首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A method is described for the separation of cytidine 3',5'-cyclic monophosphate (cyclic CMP) from cytidine tri-, di- and mono-phosphates and from cytidine 3',5'-cyclic pyrophosphate, cytidine 2'-monophosphate-3',5'-cyclic monophosphate, cytidine 2'-O-aspartyl-3',5'-cyclic monophosphate and cytidine monophosphate, compounds previously shown to be the result of putative cytidylate cyclase activity. This separation, involving elution of a novel bilayer column of QAE-Sephadex and alumina with 0.03 M-HCl, has been incorporated into an assay protocol to determine the enzyme-catalysed conversion of radiolabelled CTP to cyclic CMP. By this assay, cytidylate cyclase activity has been shown to be present in rat lung, spleen, ovary, testes, brain, stomach, liver, heart and kidney preparations; the activity was of a similar order in each tissue and had a sharp pH optimum of 7.0-7.5. The liver preparation had a Vmax. of 1.2 nmol of cyclic CMP formed/min per mg, and a Km of 220 microM-CTP, and although active in the absence of added cations, it was stimulated by Fe2+ and Mn2+ ions. In several of the tissues examined, the cytidylate cyclase activity was inversely proportional to age of the animals.  相似文献   

2.
N-Acetylneuraminic acid cytidylyltransferase (EC 2.7.7.43) (CAMP-NeuAc synthetase) from rat liver catalyzes the formation of cytidine monophosphate N-acetylneuraminic acid from CTP and NeuAc. We have purified this enzyme to apparent homogeneity (241-fold) using gel filtration on Sephacryl S-200 and two types of affinity chromatographies (Reactive Brown-10 Agarose and Blue Sepharose CL-6B columns). The pure enzyme, whose amino acid composition and NH2-terminal amino acid sequence are also established, migrates as a single protein band on non-denaturing polyacrylamide gel electrophoresis. The molecular mass of the native enzyme, estimated by gel filtration, was 116 +/- 2 kDa whereas its Mr in sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 58 +/- 1 kDa. CMP-NeuAc synthetase requires Mg2+ for catalysis although this ion can be replaced by Mn2+, Ca2+, or Co2+. The optimal pH was 8.0 in the presence of 10 mM Mg2+ and 5 mM dithiothreitol. The apparent Km for CTP and NeuAc are 1.5 and 1.3 mM, respectively. The enzyme also converts N-glycolylneuraminic acid to its corresponding CMP-sialic acid (Km, 2.6 mM), whereas CMP-NeuAc, high CTP concentrations, and other nucleotides (CDP, CMP, ATP, UTP, GTP, and TTP) inhibited the enzyme to different extents.  相似文献   

3.
A phosphodiesterase activity that preferentially hydrolyzed cytidine 3':5'-monophosphate was partially purified from rat liver extract. The enzyme was best activated by Fe2+ (5 to 10 mM). Mn2+ and Mg2+ were less effective, whereas Zn2+, Co2+, and Ca2+ were ineffective. It exhibited kinetics typical of a high Km phosphodiesterase, with a Km for cycli CMP of 2.4 mM. The enzyme, inhibited by theophylline and 1-methyl-3-isobutyl xanthine to much less extents than cyclic AMP and cyclic GMP phosphodiesterases, was found in all rat tissues examined, with highest levels seen in the liver, kidney, and intestine, and lowest levels found in the skeletal muscle, cerebellum, aorta, and blood cells. The enzyme levels in the regenerating liver were found to be about 40% lower than the control liver of rats; they were also 3 to 10 times lower in the fetal liver, lung, and heart than the corresponding adult tissues of guinea pigs. These findings suggest that depressed cyclic CMP phosphodiesterase may be in part related to cell proliferation, in line with reports that the regenerating liver has higher levels of cyclic CMP (Bloch, A. (1975) Adv. Cycli Nucleotide Res. 5, 331-338) and cytidylate cyclase (Cech, S. Y., and Ignarro, L.J. (1977) Science 198, 1063-1065).  相似文献   

