.03 SE) than on allopatric hosts (0.40 ± 0.02). Five of the 14 fungal populations showed no strong reduction in infection success on sympatric hosts, and three even tended to perform better on sympatric hosts. This pattern is consistent with models of time-lagged cycles predicting patterns of local adaptation in host-parasite systems to emerge only on average. Several factors may restrict the evolutionary potential of this pathogen relative to that of its host. First, a predominantly selfing breeding system may limit its ability to generate new virulence types by sexual recombination, whereas the obligately outcrossing host 5. latifolia may profit from rearrangement of resistance alleles by random mating. Second, populations often harbor only a few infected individuals, so virulence variation may be further reduced by drift. Third, migration rates among host plant populations are much higher than among pathogen populations, possibly because pollinators prefer healthy over diseased plants. Migration among partly isolated populations may therefore introduce novel host plant resistance variants more often than novel parasite virulence variants. That migration contributes to the coevolutionary dynamics in this system is supported by the geographic pattern of infectivity. Infection success increased over the first 10–km range of host-pathogen population distances, which is likely the natural range of gene exchange.  相似文献   

4.
Goss EM  Bergelson J 《Oecologia》2007,152(1):71-81
Variation in plant resistance to pathogen infection is commonly observed in interactions between wild plants and their foliar pathogens. Models of host–pathogen interactions indicate that a large cost of infection is generally necessary to maintain this variation, yet there is limited evidence that foliar pathogens cause detectable fitness reductions in wild host plants. Most published work has focused on fungal pathogens. Pseudomonas viridiflava, a common bacterial pathogen of the annual weed Arabidopsis thaliana across its range, comprises two distinct genetic clades that cause disease symptoms of different severity. Here we measured the extent of infection of wild A. thaliana populations in the Midwest, USA, and examined the effect on seed production, in field and growth-chamber experiments, of experimental inoculation with isolates from the two clades. We found infection with P. viridiflava varied from 0 to 56% in Midwest A. thaliana populations, with the possibility of several leaves per plant infected later in the growing season. In the growth chambers, experimental inoculation reduced seed set by averages of 15 and 11% for clades A and B, respectively. In the field experiment, only clade A affected plant fitness significantly, reducing seed set by an average of 38%. Underlying these average effects we observed both negative and positive effects of infection, and variation in both fitness among plant genotypes and sensitivity to environmental conditions.  相似文献   

5.
Genotypic diversity is restricted within local colonies of mayapple (Podophyllum peltatum), due to extensive asexual reproduction. Transplant experiments were used to examine whether disease impact from a specialist fungal pathogen (Puccinia podophylli) was affected by the local frequency of host genotypes within colonies. In each of six large mayapple colonies, I measured infection intensity on 1) ramets replanted in their native colony (which were thus surrounded mostly by identical genotypes) and 2) transplants from two foreign colonies (surrounded by different genotypes). Disease incidence during the pathogen's first generation did not vary significantly between native (11% infected) and foreign host genotypes (6% infected). In the pathogen's second generation, significant variation in infection intensity occurred among ramets from different source populations. However, at five of the six transplant sites, mean infection intensity was higher on some nonnative plants (locally rare host genotypes) than on natives (locally common host genotypes). In this system, pathogen attack does not act in a frequency-dependent manner to promote local genetic diversity among hosts.  相似文献   

6.
Summary The evolution of disease resistance in plants may be constrained if genes conferring resistance to pathogens interfere with plant responses toward other, nonpathogenic organisms. To test for such effects, we compared symbiotic nitrogen fixation in Amphicarpaea bracteata plants that differed at a major locus controlling resistance to the pathogen Synchytrium decipiens. Both resistant and susceptible plant genotypes nodulated successfully and grew significantly better in the presence of Rhizobium, although growth enhancement by Rhizobium was altered by different levels of nitrate fertilization. Plants homozygous for disease resistance achieved 2% higher growth than susceptible homozygotes across all treatments, but this difference was not significant. Resistant and susceptible plant genotypes did not differ in the mean number of nodules formed per plant or in nodule diameter. However, there was highly significant variation among replicate families within each disease resistance category for both nodulation characteristics. These results imply that genetic variation exists among A. bracteata plants both for diease resistance and for traits affecting symbiotic nitrogen fixation. However, there were no evident pleiotropic effects of disease resistance genes on the plant-Rhizobium symbiosis.  相似文献   

