首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Somatostatin-28 II, an octacosapeptide recently isolated from anglerfish pancreatic islets, was synthetized by the solid phase method along with its somatostatin-14 II and somatostatin-28 II-(1-12) corresponding domains. Homogeneity of the synthetic peptides was demonstrated by analytical RP-HPLC, thin layer chromatography and electrophoresis. The peptides were further characterized by amino acids analysis, fast atomic bombarding mass spectrometry and/or 252Cf plasma desorption mass spectrometry. Synthetic somatostatin-28 II and somatostatin-14 II displace equally well the potent agonist (Tyr0,D-Trp8)-somatostatin-14 from its specific binding sites on anterior pituitary cells membranes. Both peptides activate adenylate cyclase from dispersed rat anterior pituitary cells.  相似文献   

2.
P Leroux  G Pelletier 《Peptides》1984,5(3):503-506
Somatostatin-14 (S14) and its precursor, somatostatin-28 (S28), are widely distributed throughout the rat brain, suggesting that they could act as neurotransmitter or neuromodulator in the central nervous system. The present study was undertaken to study the localization of S14 and S28 receptors in the rat brain determined by "in vitro" radioautography. The study performed on slide mounted frozen brain section with iodinated S14 and S28 analogs revealed an identical distribution of binding sites for the two forms of somatostatin. A good correlation could be observed between receptor distribution and immunohistologically localized neuropeptides except for striatum and hypothalamus. However, receptors were not detectable in the hypothalamus and were found in low concentration in the caudate-putamen nucleus, two regions containing high amounts of S28 and S14, suggesting a high occupancy of receptors in these areas by endogenous peptides or an inverse correlation between receptor and peptide concentrations.  相似文献   

3.
Somatostatin binding and cross-linking to its receptors on rat cerebrocortical membranes were characterized with [125I-Tyr1]somatostatin-14 and [125I-Leu8, D-Trp22, Tyr25]somatostatin-28. When [125I-Tyr1]somatostatin-14 was cross-linked to its receptors with the photoreactive cross-linker, N-(5-azido-2-nitrobenzoyloxy)succinimide, the hormone was specifically associated with a Mr = 72,000 protein band in the presence or absence of reducing agents. Affinity labeling of the Mr = 72,000 protein band was decreased with increasing concentrations of unlabeled somatostatin-14 and nonhydrolyzable guanine nucleotide analog, guanyl-5'-yl imidodiphosphate (Gpp(NH)p). Pretreatment of cerebrocortical membranes with islet-activating protein resulted in a decrease in subsequent labeled somatostatin-14 binding and affinity-labeling of the protein and abolished an inhibitory effect of somatostatin-14 on vasoactive intestinal peptide-stimulated increase in adenylate cyclase activity. When the affinity-labeled protein was solubilized with Zwittergent 3-12 and adsorbed to wheat germ agglutinin-agarose, it was eluted by N-acetylglucosamine. [125I-Leu8, D-Trp22, Tyr25]somatostatin-28 cross-linking to cerebrocortical and pancreatic membranes with the same photoreactive agent revealed specifically labeled protein bands of a Mr = 74,000 in cerebrocortical membranes and a Mr = 94,000 in pancreatic membranes, respectively. These results suggest that: 1) somatostatin receptor on cerebrocortical membranes is a monomeric glycoprotein with a Mr = 70,000 binding subunit, coupled to guanine nucleotide regulatory protein, and 2) the Mr = 70,000 protein may be a common receptor for somatostatin-28 and somatostatin-14 and is distinct from a common pancreatic type receptor.  相似文献   

