首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Conformational transitions and functional stability of the bile salt hydrolase (BSH; cholylglycine EC: 3.5.1.24) from Bifidobacterium longum (BlBSH) cloned and expressed in E. coli were studied under thermal, chemical and pH-mediated denaturation conditions using fluorescence and CD spectroscopy. Thermal and Gdn-HCl-mediated denaturation of BlBSH is a multistep process of inactivation and unfolding. The inactivation and unfolding of the enzyme was found to be irreversible. Enzyme activity seems sensitive to even minor conformational changes at the active site. Thermal denaturation as such did not result in any insoluble protein aggregates. However, on treating with 0.25 - 1 M Gdn-HCl the enzyme showed increasing aggregation at temperatures of 40 - 55 degrees C indicating more complex structural changes taking place in the presence of chemical denaturants. The enzyme secondary structure was still intact at acidic pH (pH 1 - 3). The perturbation in the tertiary structure at the acidic pH was detected through freshly formed solvent exposed hydrophobic patches on the enzyme. These changes could be due to the formation of an acid-induced molten globule-like state.  相似文献   

2.
The thermal unfolding of xylanase A from Streptomyces lividans, and of its isolated substrate binding and catalytic domains, was studied by differential scanning calorimetry and Fourier transform infrared and circular dichroism spectroscopy. Our calorimetric studies show that the thermal denaturation of the intact enzyme is a complex process consisting of two endothermic events centered near 57 and 64 degrees C and an exothermic event centered near 75 degrees C, all of which overlap slightly on the temperature scale. A comparison of the data obtained with the intact enzyme and isolated substrate binding and catalytic domains indicate that the lower- and higher-temperature endothermic events are attributable to the thermal unfolding of the xylan binding and catalytic domains, respectively, whereas the higher-temperature exothermic event arises from the aggregation and precipitation of the denatured catalytic domain. Moreover, the thermal unfolding of the two domains of the native enzyme are thermodynamically independent and differentially sensitive to pH. The unfolding of the substrate binding domain is a reversible two-state process and, under appropriate conditions, the refolding of this domain to its native conformation can occur. In contrast, the unfolding of the catalytic domain is a more complex process in which two subdomains unfold independently over a similar temperature range. Also, the unfolding of the catalytic domain leads to aggregation and precipitation, which effectively precludes the refolding of the protein to its native conformation. These observations are compatible with the results of our spectroscopic studies, which show that the catalytic and substrate binding domains of the enzyme are structurally dissimilar and that their native conformations are unaffected by their association in the intact enzyme. Thus, the calorimetric and spectroscopic data demonstrate that the S. lividans xylanase A consists of structurally dissimilar catalytic and substrate binding domains that, although covalently linked, undergo essentially independent thermal denaturation. These observations provide valuable new insights into the structure and thermal stability of this enzyme and should assist our efforts at engineering xylanases that are more thermally robust and otherwise better suited for industrial applications.  相似文献   

3.
The thermal denaturation of Lactobacillus confusus l-2-Hydroxyisocaproate Dehydrogenase (l-HicDH) has been studied by Differential Scanning Calorimetry (DSC). The stability of this enzyme has been investigated at different pH conditions. The results of this study indicate that the thermal denaturation of this enzyme is irreversible and the T m is dependent on the scan-rate, which suggests that the denaturation process of l-HicDH is kinetically determined. The heat capacity function of l-HicDH shows a single peak with the T m values between 52.14°C and 55.89°C at pH 7.0 at different scan rates. These results indicate that the whole l-HicDH could unfold as a single cooperative unit, and intersubunit interactions of this homotetrameric enzyme must play a significant role in the stabilization of the whole enzyme. The rate constant of the unfolding is analyzed as a first order kinetic constant with the Arrhenius equation, and the activation energy has been calculated. The variation of the activation energy values obtained with different methods does not support the validity of the one-step irreversible model. The denaturation pathway was described by a three-state model, N → U → F, in which the dissociation of the tetramer takes place as an irreversible step before the irreversible unfolding of the monomers. The calorimetric enthalpy associated with the irreversible dissociation and the calorimetric enthalpy associated with the unfolding of the monomer were obtained from the best fitting procedure. Thermal unfolding of l-HicDH was also studied using Circular Dichroism (CD) spectroscopy. Both methods yielded comparable values.  相似文献   