7.
Coinfection, whereby the same host is infected by more than one pathogen strain, may favor faster host exploitation rates as strains compete for the same limited resources. Hence, coinfection is expected to have major consequences for pathogen evolution, virulence, and epidemiology. Theory predicts genetic variation in host resistance and pathogen infectivity to play a key role in how coinfections are formed. The limited number of studies available has demonstrated coinfection to be a common phenomenon, but little is known about how coinfection varies in space, and what its determinants are. Our aim is to understand how variation in host resistance and pathogen infectivity and aggressiveness contribute to how coinfections are formed in the interaction between fungal pathogen Podosphaera plantaginis and Plantago lanceolata. Our phenotyping study reveals that more aggressive strains are more likely to form coinfections than less aggressive strains in the natural populations. In the natural populations most of the variation in coinfection is found at the individual plant level, and results from a common garden study confirm the prevalence of coinfection to vary significantly among host genotypes. These results show that genetic variation in both the host and pathogen populations are key determinants of coinfection in the wild.  相似文献   

8.
Garlic mustard (Alliaria petiolata) is an invasive biennial that negatively impacts plant and animal communities throughout North America and lacks significant herbivory in its invasive range. Throughout Ohio, many garlic mustard populations support the powdery mildew fungus Erysiphe cruciferarum, although disease incidence varies among populations and environments. Effects of infection on plant growth, as well as both plant and fungal responses to drought and light conditions, were examined on greenhouse-grown, first-year garlic mustard plants. Also, the effects of the fungus on plant growth and fitness were studied in a naturally growing population of second-year plants in the field. Powdery mildew significantly reduced growth of first-year plants in the greenhouse, eventually causing complete mortality. Simulated drought slowed both plant growth and disease development, independent of light conditions. In the field, plants with little incidence of disease after their first year grew taller during their second year, producing significantly more siliques and twice as many seeds as heavily diseased plants did. Seed germination rates did not differ between plants with different levels of disease severity. Consistent reductions in survival, growth, and fitness caused by fungal infection may reduce populations of garlic mustard. These effects may be more evident in moist sites that favor fungal development.  相似文献   

9.
In the period 1996–2001 the natural occurrence of Bremia lactucae (lettuce downy mildew) on Asteraceae plants was studied in the Czech Republic. Lactuca serriola (prickly lettuce) is the most common naturally growing host species of B. lactucae. Infection of plants was recorded during the whole vegetation season with the first occurrence in April and last in November. Bremia lactucae was found on host plants in all developmental stages. High percentages of naturally infected populations of L. serriola were recorded. Host plants exhibited broad variation in phenotypic expression of disease symptoms and degree of infection, however, the intensity of infection was rather low in the majority of populations. Geographic distribution of B. lactucae was studied in the two main parts of Czech Republic, central and southern Moravia, and eastern, northern and central Bohemia. Bremia lactucae was recorded in all these areas. Nevertheless, in the warmest parts of the Czech Republic (southern Moravia) only sporadic occurrence of the pathogen was recorded. Bremia lactucae infection on L. serriola and disease severity was judged also in relation to the type of habitat, and the size and density of host plant populations. However, no substantial differences among various habitats were found; only host plants growing in urban areas were frequently free of infection and the degree of infection was very low. Nevertheless, these plants were commonly infected with powdery mildew (Golovinomyces cichoracearum), which is most aggressive pathogen of this type of habitat.  相似文献   

10.
Fungal pathogens can regulate the abundance and distribution of natural plant populations by inhibiting the growth, survival, and reproduction of their hosts. The abiotic environment is a crucial component in host–pathogen interactions in natural plant populations as favorable conditions drive pathogen development, reproduction, and persistence. Foliar plant pathogens, such as fungal lesions referred to generically as “leaf spot disease,” are particularly responsive to increased moisture levels, but the manner in which the abiotic environment drives disease dynamics, and how these diseases regulate natural plant populations, is not fully understood. We investigate (1) the impact of ambient soil moisture and diffuse light on the prevalence of a leaf spot pathogen (Phyllosticta sp.) in a natural population of Polygonatum biflorum, an understory herb native to deciduous forest understories in the eastern US, and (2) the effects of the fungal pathogen on the survival, growth, and abundance of the plants. We tracked six P. biflorum populations and disease incidence, as well as soil moisture and diffuse light, between 2003 and 2005 in the understory deciduous forest of the southern Appalachian Mountains, North Carolina, USA. Results show that both the occurrence of P. biflorum and the prevalence of P. biflorum leaf spot disease are highest where soil moisture is intermediate and diffuse light is lowest. Disease occurrence depends upon plant presence, but it also adversely impacts plant survival, abundance, and growth. These results suggest that leaf spot disease is likely to impact population dynamics, which in turn vary as a function of environmental drivers.  相似文献   