4.
Cytidine 5'-triphosphate:cytidine 5'-monophosphate-3-deoxy-D-manno-octulosonate cytidylyltransferase (CMP-KDO synthetase) was purified 2,300-fold from frozen Escherichia coli B cells. The enzyme catalyzed the formation of CMP-KDO, a very labile product, from CTP and KDO. No other sugar tested could replace KDO as an alternate substrate. Uridine 5'-triphosphate at pH 9.5 and deoxycytidine 5'-triphosphate at pH 8.0 and 9.5 could be used as alternate substrates in place of CTP. CMP-KDO synthetase required Mg2+ at a concentration of 10.0 mM for optimal activity. The pH optimum was determined to be between 9.6 and 9.3 in tris(hydroxymethyl)aminomethane-acetate or sodium-glycine buffer. This enzyme had an isoelectric point between pH 4.15 and 4.4 and appeared to be a single polypeptide chain with a molecular weight of 36,000 to 40,000. The apparent Km values for CTP and KDO in the presence of 10.0 mM Mg2+ were determined to be 2.0 X 10(-4) and 2.9 X 10(-4) M, respectively, at pH 9.5. Uridine 5'-triphosphate and deoxycytidine 5'-triphosphate had apparent Km values of 8.8 X 10(-4) and 3.4 X 10(-4) M. respectively, at pH 9.5.  相似文献   

5.
1. The activities of cyclic cytidine 3',5'-monophosphate (cCMP) phosphodiesterase in normal rat liver and host liver (bearing hepatoma 5123 t.c.(h)) were compared with those of three Morris hepatomas of varying growth rates. 2. The results show that the order of enzyme activity was as follows: normal liver = host liver greater than 7794A (slow growth rate) greater than 5123 t.c.(h) (intermediate growth rate) greater than 7800 (fast growth rate). 3. The enzyme had a pH optimal value of about 7.0 and an apparent Km for cCMP about 2.8 mM; its activity was slightly affected by the presence of calmodulin (100 micrograms/ml) and/or CaCl2 (100 microM), but showed variable responses to other cations (La3+, Mg2+, Mn2+, Zn2+, Fe2+, Na+ and K+).  相似文献   

6.
The membrane-bound sialyltransferase obtained from Escherichia coli K-235 grown in a chemically defined medium (ideal for colominic acid production) was studied. The in vivo half-life calculated for this enzyme was 20 h. Kinetic tests revealed (at 33 degrees C and pH 8.3) hyperbolic behaviour with respect to CMP-Neu5Ac (Km250 microM) and a transition temperature at 31.3 degrees C. The enzyme was inhibited by NH4+, some divalent cations and by several agents that react with thiol groups. Detergents and fatty acids also inhibited the sialyltransferase activity. In vitro synthesis of colominic acid is strongly inhibited by CMP by blocking the incorporation of [14C]Neu5Ac into a protein-complex intermediate and therefore into free polymer. CDP and CTP also inhibited (91% and 84%) this enzyme activity whereas cytosine and cytidine had no effect. CMP inhibition corresponded to a competitive model the calculated Ki was 30 microM. Incubations of protein[14C]Neu5Ac with CMP, CDP and CTP led to de novo synthesis of CMP-[14C]Neu5Ac. The presence of colominic acid, which usually displaces the reaction equilibrium towards polymer synthesis, did not affect this de novo CMP-[14C]Neu5Ac formation. CMP also inhibited in vivo colominic acid biosynthesis.  相似文献   

7.
Cyclic AMP phosphodiesterase (PDE) partially purified from roots of Vigna mungo exhibited optimum activity at pH 5.5 to 6.0 and maximum enzyme activity at 50 degrees C. Levels of PDE activity in roots remained relatively constant from the first to the eleventh day after germination; on the twelfth day there was a 400% increase in PDE activity. The enzyme was stable for at least 48 hours at 28 degrees C, retaining 92% of its original activity. Plant growth hormones including gibberellic acid, indoleacetic acid and kinetin at 1.0 and 10.0 microM concentrations did not have any significant effect on enzyme activity. Nucleotides tested including cyclic 2'3' AMP, cyclic 2'3' GMP completely abolished enzyme activity at 1.0mM while cyclic 3'5' GMP, cyclic 3'5' GMP, 2'deoxy 5' ATP, 2'deoxy 5'GTP and 5'ADP were also inhibitory to the enzyme. The enzyme was stimulated by Mg2+, Fe2+ and NH4+ while Cu2+ and Fe3+ were inhibitory. Theophylline, caffeine, phosphate, pyrophosphate and EDTA were inhibitory to the enzyme.  相似文献   