4.
A Filosa  Y Wang  A A Ismail  A M English 《Biochemistry》2001,40(28):8256-8263
The sequential unfolding events of horse, cow, and tuna ferricytochromes c (cyt c) as a function of increasing temperature over the range 25-81 degrees C were investigated by resolution-enhanced two-dimensional infrared (2D IR) correlation spectroscopy. The 2D IR analysis revealed that in the thermal denaturation of the two mammalian cyts, the overall sequence of unfolding is similar, with denaturation of extended-chain and turn structures occurring prior to unfolding of alpha-helices, followed by denaturation of residual stable extended-chain structures. In tuna cyt c, denaturation of all extended-chain structures precedes the unfolding of alpha-helices. Moreover, in cow cyt c, unfolding of all helical components occurs as one cooperative unit, but in horse and tuna cyts c, the helical components behave as subdomains that unfold separately, as proposed recently by Englander and co-workers for horse cyt c [Bai et al. (1995) Science 269, 192-197; Milne et al. (1999) J. Mol. Biol. 290, 811-822]. At higher temperatures, following the loss of secondary structure, protein aggregation occurs in the three cyts c. The data presented here establish that variations in the thermal unfolding of cyts c can be associated with specific sites in the protein that influence local flexibility yet have little affect on global stability. This study demonstrates the power of resolution-enhanced 2D IR correlation spectroscopy in probing unfolding events in homologous proteins.  相似文献   

5.
The structural and stability properties of a novel zinc-dependent alcohol dehydrogenase from the hyperthermophilic archaeon Pyrobaculum aerophilum (PyAeADHII) were investigated by Fourier transformed infrared spectroscopy (FTIR). This enzyme is a thermostable homo-tetramer belonging to the GroES-fold motif proteins characterized by an irregular β-barrel conformation. Our results revealed a protein with a secondary structure rich in β-sheet (32% of the total secondary elements) and it showed a three-step thermal unfolding pathway. The complete enzyme denaturation was preceded by the formation of a relaxed tertiary/quaternary structure and previously by an excited native-like conformation. Two-dimensional correlation spectroscopy analysis (2D-COS) and differential scanning calorimetry (DSC) experiments supported these data and allowed us to determine the protein melting temperature at 96.9 °C as well as to suggest the sequence of the events that occurred during the protein denaturation process.  相似文献   

6.
The unfolding equilibrium of beta-trypsin induced by thermal and chemical denaturation was thermodynamically characterized. Thermal unfolding equilibria were monitored using UV absorption and both far- and near-UV CD spectroscopy, while fluorescence was used to monitor urea-induced transitions. Thermal and urea transition curves are reversible and cooperative and both sets of data can be reasonably fitted using a two-state model for the unfolding of this protein. Plots of the fraction denatured, calculated from thermal denaturation curves at different wavelengths, versus temperature are coincident. In addition, the ratio of the enthalpy of denaturation obtained by scanning calorimetry to the van't Hoff enthalpy is close to unity, which supports the two-state model. Considering the differences in experimental approaches, the value for the stability of beta-trypsin estimated from spectroscopic data (deltaGu = 6.0 +/- 0.2 kcal/mol) is in reasonable agreement with the value calculated from urea titration curves (deltaGUH2O = 5.5 +/- 0.3 kcal/mol) at pH 2.8 and 300 degrees K.  相似文献   

7.
The conformational stability of the homotetrameric Plasmodium falciparum beta-ketoacyl-ACP reductase (FabG) was determined by guanidinium chloride-induced isothermal and thermal denaturation. The reversible unfolding transitions were monitored by intrinsic fluorescence, circular dichroism (CD) spectroscopy and by measuring the enzyme activity of FabG. The denaturation profiles were analyzed to obtain the thermodynamic parameters associated with unfolding of the protein. The data confirm the simple A(4) <--> 4A model of unfolding, based on the corroboration of CD data by fluorescence transition and similar Delta G estimation for denaturation curves obtained at four different concentration of the FabG. Denaturation is well described by the linear extrapolation model for denaturant-protein interactions. In addition, the conformational stability (Delta G(s)) as well as the Delta C(p) for the protein unfolding is quite high, 22.68 kcal/mole and 5.83 kcal/(mole K), respectively, which may be a reflection of the relatively large size of the tetrameric molecule (Mr 120, 000) and a large buried hydrophobic core in the folded protein. This study provides a prototype for determining conformational stability of other members of the short-chain alcohol dehydrogenase/reductase superfamily of proteins to which PfFabG belongs.  相似文献   