4.
High affinity binding sites for a somatostatin-28 analog in rat brain   总被引:8,自引:0,他引:8  
J C Reubi  M H Perrin  J E Rivier  W Vale 《Life sciences》1981,28(19):2191-2198
Using an iodinated analog of a large (28 residues) and biologically active form of somatostatin, 125I[Leu8,D-Trp22,Tyr25]SS-28, it was possible to demonstrate saturable and high affinity binding sites (dissociation constant = 0.46 ± 0.04 nM) in rat cortical membranes. Somatostatin, somatostatin-28, as well as two potent analogs, [D-Trp8] somatostatin and [D-Trp22] somatostatin-28, could completely displace the radiogland in the nanomolar range whereas the inactive analog Des-Trp8-somatostatin and the unrelated peptide GnRH showed no affinity for these binding sites; octa- and nona-peptide analogs of somatostatin were inactive. High binding was found in hippocampus, amygdala, tuberculum olfactorium, caudate-putamen and cortex; moderate binding in midbrain and hypothalamus, and no binding in the cerebellum. These results suggest that specific somatostatin receptors can be measured within the brain with 125I[Leu8,D-Trp22,Tyr25] SS-28 as radioligand.  相似文献   

5.
The tissue-selective binding of the two principal bioactive forms of somatostatin, somatostatin-14 (SS-14) and somatostatin-28 (SS-28), their ability to modulate cAMP-dependent and -independent regulation of post-receptor events to different degrees and the documentation of specific labelling of SS receptor subtypes with SS-28 but not SS-14 in discrete regions of rat brain suggest the existence of distinct SS-14 and SS-28 binding sites. Receptor binding of SS-14 ligands has been shown to be modulated by nucleotides and ions, but the effect of these agents on SS-28 binding has not been studied. In the present study we investigated the effects of adenine and guanine nucleotides as well as monovalent and divalent cations on rat brain SS receptors quantitated with radioiodinated analogs of SS-14 ([125I-Tyr11]SS14, referred to in this paper as SS-14) and SS-28 ([Leu8, D-Trp22, 125I-Tyr25] SS-28, referred to as LTT* SS-28) in order to determine if distinct receptor sites for SS-14 and SS-28 could be distinguished on the basis of their modulation by nucleotides and ions. GTP as well as ATP exerted a dose-dependent inhibition (over a concentration range of 10(-7)-10(-3) M) of the binding of the two radioligands. The nucleotide inhibition of binding resulted in a decrease the Bmax of the SS receptors, the binding affinity remaining unaltered. GTP (10(-4) M) decreased the Bmax of LTT* SS-28 binding sites to a greater extent than ATP (145 +/- 10 and 228 +/- 16 respectively, compared to control value of 320 +/- 20 pmol mg-1). Under identical conditions GTP was less effective than ATP in reducing the number of T* SS-14 binding sites (Bmax = 227 +/- 8 and 182 +/- 15, respectively, compared to 340 +/- 15 pmol mg-1 in the absence of nucleotides). Monovalent cations inhibited the binding of both radioligands, Li+ and Na+ inhibited the binding of T* SS-14 to a greater extent than K+. The effect of divalent cations on the other hand was varied. At low concentration (2 mM) Mg2+, Ba2+, Mn2+, Ca2+ and Co2+ augmented the binding of both T* SS-14 and LTT* SS-28, while higher than 4 mM Co2+ inhibited binding of both ligands. LTT* SS-28 binding was reduced in the presence of high concentrations of Ba2+ and Mn2+ also. Interestingly Ca2+ at higher than 10 mM preferentially inhibited LTT* SS-28 binding and increased the affinity of SS-14 but not SS-28 for LTT* SS-28 binding sites.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
An Arg-Lys esteropeptidase that converts somatostatin-28 in vitro into somatostatin-14 was previously characterized in extracts of rat cerebral cortex. Both the octacosapeptide somatostatin-28 and a synthetic undecapeptide containing the sequence around the Arg-Lys site, i.e. Peptide I: Pro-Arg-Glu-Arg-Lys-Ala-Gly-Ala-Lys-Asn-125 I-Tyr (NH2), were used as substrates. We demonstrate that the converting activity is associated with neurosecretory granule fractions prepared from both cortical and hypothalamic tissue. This activity co-sediments with ghosts obtained from intact vesicles by osmotic shock. After solubilization either by mild ionic strength or sonication of vesicle membranes, the converting activity appears to possess properties indistinguishable from the convertase prepared directly from unfractionated tissue. It cleaves Peptide I to Ala-Gly-Ala-Lys-Asn-125I-Tyr (NH2) (Peptide II) and generates both the NH2- and COOH-terminal fragments of somatostatin-28, i.e. somatostatin-28 (1-12) and somatostatin-14, when the octacosapeptide is used as substrate. The selectivity appears to be strict and to depend upon the sequence around the Arg-Lys pair, as inferred from competition studies conducted with structural analogs possessing either an Arg-Lys or Arg-Arg doublet. It is concluded that this convertase could represent the enzyme system involved in the in vivo production of both the dodeca and tetradeca peptides from their common somatostatin-28 precursor.  相似文献   