8.
The effect of divalent cations on bovine sperm adenylate cyclase activity was studied. Mn2+, Co2+, Cd2+, Zn2+, Mg2+ and Ca2+ were found to satisfy the divalent cation requirement for catalysis of the bovine sperm adenylate cyclase. These divalent cations in excess of the amount necessary for the formation of the metal-ATP substrate complex were found to stimulate the enzyme activity to various degrees. The magnitude of stimulation at saturating concentrations of the divalent cations was strikingly greater with M2+ than with either Ca2+, Mg2+, Zn2+, Cd2+ or Co2+. The apparent Km was lowest for Zm2+ (0.1 - 0.2 mM) than for any of the other divalent cations tested (1.2 - 2.3 mM). The enzyme stimulation by Mn2+ was decreased by the simultaneous addition of Co2+, Cd2+, Ni2+ and particularly Zn2+ and Cu2+. The antagonism between Mn2+ and Cu2+ or Zn2+ appeared to have both competitive and non-competitive features. The inhibitory effect of Cu2+ on Mn2+-stimulated adenylate cyclase activity was prevented by 2,3-dimercaptopropanol, but not by dithiothreitol, L-ergothioneine, EDTA, EGTA or D-penicillamine. Ca2+ at concentrations of 1-5 mM was found to act synergistically with Mg2+, Zn2+, Co2+ and Mn2+ in stimulating sperm adenylate cyclase activity. The Ca2+ augmentation of the stimulatory effect of Zn2+, Co2+, Mg2+ and Mn2+ appeared to be specific.  相似文献   

9.
An Escherichia coli strain expressing three recombinant enzymes, i.e., cytidine 5'-monophosphate (CMP) kinase, sialic acid aldolase and cytidine 5'-monophosphate N-acetylneuraminic acid (CMP-NeuAc) synthetase, was utilized as a biocatalyst for the production of CMP-NeuAc. Both recombinant E. coli extract and whole cells catalyzed the production of CMP-NeuAc from CMP (20 mM), N-acetylmannosamine (40 mM), pyruvate (60 mM), ATP (1 mM), and acetylphosphate (60 mM), resulting in 90% conversion yield based on initial CMP concentration used. It was confirmed that endogenous acetate kinase can catalyze not only the ATP regeneration in the conversion of CMP to CDP but also the conversion of CDP to CTP. On the other hand, endogenous pyruvate kinase and polyphosphate kinase could not regenerate ATP efficiently. The addition of exogenous acetate kinase to the reaction mixture containing the cell extract increased the conversion rate of CMP to CMP-NeuAc by about 1.5-fold, but the addition of exogenous inorganic pyrophosphatase had no influence on the reaction. This E. coli strain could also be employed as an enzyme source for in situ regeneration of CMP-NeuAc in a sialyltransferase catalyzed reaction. About 90% conversion yield of alpha2,3-sialyl-N-acetyllactosamine was obtained from N-acetyllactosamine (20 mM), CMP (2 mM), N-acetylmannosamine (40 mM), pyruvate (60 mM), ATP (1 mM), and acetyl phosphate (80 mM) using the recombinant E. coli extract and alpha2,3-sialyltransferase.  相似文献   

10.
Guanylate cyclase (GTP pyrophosphate-lyase (cyclizing), EC 4.6.1.2) was purified 2250-fold from the synaptosomal soluble fraction of rat brain. The specific activity of the purified enzyme reached 41 nmol cyclic GMP formed per min per mg protein at 37 degrees C. In the purified preparation, GTPase activity was not detected and cyclic GMP phosphodiesterase activity was less than 4% of guanylate cyclase activity. The molecular weight was approx. 480 000. Lubrol PX, hydroxylamine, or NaN3 activated the guanylate cyclase in crude preparations, but had no effect on the purified enzyme. In contrast, NaN3 plus catalase, N-methyl-N'-nitro-N-nitrosoguanidine or sodium nitroprusside activated the purified enzyme. The purified enzyme required Mn2+ for its activity; the maximum activity was observed at 3-5 mM. Cyclic GMP activated guanylate cyclase activity 1.4-fold at 2 mM, whereas inorganic pyrophosphate inhibited it by about 50% at 0.2 mM. Guanylyl-(beta,gamma-methylene)-diphosphonate and guanylyl-imidodiphosphate, analogues of GTP, served as substrates of guanylate cyclase in the purified enzyme preparation. NaN3 plus catalase or N-methyl-N'-nitro-N-nitrosoguanidine also remarkably activated guanylate cyclase activity when the analogues of GTP were used as substrates.  相似文献   