8.
Yan YB  Wang Q  He HW  Hu XY  Zhang RQ  Zhou HM 《Biophysical journal》2003,85(3):1959-1967
Unfolding and aggregation are basic problems in protein science with serious biotechnological and medical implications. Probing the sequential events occurring during the unfolding and aggregation process and the relationship between unfolding and aggregation is of particular interest. In this study, two-dimensional infrared (2D IR) correlation spectroscopy was used to study the sequential events and starting temperature dependence of Myoglobin (Mb) thermal transitions. Though a two-state model could be obtained from traditional 1D IR spectra, subtle noncooperative conformational changes were observed at low temperatures. Formation of aggregation was observed at a temperature (50-58 degrees C) that protein was dominated by native structures and accompanied with unfolding of native helical structures when a traditional thermal denaturation condition was used. The time course NMR study of Mb incubated at 55 degrees C for 45 h confirmed that an irreversible aggregation process existed. Aggregation was also observed before fully unfolding of the Mb native structure when a relative high starting temperature was used. These findings demonstrated that 2D IR correlation spectroscopy is a powerful tool to study protein aggregation and the protein aggregation process observed depends on the different environmental conditions used.  相似文献   

9.
Two mechanisms have been proposed for the thermal unfolding of ribonuclease S (RNase S). The first is a sequential partial unfolding of the S peptide/S protein complex followed by dissociation, whereas the second is a concerted denaturation/dissociation. The thermal denaturation of ribonuclease S and its fragment, the S protein, were followed with circular dichroism and infrared spectra. These spectra were analyzed by the principal component method of factor analysis. The use of multiple spectral techniques and of factor analysis monitored different aspects of the denaturation simultaneously. The unfolding pathway was compared with that of the parent enzyme ribonuclease A (RNase A), and a model was devised to assess the importance of the dissociation in the unfolding. The unfolding patterns obtained from the melting curves of each protein imply the existence of multiple intermediate states and/or processes. Our data provide evidence that the pretransition in the unfolding of ribonuclease S is due to partial unfolding of the S protein/S peptide complex and that the dissociation occurs at higher temperature. Our observations are consistent with a sequential denaturation mechanism in which at least one partial unfolding step comes before the main conformational transition, which is instead a concerted, final unfolding/dissociation step.  相似文献   

10.
Sulfolobus solfataricus 5'-deoxy-5'-melthylthioadenosine phosphorylase II (SsMTAPII), is a hyperthermophilic hexameric protein with two intrasubunit disulfide bonds (C138-C205 and C200-C262) and a CXC motif (C259-C261). To get information on the role played by these covalent links in stability and folding, the conformational stability of SsMTAPII and C262S and C259S/C261S mutants was studied by thermal and guanidinium chloride (GdmCl)-induced unfolding and analyzed by fluorescence spectroscopy, circular dichroism, and SDS-PAGE. No thermal unfolding transition of SsMTAPII can be obtained under nonreducing conditions, while in the presence of the reducing agent Tris-(2-carboxyethyl) phosphine (TCEP), a Tm of 100°C can be measured demonstrating the involvement of disulfide bridges in enzyme thermostability. Different from the wild-type, C262S and C259S/C261S show complete thermal denaturation curves with sigmoidal transitions centered at 102°C and 99°C respectively. Under reducing conditions these values decrease by 4°C and 8°C respectively, highlighting the important role exerted by the CXC disulfide on enzyme thermostability. The contribution of disulfide bonds to the conformational stability of SsMTAPII was further assessed by GdmCl-induced unfolding experiments carried out under reducing and nonreducing conditions. Thermal unfolding was found to be reversible if the protein was heated in the presence of TCEP up to 90°C but irreversible above this temperature because of aggregation. In analogy, only chemical unfolding carried out in the presence of reducing agents resulted in a reversible process suggesting that disulfide bonds play a role in enzyme denaturation. Thermal and chemical unfolding of SsMTAPII occur with dissociation of the native hexameric state into denatured monomers, as indicated by SDS-PAGE.  相似文献   