7.
The in vitro binding of [125I-Tyr11]somatostatin-14 (SRIF-14) to membranes prepared from cultured human small cell lung carcinoma (SCLC) cells (NCI-H69) has been characterized. Binding to SCLC was monophasic and of high affinity (Kd = 0.59 +/- 0.02 nM, n = 3). The estimated Bmax was 173 +/- 2.4 fmol/mg protein. Receptors were also present on solid NCI-H69 tumors grown in vivo in the athymic nude mouse. However, the concentration was only about 10% of that observed in cell culture. Biologically-active SRIF analogues were potent inhibitors of [125I-Tyr11]SRIF-14 binding, and an analysis of the pharmacological specificity indicated that the SCLC receptor was of the peripheral (e.g., non-neural) subtype. The presence of SRIF receptors on SCLC membranes may indicate that SRIF has a role in regulation of SCLC function.  相似文献   

8.
The products generated after addition of the ARG-LYS esteropeptidase activity purified from rat brain to synthetic somatostatin-28 were analyzed using radioimmunoassay, HPLC and amino acid analysis. In addition to somatostatin-14, both free arginine and free Lysine were identified together with somatostatin-28. The dipeptide ARG-LYS was not present, which indicates that three peptide bonds were hydrolyzed in order to achieve excision of the doublet. Since it is likely that the octacosapeptide is a precursor for both somatostatin-14 and somatostatin-28, these observations add further support to the hypothesis that the convertase is also involved in the in vivo processing of endogenous somatostatin-28.  相似文献   

9.
Somatostatin-28 (SRIF-28) preferring receptors were solubilized from hamster beta cell insulinoma using the zwitterionic detergent 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate. The binding of the iodinated [Leu8-D-TRP22-Tyr25]SRIF-28 analog (referred to as 125I[LWY] SRIF-28) to the solubilized fraction was time-dependent, saturable, and reversible. Scatchard analysis of equilibrium binding data indicated that the solubilized extract contained two classes of SRIF-28-binding sites: a high affinity site (Kd = 0.3 nM and Bmax = 1 pmol/mg protein) and a low affinity site (Kd = 13 nM and Bmax = 4.7 pmol/mg protein). The binding of 125I[LWY]SRIF-28 to solubilized SRIF-28 receptors was sensitive to the GTP analog guanosine-5'-O-thiotriphosphate, suggesting that receptors are functionally linked to a G-protein. By anion-exchange chromatography of the solubilized extract followed by chromatography on wheat germ agglutinin, a 46-fold purification of SRIF-28 receptors was obtained. At this stage of purification, only high affinity sites were found (Kd = 1 nM) and the GTP effect was not maintained. A specific protein of 37 kDa was identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis after photoaffinity labeling. We suggest that this protein is the putative SRIF-28 receptor or a subunit thereof.  相似文献   