11.
N-Acetylneuraminic acid cytidylyltransferase (EC 2.7.7.43) (CMP-NeuAc synthetase) catalyzes the formation of cytidine monophosphate N-acetylneuraminic acid. We have purified CMP-NeuAc synthetase from an Escherichia coli O18:K1 cytoplasmic fraction to apparent homogeneity by ion exchange chromatography and affinity chromatography on CDP-ethanolamine linked to agarose. The enzyme has a specific activity of 2.1 mumol/mg/min and migrates as a single protein and activity band on nondenaturing polyacrylamide gel electrophoresis. The enzyme has a requirement for Mg2+ or Mn2+ and exhibits optimal activity between pH 9.0 and 10. The apparent Michaelis constants for the CTP and NeuAc are 0.31 and 4 mM, respectively. The CTP analogues 5-mercuri-CTP and CTP-2',3'-dialdehyde are inhibitors. The purified CMP-N-acetylneuraminic acid synthetase has a molecular weight of approximately 50,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The gene encoding CMP-N-acetylneuraminic acid synthetase is located on a 3.3-kilobase HindIII fragment. The purified enzyme appears to be identical to the 50,000 Mr polypeptide encoded by this gene based on insertion mutations that result in the loss of detectable enzymatic activity. The amino-terminal sequence of the purified protein was used to locate the start codon for the CMP-NeuAc synthetase gene. Both the enzyme and the 50,000 Mr polypeptide have the same NH2-terminal amino acid sequence. Antibodies prepared to a peptide derived from the NH2-terminal amino acid sequence bind to purified CMP-NeuAc synthetase.  相似文献   

12.
The effects of sodium azide on guanylate cyclase activity of homogenates of rat renal cortex and on the guanosine 3':5'-monophosphate (cGMP) content of cortical slices were examined and compared to those of carbamylcholine and NaF. In complete Krebs-Ringer bicarbonate buffer containing 10 mM theophylline, tissue cGMP content was increased 5- to 6-fold by 0.05 mM carbamylcholine or 10 mM NaN3, and 3-fold by 10 mM NaF. Increases in cGMP were maximal in response to these concentrations of the agonists and occurred within 2 min. Exclusion of Ca2+ from the incubation media reduced basal cGMP by 50% in 20 min and abolished responses to carbamylcholine and NaF, while exclusion of Mg2+ was without effect. Analogous reductions in cGMP were observed in complete buffer containing 1 mM tetracaine, an agent which blocks movement of Ca2+ across and binding to biologic membranes. By contrast, exclusion of Ca2+ or addition of tetracaine did not alter relative cGMP responses to NaN3 (6-fold increase over basal), although levels were reduced in slices exposed to these buffers for 20 min. When slices were incubated without Ca2+ or with tetracaine for only 2 min prior to addition of agonists, basal cGMP did not decline. Under these conditions, both absolute and relative increases in cGMP in response to NaN3 were comparable to those of slices incubated throughout in complete buffer, while carbamylcholine and NaF effects on cGMP were abolished. NaN3 increased guanylate cyclase activity of whole homogenates (10- to 20-fold), and of the 100,000 X g soluble (20-fold) and particulate (4-fold) fractions of cortex. Prior incubation of slices with NaN3 in the presence or absence of Ca2+ or with Ca2+ plus tetracaine also markedly enhanced enzyme activity in homogenates and subcellular fractions subsequently prepared from these slices. In the presence of 3 mM excess MnCl2, NaN3 raised the apparent Km for MnGTP of soluble guanylate cyclase from 0.11 mM to 0.20 mM, and reduced enzyme dependence on Mn2+. Thus, when Mg2+ was employed as the sole divalent cation in the enzyme reaction mixture basal and NaN3-responsive activities were 7% and 30% of those seen with optimal concentrations of Mn2+, respectively. Under a variety of assay conditions where responses to NaN3 were readily detectable, alterations in guanylate cyclase activities could not be demonstrated in response to carbamylcholine or NaF. By contrast Ca2+ increased the guanylate cyclase activity 6- to 7-fold over basal under conditions of reduced Mn2+ (0.75 mM Mn2+/1 mM GTP). This latter effect of Ca2+ was shared by Mg2+ and not blocked by tetracaine. Carbamylcholine, NaF, Ca2+, and NaN3 all failed to alter cGMP phosphodiesterase activity in cortex. Thus, while carbamylcholine and NaF enhance renal cortical cGMP accumulation through actions which are dependent upon the presence of extracellular Ca2+, NaN3 stimulates cGMP generation in this tissue through an apparently distinct Ca2+-independent mechanism.  相似文献   