11.
The structural aspects of ervatamin B have been studied in different types of alcohol. This alcohol did not affect the structure or activity of ervatamin B under neutral conditions. At a low pH (3.0), different kinds of alcohol have different effects. Interestingly, at a certain concentration of non-fluorinated, aliphatic, monohydric alcohol, a conformational switch from the predominantly alpha-helical to beta-sheeted state is observed with a complete loss of tertiary structure and proteolytic activity. This is contrary to the observation that alcohol induces mostly the alpha-helical structure in proteins. The O-state of ervatamin B in 50% methanol at pH 3.0 has enhanced the stability towards GuHCl denaturation and shows a biphasic transition. This suggests the presence of two structural parts with different stabilities that unfold in steps. The thermal unfolding of ervatamin B in the O-state is also biphasic, which confirms the presence of two domains in the enzyme structure that unfold sequentially. The differential stabilization of the structural parts may also be a reflection of the differential stabilization of local conformations in methanol. Thermal unfolding of ervatamin B in the absence of alcohol is cooperative, both at neutral and low pH, and can be fitted to a two state model. However, at pH 2.0 the calorimetric profiles show two peaks, which indicates the presence of two structural domains in the enzyme with different thermal stabilities that are denatured more or less independently. With an increase in pH to 3.0 and 4.0, the shape of the DSC profiles change, and the two peaks converge to a predominant single peak. However, the ratio of van't Hoff enthalpy to calorimetric enthalpy is approximated to 2.0, indicating non-cooperativity in thermal unfolding.  相似文献   

12.
Su JT  Kim SH  Yan YB 《Biophysical journal》2007,92(2):578-587
Aminoacylase I (ACYI) catalyzes the stereospecific hydrolysis of L-acylamino acids and is generally assumed to be involved in the final step of the degradation of intracellular N-acetylated proteins. Apart from its crucial functions in intracellular amino acid metabolism, ACYI also has substantial commercial importance for the optical resolution of N-acylated DL-amino acids. As a zinc-dependent enzyme, ACYI is quite stable against heat-induced denaturation and can be regarded as a thermostable enzyme with an optimal temperature for activity of approximately 65 degrees C. In this research, the sequential events in ACYI thermal denaturation were investigated by a combination of spectroscopic methods and related resolution-enhancing techniques. Interestingly, the results from fluorescence and infrared (IR) spectroscopy clearly indicated that a pretransitional stage existed at temperatures from 50 degrees C to 66 degrees C. The thermal unfolding of ACYI might be a three-state process involving an aggregation-prone intermediate appearing at approximately 68 degrees C. The pretransitional structural changes involved the partial unfolding of the solvent-exposed beta-sheet structures and the transformation of about half of the Class I Trp fluorophores to Class II. Our results also suggested that the usage of resolution-enhancing techniques could provide valuable information of the step-wise unfolding of proteins.  相似文献   

13.
The conformational changes in the thermal denaturation of bovine pancreatic ribonuclease A was followed with infrared spectra and analyzed by second derivative and two-dimensional correlation techniques. By analyzing the sequential events in each transition stage, the results were consistent with a step-wise thermal denaturation mechanism in which the structural adjustment of the N-terminal and the opening of the central structure of the protein come before the main unfolding process. Non-native turns were found to form along with the unfolding of the native structures. The central region that is composed of some beta-sheet and alpha-helical structures was found to be the most stable part that might form the residual structure at high temperatures.  相似文献   

14.
Xu Q  Keiderling TA 《Biopolymers》2004,73(6):716-726
Thermal unfolding of cytochrome c (cyt c) from several states has been studied using equilibrium spectroscopic techniques. CD in the uv, vibrational circular dichroism, infrared, and uv-vis absorption spectra measured at various temperatures, pHs, salt concentrations, and GuHCl concentrations are used to show the conformational as well as heme structural differences between native and various denatured states. The difference in thermal denaturation behaviors of cyt c starting from acid denatured, molten globule (MG), and the A and native states are explored. Different final high temperature states were observed for cytochrome c unfolding from four different initial states (native, MG, A, and acid denatured state) by electronic CD, Fourier transform infrared (FTIR), and vibrational CD (VCD). Consistent with this, different thermal unfolding pathways for the MG and A states are suggested by the FTIR and VCD data for this process.  相似文献   