10.
Summary Previous studies have shown that somatostatin modulates angiotensin-induced aldosterone secretion by adrenal glomerulosa cells. This effect is mediated through specific receptors which do not show any preference for somatostatin-14 (S14) or the N-extended form somatostatin-28 (S28). The study of the distribution of 125I-Tyr [Tyr0, DTrp8] S14-and 125I-Tyr[Leu8, DTrp22, Tyr25] S28-binding in frozen sections of the rat adrenal by autoradiography indicated that both peptides bind to similar loci. High concentrations of binding sites were observed in the zona glomerulosa, and low concentrations were detected in the medulla. At the ultrastructural level, immunocytochemistry after cryoultramicrotomy revealed endogenous S14-and S28-like immunoreactive material in zona glomerulosa and in medulla. In glomerulosa cells, immunoreactive material was localized at the plasma membrane level, in the cytoplasmic matrix, in the mitochondria, and in the nucleus. S14-and S28-like materials were detected in both epinephrine and norepinephrine-storing cells of the adrenal medulla. In these cells, the distribution of either immunoreactive product was similar; it was observed in cytoplasmic matrix, secretory granules and nucleus, but not at the plasma membrane level. In situ hybridization does not reveal somatostatin mRNA in zona glomerulosa or medulla. These results demonstrate that S14 and S28 bind to, and are taken up by zona glomerulosa and adrenal medullary cells, but are not produced by these cells.  相似文献   

11.
The gastric exocrine inhibitory activities of somatostatin-28 (SS-28) and somatostatin-14 (SS-14) were determined in conscious cats prepared with gastric fistulae. Gastric acid and pepsin secretions were stimulated with pentagastrin. Expressed in terms of exogenous doses, SS-14 (ID50: 1.49 nmol . kg-1 . h-1) was 3.4 times more potent than SS-28 (ID50: 5.12 nmol . kg-1 . h-1) as an inhibitor of gastric acid secretion. Similarly SS-14 (ID50: 0.25 nmol . kg-1 . h-1) was 3.8 times more potent than SS-28 (ID50: 0.96 nmol . kg-1 . h-1) as an inhibitor of pepsin secretion. Expressed in terms of circulating plasma concentration measured by radioimmunoassay, SS-14 (ID50: H+, 232 and pepsin 73 pM) was 8-9 times more potent than SS-28 (ID50: H+, 2112 and pepsin, 611 pM) as an inhibitor of gastric exocrine secretions. The plasma immunoreactive half-life of SS-28 (6.1 min) was double that for SS-14 (2.4 min) possibly due to a slower theoretical metabolic clearance rate of the larger peptide (30 and 87 ml . kg-1 . min-1, respectively). Both peptides had similar apparent distribution volumes (SS-14, 306 and SS-28, 263 ml . kg-1). As judged by gel chromatography of plasma samples, there was no evidence for the conversion of SS-28 to SS-14 in vivo. The reduced activity of SS-28, compared with SS-14, against gastric exocrine secretions contrasts with its more potent effects in the pituitary and pancreas.  相似文献   

12.
Seven peptides derived from pro-somatostatin in rat brain   总被引:7,自引:0,他引:7  
Acid extracts of murine hypothalamic and extra-hypothalamic rat brains were analyzed by specific radioimmunoassays for the presence of somatostatin-14, somatostatin-28 and somatostatin-28(1–12)-like immunoreactivity. Seven molecular forms were observed after gel permeation chromatography. In addition to somatostatin-14, somatostatin-28 and somatostatin-28(1–12), there were two peptides of 4,400 and 7,500 mol. wt. which contained the somatostatin-28(1–12) sequence with an extension towards the NH2-terminus of pro-somatostatin. Moreover, two other peptides of 6,000 and 9,500 mol. wt. were detected containing the whole somatostatin-28 structure. These results imply that the processing of brain pro-somatostatin involves a minimum of four cleavage sites and yields at least seven peptides.  相似文献   

13.
Cortistatin-14 (CST-14) is a recently discovered member of the somatostatin family of neuropeptides. It shares 11 of its 14 amino acids with somatostatin-14 (SRIF-14). In the present study, binding sites for cortistatin-14 in the mouse brain were examined and compared to those for somatostatin using iodinated cortistatin-14 and iodinated somatostatin-14. By in vitro receptor autoradiography, high densities of cortistatin-14 and somatostatin-14 specific binding sites were detected in the cortex, hippocampal formation, basolateral amygdala and medial habenula. Unlabeled 100 nM cortistatin-14 inhibited iodinated somatostatin-14 binding in the hippocampus, but not in the cortex or amygdaloid nuclei. In somatostatin receptor subtype-2 knock-out (KO) mice, autoradiographic iodinated somatostatin-14 binding was observed in the hippocampus and habenula but was removed in the cortex and amygdaloid nuclei, specific iodinated cortistatin-14 binding sites were found in the hippocampus, habenula and throughout the cortex. We conclude that the somatostatin receptor subtype-2 is responsible for somatostatin binding in cortical and amygdaloid regions and that cortistatin predominantly interacts with the same receptors as somatostatin.  相似文献   