13.
Phosphatidylinositol-inositol exchange in a rabbit lung   总被引:3,自引:0,他引:3  
A microsomal fraction prepared from rabbit lung tissue was found to catalyze CDPdiacylglycerol-independent incorporation of [3H]inositol into phosphatidylinositol. This incorporation resulted from CMP-dependent phosphatidylinositol-inositol exchange and did not constitute a net synthesis of phosphatidylinositol. The phosphatidylinositol-inositol exchange activity was distinct from the phospholipid-base exchange enzymes and was specific for inositol. Optimal in vitro phosphatidylinositol-inositol exchange activity was observed at pH 8.5--8.8 and either Mn2+ or Mg2+ was essential for activity. Mercaptoethanol stimulated phosphatidylinositol-inositol exchange and Hg2+ inhibited this activity. In the absence of CMP, no phosphatidylinositol-inositol exchange was observed. CDP (and to a smaller extent CTP) also supported phosphatidylinositol-inositol exchange and this appeared to occur via the generation of CMP during incubations. The apparent Km values of the phosphatidylinositol-inositol exchange enzyme for CMP and inositol were 0.4 mM and 11 microM, respectively. When CDPdiacylglycerol was present at a concentration optimal for CDPdiacylglycerol : inositol transferase activity, CMP-dependent phosphatidylinositol-inositol exchange activity was still observed. However, in the presence of Hg2+ CDPdiacylglycerol inhibited phosphatidylinositol-inositol exchange activity. Several properties of the phosphatidylinositol-inositol exchange enzyme resemble those of CDPdiacylglycerol : inositol transferase, but the two enzymes appear distinct on the basis of different degrees of inhibition by either Ca2+, Hg/+ or heat, and on the basis of different changes in activity during lung development.  相似文献   

14.
The effects of glucose, a series of glucose metabolites, nicotinamide nucleotides, Ca2+ and p-chloromercuribenzenesulphonate on adenylate cyclase activity in homogenates of mouse pancreatic islets were studied. The basal activity of the adenylate cyclase was approx. 6 pmol of cyclic AMP formed/30 min per microng of DNA at 30 degrees C. The enzyme activity was stimulated by some 150% by fluoride. Starvation of the animals for 48h had no effect on either the basal or the fluoride-stimulated activity. The adenylate cyclase activity was increased by 40-50% when 17 mM-glucose, 10 micronM-phosphoenolpyruvate or 10 micronM-pyruvate was added to the assay medium. The effect of glucose was unchanged in the presence of 17 mM-mannoheptulose, and mannoheptulose alone had no effect. The other glycolytic intermediates, and the coenzymes NAD+, NADH and NADPH, at concentrations up to 1 mM were without any detectable effect on the rate of formation of cyclic AMP. The insulin secretagogue p-chloromercuribenzenesulphonate inhibited the adenylate cyclase markedly even at a concentration of 10 micronM. Calculated concentrations of free Ca2+ of 10 micronM and 0.1 mM inhibited adenylate cyclase by 29 and 71% respectively. It is concluded that both glucose itself and phosphoenolpyruvate and/or pyruvate are true activating ligands for islet and adenylate cyclase and that inhibition of the cyclase by Ca2+ may be of physiological significance.  相似文献   