11.
Sugar metabolism and sugar signalling are not only critical for plant growth and development, but are also important for stress responses. However, how sugar homeostasis is involved in plant defence against pathogen attack in the model crop rice remains largely unknown. In this study, we observed that the grains of gif1, a loss‐of‐function mutant of the cell wall invertase gene GRAIN INCOMPLETE FILLING 1 (GIF1), were hypersusceptible to postharvest fungal pathogens, with decreased levels of sugars and a thinner glume cell wall in comparison with the wild‐type. Interestingly, constitutive expression of GIF1 enhanced resistance to both the rice bacterial pathogen Xanthomonas oryzae pv. oryzae and the fungal pathogen Magnaporthe oryzae. The GIF1‐overexpressing (GIF1‐OE) plants accumulated higher levels of glucose, fructose and sucrose compared with the wild‐type plants. More importantly, higher levels of callose were deposited in GIF1‐OE plants during pathogen infection. Moreover, the cell wall was much thicker in the infection sites of the GIF1‐OE plants when compared with the wild‐type plants. We also found that defence‐related genes were constitutively activated in the GIF1‐OE plants. Taken together, our study reveals that sugar homeostasis mediated by GIF1 plays an important role in constitutive and induced physical and chemical defence.  相似文献   

12.
Ecologists have long sought mechanistic explanations for the patterns of plant distribution and endemism associated with serpentine soils. We conducted the first empirical test of the serpentine pathogen refuge hypothesis, which posits that the low levels of calcium found in serpentine soils provide associated plants with a refuge from attack by pathogens. We measured the range of soil calcium concentrations experienced by 16 wild population of California dwarf flax (Hesperolinon californicum) and experimentally recreated part of this range in the greenhouse by soaking serpentine soils in calcium chloride solutions of varying molarity. When flax plants grown in these soils were inoculated with spores of the rust fungus Melampsora lini we found a significant negative relationship between infection rates and soil calcium concentrations. This result refutes the pathogen refuge hypothesis and suggests that serpentine plants, by virtue of their association with low calcium soils, may be highly vulnerable to attack by pathogens. This interaction between plant nutrition and disease may in part explain demographic patterns associated with serpentine plant populations and suggests scenarios for the evolution of life history traits and the distribution of genetic resistance to infection in serpentine plant communities.  相似文献   

13.
Local populations of the plant Amphicarpaea bracteata often contain genetically divergent lineages that differ strongly in disease resistance toward the specialist pathogen Synchytrium decipiens. In one population, lineages with disease resistance were observed to significantly decrease in frequency over a two-year period, despite the continued presence of pathogens. Extensive self-pollination in A. bracteata restricts the opportunity for recombination of alleles affecting separate traits, resulting in strong correlations between disease resistance and other ecologically important characters, including plant morphology, phenology, and patterns of reproductive allocation. Natural selection on these correlated characters may thus cause nonadaptive changes in disease resistance. These results imply that A. bracteata's mating system is a basic constraint interfering with its adaptation to pathogen attack.  相似文献   

14.
The development of rust after administering allopurinol, a specific inhibitor of xanthine oxidoreductase, via roots was studied at the histological level in leaves of susceptible‘Pinto 111’bean plants inoculated with Uromyces phaseoli and‘Thatcher',‘Mentana’and‘Leopardo’wheat plants challenged with Puccinia recondita. A marked reduction and delay in fungal growth was observed in allopurinol-treated plants starting between 24 h and 48 h post-inoculation, i.e. after differentiation of the first haustoria (onset of the biotrophic plant-parasite relationship). Infection hyphae often grew twisted and convoluted in treated hosts, sometimes producing small, irregularly shaped colonies. Differentiation of subepidermal stromata in fungal colonies was delayed and restricted by the treatment and uredospore yield severely reduced. Allopurinol administration also tended to increase the proportion of haustoria which became embedded in thick translucent sheaths during the late stages of infection. These results support the view that plant xanthine oxidoreductase activity is necessary for biotrophic development of rust fungi and suggest that the inhibition of this enzyme, which impairs the pathogen metabolism, may favour some natural host responses to attack such as haustorial sheath formation.  相似文献   