14.
We have isolated form extracts of ovine hypothalami two molecules characterized as somatostatin-28 and somatostatin-4-28 (referred to as somatostatin-25). They were reproduced by solid hase synthesis. In equimolar ratio and depending upon the experimental conditions, synthetic somatostatin-28 ans somatostatin-25 are 3-14 times more potent than somatostatin-14 to inhibit the basal in vitro secretion of growth hormone or as stimulated by prostaglandin (PGE2). In early studies in vivo, somatostatin-28 and somatostatin-25 are also more potent than somatostatin-14 in inhibiting the secretion of growth hormone acutely stimulated in the rat by injection of morphine; somatostatin-28 is also longer-acting than somatostatin-14. These results suggest that somatostatin-14, as originally isolated, is a biologically active fragment of a larger molecule of greater specific activity; it should be considered as another form of somatostatin with high biological activity present in some tissues and likely secreted y the tissues along with somatostatin-14 and possibly other somatostatin-peptides of diverse sizes.  相似文献   

15.
Proline residues, known to have special structural properties, induce particular conformations which participate in some biological functions. Two prolines (Pro(-9), Pro(-5)) located near the processing sites (Arg(-15) and Arg(-2)Lys(-)(1)) of human prosomatostatin were previously shown to be important for cleavage of the precursor into somatostatin-28 (S-28) and somatostatin-14 (S-14) [Gomez et al. (1989) EMBO J. 8, 2911-2916]. In this study, the importance of the pentapeptide P-A-M-A-P sequence (P-(X)(3)-P pattern), located in the S-28(1-12) segment connecting the mono- and dibasic cleavage sites, was investigated by using site-directed mutagenesis. Analysis of prosomatostatin-derived peptides produced by expression of mutated cDNA species in Neuro2A cells indicated that (i) deletion of PAMAP decreased S-14 production, (ii) deletion of the two Pro residues almost abolished the cleavage at the dibasic site, and (iii) Pro displacement generating the AMAPP motif resulted in a decrease of S-28 production. Moreover, both theoretical and spectroscopic studies of synthetic peptides reproducing the S-28(1-12) sequence bearing critical mutations showed that this sequence can organize as an alpha helical structure. These observations demonstrate that NPAMAP constitutes an accurate alpha-helix nucleation motif allowing for the generation of equal amounts of S-28 and S-14 from their common precursor in Neuro2A cells. Moreover, they emphasize the importance of the S-28(1-12) segment joining Arg(-15) and Arg(-2)Lys(-1) cleavage sites whose conformational organization is essential for controlling their accessibility to the appropriate processing proteases.  相似文献   

16.
We have compared the effects of equimolar doses of intravenous somatostatin-28 (SS-28) and somatostatin-14 (SS-14) (250 micrograms and 125 micrograms, respectively) on the secretion of pancreatic polypeptide (PP), glucagon and insulin evoked by a protein-rich meal in normal subjects. Both peptides reduced the fasting plasma levels of these hormones and completely abolished their responses to the alimentary stimulus; in addition, they caused an early decrease of plasma glucose followed by a hyperglycemic phase. As compared to SS-14, SS-28 elicited a longer-lasting inhibition of PP and insulin secretion and displayed greater hypo- and hyperglycemic effects. A somatostatin-like component, similar to SS-28, has been identified in pancreatic extracts as well as in peripheral plasma. Thus, it might be hypothesized that this peptide plays a role in the control of pancreatic hormone release.  相似文献   