15.
Micromolar concentrations of CMP produced a large increase in Mn2+-dependent phosphatidylinositol:myo-inositol exchange activity in isolated nerve endings or synaptosomes. The apparent Km for CMP was 2 microM, and that for myo-inositol was 38 microM. Only cytidine nucleotides were capable of enhancing activity, and this effect is probably specific for CMP, because the synaptosomal preparation rapidly converted CTP or CDP to CMP. Manganese did not affect the uptake of myo-inositol into the synaptosomal cytosolic fraction or myo-inositol levels. Determinations of myo-inositol specific activity showed that the Mn2+-enhanced labeling of phosphatidylinositol was not accompanied by a decrease of label content in free myo-inositol. This lack of an effect on intrasynaptosomal myo-inositol and the dependence of exchange on cytidine nucleotides whereas cytidine itself was previously found to be without effect show that for the bulk of Mn2+-dependent exchange activity, it is the myo-inositol in the incubation medium that is being directly incorporated into membrane-bound phosphatidyl-inositol. Because CMP dependence is the hallmark of exchange catalyzed by CDP-diacylglycerol:inositol phosphatidyl transferase, this enzyme is likely to be responsible for most of the exchange activity in synaptosomes. The strong affinity of this exchange system for CMP suggests that endogenous levels of this nucleotide might support Mn2+-dependent exchange in the absence of added nucleotide.  相似文献   

16.
Cyclic CMP3 has been identified as a product of the reaction between mouse liver homogenate, CTP and Mn2+ at neutral pH and 37°. This reaction appears to be enzymatic in character in that product formation is pH-, temperature-, time-, and substrate-dependent, and is inhibited by boiling the homogenate. Cyclic CMP formation is enhanced with 0.3 mM Mn2+ or Fe2+ and inhibited with 3 mM Mn2+ or detergents. Cyclic CMP was identified as one of the reaction products by comparison with authentic compound in several systems including: chromatography on neutral alumina columns, Dowex 1-formate columns, polyethyleneimine cellulose columns and thin layer plates; crystallization to constant specific activity; radioimmunoassay.  相似文献   

17.
Guanylate cyclase has been purified from extracts of Escherichia coli. After a 1000-fold purification, the enzyme contains only minor contaminants as judged by disc gel electrophoresis. The Km for GTP is approximately 7 times 10(-5) M and the optimal pH is 8.0. More activity is observed with Mn2+ than with Mg2+, and maximal activity is observed at 0.14 mM Mn2+ and 1.4 mM Mg2+. Based on its behavior on Sephadex G-100, the molecular weight of E. coli guanylate cyclase is about 30,000. Disc gel electrophoretic analysis indicates that the enzyme consists of a single polypeptide chain. Guanylate cyclase does not form 3':5'-AMP from ATP, and therefore, is distinct from adenylate cyclase.  相似文献   

18.
Mn2+ and to some degree Fe2+, but not Mg+, Ca2+, ba2+, Sr2+, Co2+, Ni2+, La3+, or Fe3+ were able to serve as effective metal cofactors for sea urchin sperm guanylate cyclase. The apparent Michaelis constant for Mn2+ in the presence of 0.25 mM MnGTP was 0.23 mM. In the presence of a fixed free mn2+ concentration, variation in mngTP resulted in sigmoid velocity-substrate plots and in reciprocal plots that were concave upward. These positive cooperative patterns were observed at both pH 7.0 and 7.8 and in the presence or absence of Triton X-100. When Mn2+ and GTP were equimolar, Ca2+, Ba2+, Sr2+, and Mg2+ increased apparent guanylate cyclase activity. This increase in enzyme activity at least could be accounted for partially by an increase in free Mn2+ concentration caused by the complex formation of GTP with the added metals. However, even at relatively low GTP concentrations and with Mn2+ concentrations in excess of GTP, Ca2+, Sr2+, and Ba2+ significantly increased guanosine 3':5'-monophosphate production. As the total GTP concentration was increased, the degree of stimulation in the presence of Ca2+ decreased, despite maintenance of a fixed total concentration of Ca2+ and a fixed free concentration of Mn2+, suggesting that the concentration of CaGTP and MnGTP were determining factors in the observed response. The concave upward reciprocal plots of velocity against MnGTP concentration were changed to linear plots in the presence of CaGTP or SrGTP. These results suggest that sea urchin sperm guanylate cyclase contains multiple nucleotide binding sites and that stimulation of guanosine 3':5'-monophosphate synthesis by Ca2+, Sr2+, and perhaps other metals may reflect interaction of a metal-GTP complex with enzyme as either an effector or a substrate.  相似文献   