15.
Environmental conditions are rarely constant, but instead vary spatially and temporally. This variation influences ecological interactions and epidemiological dynamics, yet most experimental studies examine interactions under constant conditions. We examined the effects of variability in temperature on the host–pathogen relationship between an aquatic zooplankton host (Daphnia laevis) and an environmentally transmitted fungal pathogen (Metschnikowia bicuspidata). We manipulated temperature variability by exposing all populations to mean temperatures of 20°C for the length of the experiments, but introducing periods of 1, 2, and 4 hr each day where the populations were exposed to 28°C followed by periods of the same length (1, 2, and 4 hr, respectively) where the populations were exposed to 12°C. Three experiments were performed to assess the role of thermal variability on Daphnia–pathogen interactions, specifically with respect to: (1) host infection prevalence and intensity; (2) free‐living pathogen survival; and (3) host foraging ecology. We found that temperature variability affected host filtering rate, which is closely related to pathogen transmission in this system. Further, infection prevalence was reduced as a function of temperature variability, while infection intensity was not influenced, suggesting that pathogen transmission was influenced by temperature variability, but the growth of pathogen within infected hosts was not. Host survival was reduced by temperature variability, but environmental pathogen survival was unaffected, suggesting that zooplankton hosts were more sensitive than the fungal pathogen to variable temperatures. Together, these experiments suggest that temperature variability may influence host demography and host–pathogen interactions, providing a link between host foraging ecology and pathogen transmission.  相似文献   

16.
Chitinases accumulate in higher plants upon pathogen attack are capable of hydrolyzing chitin-containing fungal cell walls and are thus implicated as part of the plant defense response to fungal pathogens. To evaluate the relative role of the predominate chitinase (class I, basic enzyme) of Arabidopsis thaliana in disease resistance, transgenic Arabidopsis plants were generated that expressed antisense RNA to the class I chitinase. Young plants or young leaves of some plants expressing antisense RNA had <10% of the chitinase levels of control plants. In the oldest leaves of these antisense plants, chitinase levels rose to 37–90% of the chitinase levels relative to vector control plants, most likely because of accumulation and storage of the enzyme in vacuoles. The rate of infection by the fungal pathogen Botrytis cinerea was measured in detached leaves containing 7–15% of the chitinase levels of control plants prior to inoculation. Antisense RNA was not effective in suppressing induced chitinase expression upon infection as chitinase levels increased in antisense leaves to 47% of levels in control leaves within 24 hours after inoculation. Leaves from antisense plants became diseased at a slightly faster rate than leaves from control plants, but differences were not significant due to high variability. Although the tendency to increased susceptibility in antisense plants suggests that chitinases may slow the growth of invading fungal pathogens, the overall contribution of chitinase to the inducible defense reponses in Arabidopsis remains unclear.  相似文献   

17.
Timing of plant development both determines the abiotic conditions that the plant experiences and strongly influences the intensity of interactions with other organisms. Plants and herbivores differ in their response to environmental cues, and spatial and temporal variation in environmental conditions might influence the synchrony between host plants and herbivores, and the intensity of their interactions. We investigated whether differences in first day of flowering among and within 21 populations of the polyploid herb Cardamine pratensis influenced the frequency of oviposition by the butterfly Anthocharis cardamines during four study years. The proportion of plants that became oviposited upon differed among populations, but these differences were not related to mean flowering phenology within the population in any of the four study years. Attack rates in the field were also not correlated with resistance to oviposition estimated under controlled conditions. Within populations, the frequency of butterfly attack was higher in early‐flowering individuals in two of the four study years, while there was no significant relationship in the other 2 years. Larger plants were more likely to become oviposited upon in all 4 years. The effects of first flowering day and size on the frequency of butterfly attack did not differ among populations. The results suggest that differences in attack intensities among populations are driven mainly by differences in the environmental context of populations while mean differences in plant traits play a minor role. The fact that within populations timing of flowering influenced the frequency of herbivore attack only in some years and suggests that herbivore‐mediated selection on plant phenology differs among years, possibly because plants and herbivores respond differently to environmental cues.  相似文献   