17.
Pituitary-adenylate-cyclase-activating polypeptide (PACAP) is a novel 38-amino-acid neuropeptide isolated from ovine hypothalamic tissues based on its activity of stimulating adenylate cyclase of rat pituitary cells. Binding sites for PACAP were studied in rat tissue membranes using a 27-amino-acid N-terminal derivative of PACAP [PACAP(1-27)] labelled with 125I. Particularly high specific binding sites of 125I-PACAP(1-27) were noted in the hypothalamus, brain stem, cerebellum and lung. Specific binding sites are also present in the pituitary gland, but at a lower concentration, and mainly in the anterior lobe. Very low concentration of 125I-PACAP(1-27)-binding sites were found in the colon, aorta and kidney membranes and no binding sites were detected in the pancreas and testis. Maximal binding of 125I-PACAP(1-27) was observed at pH 7.4. Interaction of 125I-PACAP(1-27) with its binding site was rapid, specific and saturable as well as time, pH and temperature dependent. PACAP(1-27) is more potent than PACAP in displacing the binding of 125I-PACAP(1-27) with brain membranes [concentration that inhibits 50% of the binding (IC50) = 7.45 +/- 1.52 nM and 11.45 +/- 3.65 nM, respectively; mean +/- SEM, n = 4] and lung membranes (IC50 = 4.41 +/- 0.87 nM and 10.68 +/- 3.09 nM, respectively). Vasoactive intestinal peptide displaced the binding of 125I-PACAP(1-27) in lung membrane (IC50 = 16.88 +/- 5.14 nM) but not in brain membranes. The equilibrium binding of 125I-PACAP(1-27) at 4 degrees C was characterized by a single class of binding site for the brain membrane with a dissociation constant (Kd) of 2.46 +/- 0.53 nM and a maximal binding capacity (Bmax) of 8.44 +/- 3.13 pmol/mg protein, but there were two classes of binding site for lung membranes with Kd of 1.02 +/- 0.51 nM and 5.19 +/- 0.99 nM, and Bmax of 2.84 +/- 0.72 pmol/mg protein and 9.13 +/- 1.89 pmol/mg protein, respectively. These findings suggest that subtypes of PACAP-binding sites exist and PACAP may have a physiological role in the hypothalamus/pituitary axis as well as in other regions of the brain and lung.  相似文献   

18.
We studied the molecular forms of somatostatin-like immunoreactivity (SLI), newly released from isolated perfused preparations of the porcine antrum, stomach, pancreas and upper small intestine: Perfusion effluents were concentrated by Sep-Pak C-18 adsorption, eluted with ethanol, dessicated, and subjected to gel filtration with subsequent radioimmunoassays for somatostatin-14 and N-terminal somatostatin-28 immunoreactivity. All the SLI newly released from the stomach and antrum eluted at the position of somatostatin-14, and such was also the case for more than 95% of the SLI newly released from the pancreas, while 68 -/+ 7% and 75 -/+ 8% of the SLI newly released from the isolated perfused jejunum and ileum, respectively, corresponded to somatostatin-28. By reverse phase HPLC the identity of these peptides with synhetic somatostatin-14 and -28 was established.  相似文献   

19.
20.
Previous data suggest that somatostatin is present and released from the hypothalamus in several molecular forms, basally and after K+ or electrical stimulation. In order to evaluate the proportions of somatostatin-14 (S14) and somatostatin-28 (S28) released during a stimulus which may be more closely related to the control of growth hormone secretion 'in vivo', we studied the molecular forms of somatostatin released from hypothalamic fragments ' in vitro', during incubations with different glucose concentrations (1.35 and 22mM), which we have previously shown to be inversely related to somatostatin release. Sephadex G-50 chromatography demonstrated that both forms are released in the same proportions (S14: 70%; S28: 30%) during incubation with different glucose concentrations; there is a parallel increase in both forms when low glucose is used. Although on a molar basis less S28 is released than S14, the higher potency, longer duration of action and higher affinity for pituitary receptors of S28 suggests that it may be of major physiological importance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号