19.
P A Craven  F R DeRubertis 《Biochemistry》1976,15(23):5131-5137
The properties of the guanylate cyclase systems of outer and inner medulla of rat kidney were examined and compared with those of the renal cortex. A gradation in steady-state cyclic guanosine 3',5'-monophosphate (cGMP) levels was observed in incubated slices of these tissues (inner medula greater than outer medulla greater than cortex). This correlated with the proportion of total guanyl cyclase activity in the 100 000 g particulate fraction of each tissue, but was discordant with the relative activities of guanylate cyclase (highest in cortex) and of cGMP-phosphodiesterase (lowest in cortex) in whole tissue homogenates. Soluble guanylate cyclase of cortex and inner medulla exhibited typical Michaelis-Menten kinetics with an apparent Km for MnGTP of 0.11 mM, while the particulate enzyme from inner medulla exhibited apparent positive cooperative behavior and a decreased dependence on Mn2+. Thus, the particulate enzyme could play a key role in regulating cGMP levels inthe intact cell where Mn2+ concentrations are low. The soluble and particulate enzymes from inner medulla were further distinguished by their responses to several test agents. The soluble enzyme was activated by Ca2+, NaN3, NaNo2 and phenylhydrazine, whereas particulate activity was inhibited by Ca2+ and was unresponsive to the latter agents. In the presence of NaNo2, Mn2+ requirement of the soluble enzyme was reduced and equivalent to that of the particulate preparation. Moreover, relative responsiveness of the sollble enzyme to NaNO2 was potentiated when Mg2+ replaced Mn2+ as the sole divalent cation. These changes in metal requirements may be involved in the action of NaNO2 to increase cGMP in intact kidney. Soluble guanylate cyclase of cortex was clearly more responsive to stimulation by NaN3, Nano2, and phenylhydrazine that was soluble activity from either medullary tissue. The effectiveness of the agonists on soluble activity from outer and inner medulla cound also be distinguished. Accordingly, regulation and properties of soluble guanylate cyclase, as well as subcellular enzyme distribution, and distinct in the three regions of the kidney.  相似文献   

20.
Transplantable mouse melanomas possess a melanotropin-sensitive adenylate cyclase system which is responsive to alpha-melanotropin, beta-melanotropin, adrenocorticotropin (ACTH) and prostaglandin E1. It was found that sensitivity to ACTH was not directed towards the ACTH activity but to the intrinsic melanotropin activity of the ACTH molecule. Therefore, the melanotropin-sensitive adenylate cyclase system is hormonally specific to the intrinsic melanotropin activity of peptide hormones and is unique in the melanoma tissue. The significance of the sensitivity to prostaglandin E1 is obscure at present. The melanotropin-sensitive adenylate cyclase requires the presence of Mg2+ or Mn2+, for its enzymic activity. Ca2+ inhibit the enzyme in the presence of a wide range of concentrations of Mg2+. The enzymic activity is ATP concentration-dependent and the saturation concentration appears to be 1 mM. The enzyme is very labile in the unfractionated tumor homogenates. A washed 11000 X g particulate fraction, representing about 30-60% of the total enzymic activity, was found to be more stable and could be stored at 5 degrees C for 2 h without appreciable loss of the activity. This fraction retained sensitivity to melanotropin, prostaglandin E1 and NaF. About 20% of the activity of the tumor homogenate could not be sedimented by centrifugation at 105000 X g for 60 min. This "soluble" fraction was not responsive to melanotropin, prostaglandin E1 and NaF and might be a degradative product produced by the fractionation. Cyclic AMP and alpha-melanotropin were able to increase the tyrosinase activity of isolated mouse melanoma-cells in vitro under the same conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号