18.
Evidence for maintenance of sex by pathogens in plants   总被引:6,自引:0,他引:6  
The predominance of outcrossing despite the substantial transmission advantage of self-fertilization remains a paradox. Theory suggests that selection can favor outcrossing if it enables the production of offspring that are less susceptible to pathogen attack than offspring produced via self-fertilization. Thus, if pathogen pressure is contributing to the maintenance of outcrossing in plants, there may be a positive correlation between the number of pathogen species attacking plant species and the outcrossing rate of the plant species. We tested this hypothesis by examining the association between outcrossing rate and the number of fungal pathogen species that attack a large, taxonomically diverse set of seed plants. We show that plant species attacked by more fungal pathogen species have higher outcrossing rates than plants with fewer enemies. This relationship persists after correcting for study bias among natural and agricultural species of plants. We also accounted for the nested hierarchy of relationships among plant lineages by conducting phylogenetically independent contrasts (PICs) within genera and families that were adequately represented in our dataset. A meta-analysis of the correlation between pathogen and outcrossing PICs shows that there is a positive correlation between pathogen species number and outcrossing rates. This pattern is consistent with the hypothesis that pathogen-mediated selection may contribute to the maintenance of outcrossing in species of seed plants.  相似文献   

19.
An understanding of hereditary endophytic fungi, and the effects on grass persistence strategies (i.e. relative investment in sexual reproduction and vegetative growth) under natural conditions may help to predict how some alpine ecosystems will respond to environmental change. Grass persistence and endophyte maintenance in host populations are closely related, but could become independent due to endophyte loss mechanisms. We used native grass and endophyte populations to test the hypothesis that fungal endophytes manipulate grass persistence strategies to secure endophyte maintenance in plant populations. Two conditions were required to verify this hypothesis: 1) the fungus caused alterations in host plant strategies; and 2) plant phenotypic changes induced by the fungal endophyte increased endophyte transmission. We compared symbiotic (S) and non‐symbiotic (NS) persistence strategies of Festuca eskia (Poaceae), an alpine grass infected by the asexual form of the fungal endophyte Epichloë festucae. We characterised endophyte transmission efficiency, and described vegetative growth and sexual reproduction in a field population that naturally supports approximately 50% S plants. We built a demographic model to estimate plant vegetative growth rates. A correlation between plant persistence strategy, and fungal maintenance was evaluated by increasing soil resource levels. Under natural conditions, S and NS plants exploited different persistence strategies in the same population; S plants exhibited greater vegetative growth than their NS counterparts, while maintaining the same reproductive output. In response to higher soil resource levels, S plants shifted in persistence strategies and phenology, whereas NS plants maintained the same strategies. Therefore, results suggested the fungal endophyte fine‐tuned host persistence strategies according to soil resource level. Finally, we found no direct relationship between the changes induced by fungal endophyte and endophyte transmission. Consequently, fungal endophytes affected host persistence strategies, but did not directly increase endophyte transmission.  相似文献   

20.
Unraveling the complex relationship between lichen fungal and algal partners has been crucial in understanding lichen dispersal capacity, evolutionary processes, and responses in the face of environmental change. However, lichen symbiosis remains enigmatic, including the ability of a single fungal partner to associate with various algal partners. Psora decipiens is a characteristic lichen of biological soil crusts (BSCs), across semi‐arid, temperate, and alpine biomes, which are particularly susceptible to habitat loss and climate change. The high levels of morphological variation found across the range of Psora decipiens may contribute to its ability to withstand environmental change. To investigate Psora decipiens acclimation potential, individuals were transplanted between four climatically distinct sites across a European latitudinal gradient for 2 years. The effect of treatment was investigated through a morphological examination using light and SEM microscopy; 26S rDNA and rbcL gene analysis assessed site‐specific relationships and lichen acclimation through photobiont switching. Initial analysis revealed that many samples had lost their algal layers. Although new growth was often determined, the algae were frequently found to have died without evidence of a new photobiont being incorporated into the thallus. Mycobiont analysis investigated diversity and determined that new growth was a part of the transplant, thus, revealing that four distinct fungal clades, closely linked to site, exist. Additionally, P. decipiens was found to associate with the green algal genus Myrmecia, with only two genetically distinct clades between the four sites. Our investigation has suggested that P. decipiens cannot acclimate to the substantial climatic variability across its environmental range. Additionally, the different geographical areas are home to genetically distinct and unique populations. The variation found within the genotypic and morpho‐physiological traits of P. decipiens appears to have a climatic determinant, but this is not always reflected by the algal partner. Although photobiont switching occurs on an evolutionary scale, there is little evidence to suggest an active environmentally induced response. These results suggest that this species, and therefore, other lichen species, and BSC ecosystems themselves may be significantly vulnerable to climate change and habitat loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号