15.
ATP-dependent phosphoenolpyruvate (PEP) carboxykinases are found in plants and microorganisms, and catalyse the reversible formation of PEP, ADP, and CO(2) from oxaloacetate plus ATP. These enzymes vary in quaternary structure although there is significant sequence identity among the proteins isolated from different sources. To help understand the influence of quaternary structure in protein stability, the urea-induced unfolding of free- and substrate-bound tetrameric Saccharomyces cerevisiae PEP carboxykinase is described and compared with the unfolding characteristics of the monomeric Escherichia coli enzyme [Eur. J. Biochem. 255 (1998) 439]. The urea-induced denaturation of S. cerevisiae PEP carboxykinase was studied by monitoring the enzyme activity, intrinsic protein fluorescence, circular dichroism (CD) spectra, and 1-anilino-8-naphthalenesulfonate (ANS) binding. The unfolding profiles were multi-steps, and formation of hydrophobic structures were detected. The data indicate that unfolding and dissociation of the enzyme tetramer are simultaneous events. Ligand binding, most notably PEP in the presence of MnCl(2), conferred a marked protection against urea-induced denaturation. A similar protection effect was found when N-iodoacetyl-N'-(5-sulfo-1-napthyl)ethylene diamine (1,5-I-AEDANS) was covalently bound at Cys(365), within the active site region. Refolding experiments indicated that total recovery of tertiary structure was only obtained from samples previously unfolded to less than 30%. In the presence of substrates, complete refolding was achieved from samples originally denatured up to 50%. The unfolding behaviour of S. cerevisiae PEP carboxykinase was found to be similar to that of E. coli PEP carboxykinase, however all steps take place at lower urea concentrations. These findings show that, at least for monomeric and tetrameric ATP-dependent PEP carboxykinases, quaternary structure does not contribute to protein conformational stability.  相似文献   

16.
Herberhold H  Royer CA  Winter R 《Biochemistry》2004,43(12):3336-3345
FT-IR spectroscopy was used to study the effects of various chaotropic and kosmotropic cosolvents (glycerol, sucrose, sorbitol, K(2)SO(4), CaCl(2), and urea) on the secondary structure and thermodynamic properties upon unfolding and denaturation of staphylococcal nuclease (Snase). The data show that the different cosolvents have a profound effect on the denaturation pressure and the Gibbs free energy (DeltaG(o)) and volume (DeltaV(o) change of unfolding. Moreover, by analysis of the amide I' infrared bands, conformational changes of the protein upon unfolding in the different cosolvents have been determined. An increase, a reduction, or an independence of the volume change of unfolding is observed, depending on the type of cosolvent, which can at least in part be attributed to the formation of a different unfolded state structure of the protein. The data are compared with the corresponding thermodynamic values of DeltaV(o) for the temperature-induced unfolding process of Snase as obtained by pressure perturbation calorimetry, and significant differences are observed and discussed.  相似文献   

17.
The thermal unfolding of ribonuclease A has been studied in solutions of 25, 35 and 50% methanol (vv), using 360 MHz proton magnetic resonance spectroscopy. Several observations indicate that the native structure of the protein in methanol cryosolvents is very similar to that in aqueous solution. A detailed analysis of the unfolding process has been made using the C-2 protons of the imidazole side-chains of the four histidine residues. As denaturation proceeds new resonances appear, whose chemical shifts correspond to neither native nor fully unfolded species. These have been assigned to particular His residues by selective deuteration studies. The thermal denaturation transitions reveal a multiphasic process in each of the solvents, and become less co-operative with increasing concentrations of methanol. The denaturation is fully reversible with no evidence of hysteresis.The new resonances that appear during the unfolding process are attributed to partially folded species, which are stabilized by the presence of the relatively hydrophobic methanol. Based on the temperature dependence of the chemical shifts and the relative areas of the various resonances, a detailed sequence of events has been proposed to describe the unfolding process. Key features include the initial general loosening of the two domains, the subsequent movement of the upper S-peptide region (residues 13 to 25) away from the main body of the protein, followed by partial separation of the sheet structure and full exposure of the N-terminal helix, leading to complete separation of the “winged domains”, and ultimately the loss of the residual sheet and helix structure.  相似文献   

18.
Sulfolobus solfataricus 5′-deoxy-5′-melthylthioadenosine phosphorylase II (SsMTAPII), is a hyperthermophilic hexameric protein with two intrasubunit disulfide bonds (C138–C205 and C200–C262) and a CXC motif (C259–C261). To get information on the role played by these covalent links in stability and folding, the conformational stability of SsMTAPII and C262S and C259S/C261S mutants was studied by thermal and guanidinium chloride (GdmCl)-induced unfolding and analyzed by fluorescence spectroscopy, circular dichroism, and SDS-PAGE. No thermal unfolding transition of SsMTAPII can be obtained under nonreducing conditions, while in the presence of the reducing agent Tris-(2-carboxyethyl) phosphine (TCEP), a Tm of 100 °C can be measured demonstrating the involvement of disulfide bridges in enzyme thermostability. Different from the wild-type, C262S and C259S/C261S show complete thermal denaturation curves with sigmoidal transitions centered at 102 °C and 99 °C respectively. Under reducing conditions these values decrease by 4 °C and 8 °C respectively, highlighting the important role exerted by the CXC disulfide on enzyme thermostability. The contribution of disulfide bonds to the conformational stability of SsMTAPII was further assessed by GdmCl-induced unfolding experiments carried out under reducing and nonreducing conditions. Thermal unfolding was found to be reversible if the protein was heated in the presence of TCEP up to 90 °C but irreversible above this temperature because of aggregation. In analogy, only chemical unfolding carried out in the presence of reducing agents resulted in a reversible process suggesting that disulfide bonds play a role in enzyme denaturation. Thermal and chemical unfolding of SsMTAPII occur with dissociation of the native hexameric state into denatured monomers, as indicated by SDS-PAGE.  相似文献   

19.
The temperature dependent denaturation of wild-type tendamistat and of the proline-free triple mutant P7A/P9A/P50A was investigated using Fourier-transform infrared (FTIR) spectroscopy. Whereas the temperature-induced unfolding is reversible in the wild type, aggregation was observed for the proline-free tendamistat when studied under the same conditions. The midpoint unfolding temperature T(m) was found as 82.3+/-0.5 degrees C in (2)H2O. The thermal stability of the proline-free mutant is reduced by 15 degrees C as compared to the wild type. Changes in the strength of hydrogen bonding of tyrosine O-H groups upon unfolding and aggregation are reflected in small shifts of the C-C stretching mode of the aromatic ring near 1515 cm(-1). Evaluation of data from different infrared (IR) bands sensitive to changes in secondary structure as well as to changes in tertiary structure strongly supports a two-state model for the unfolding process of wild-type tendamistat.  相似文献   

20.
Thermodynamic, circular dichroism (CD), and activity measurements have been used to characterize the different conformational states and the effects of NaCl concentrations (0.0-3.0 M) on thermal unfolding of ornithine carbamoyltransferase (OCT) from Alopias vulpinus. Furthermore conformational changes in whole enzyme structure have been monitored by titration of SH-groups. OCT unfolding process follows an irreversible two-state mechanism with a first-order kinetic of denaturation, without breaking-point. NaCl shows very little stabilization effects at low concentration and its action become very important over 1.5 M concentration. The presence of 3.0 M NaCl completely avoids OCT unfolding at 60, 64 and 66 degrees C. Kinetic and thermodynamic parameters are strongly influenced by the presence of high NaCl concentration. Our experiments showed that NaCl stabilization process involved changes in preferential binding, in electrostatic and van der Waals interactions and exposure of buried site and SH-groups. During thermal denaturation, UV-vis and CD spectroscopy show that high salts concentration preserves OCT activity, avoiding exposure of hydrophobic site and destruction of secondary and tertiary structure elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号