首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The growth pattern of Mucor globosus cultured on a medium with or without cyclic adenosine monophosphate (cAMP) was examined. Branching remarkably increased in a mycelium grown on an agar medium containing cAMP. In submerged culture containing cAMP, some sporangiospores grew spherically and formed yeast-like cells, and others showed hyphal growth. These hyphae showed septation and swelling and formed spore-like structures. When these hyphae were transferred to cAMP-free medium, a germ tube emerged from each compartment. These results show that cAMP has two different effects on the development of hyphae: one is the promotion of branching, and the other is the suppression of polarized growth.  相似文献   

3.
Heterotrimeric GTP-binding proteins (G proteins) and mitogen-activated protein kinase (MAPK) cascades involve vegetative hyphal growth, development of infection-related structure, colonization in host plant and female fertility in phytopathogenic ascomycete fungi. In this study, a heterotrimeric G protein β subunit (Gβ), GPB1, and MAPK, MPK1, were characterized from Fusarium sacchari (= Gibberella sacchari; mating population B of the G. fujikuroi-species complex). GPB1 and MPK1 showed high homology to known Gβ and Fus3/Kss1 MAP kinases of other filamentous ascomycetes, respectively. Disruption (Δ) of gpb1 suppressed hyphal branching and accelerated aerial hyphae formation in F. sacchari. Oppositely, disruption of mpk1 caused delayed aerial hyphae formation. These indicated that GPB1 regulates vegetative hyphal growth negatively, and MPK1 does positively in F. sacchari. Both Δgpb1 and Δmpk1 showed female sterility. Level of intracellular cAMP in Δgpb1 was lower than wild type. Exogenous cyclic AMP (cAMP) partially restored enhanced aerial hyphae formation. These suggested that abnormal hyphal growth was caused by depletion of intracellular cAMP in Δgpb1. cAMP has been reported to suppress development of perithecia in crossing between wild type strains. Thus, precise regulation of intracellular cAMP level via Gβ/MAPK is essential for normal hyphal growth and fertility.  相似文献   

4.
王天旭  杨丹丹  孙洵  张茂  苏畅  逯杨 《菌物学报》2020,39(11):2003-2013
白念珠菌Candida albicans是人体内的良性共生真菌,存在于宿主的口腔、表皮、胃肠道及阴道等处,在免疫能力低下的人群中可能引起严重的疾病。一般以二倍体的形式存在,且能在酵母、假菌丝和菌丝的状态之间转换。菌丝状态促进了白念珠菌的侵染能力,同时也可以使白念珠菌逃逸宿主的免疫攻击,在其对宿主的感染途径中起到了重要的作用。本综述将阐述白念珠菌菌丝形成的调控机制、菌丝的发育模式以及菌丝形态对宿主免疫系统的影响,并且简要介绍念珠菌属中热带念珠菌和耳念珠菌菌丝发育方面的相关研究。  相似文献   

5.
Serum induces Candida albicans to make a rapid morphological change from the yeast cell form to hyphae. Contrary to the previous reports, we found that serum albumin does not play a critical role in this morphological change. Instead, a filtrate (molecular mass, <1 kDa) devoid of serum albumin induces hyphae. To study genes controlling this response, we have isolated the RAS1 gene from C. albicans by complementation. The Candida Ras1 protein, like Ras1 and Ras2 of Saccharomyces cerevisiae, has a long C-terminal extension. Although RAS1 appears to be the only RAS gene present in the C. albicans genome, strains homozygous for a deletion of RAS1 (ras1-2/ras1-3) are viable. The Candida ras1-2/ras1-3 mutant fails to form germ tubes and hyphae in response to serum or to a serum filtrate but does form pseudohyphae. Moreover, strains expressing the dominant active RAS1(V13) allele manifest enhanced hyphal growth, whereas those expressing a dominant negative RAS1(A16) allele show reduced hyphal growth. These data show that low-molecular-weight molecules in serum induce hyphal differentiation in C. albicans through a Ras-mediated signal transduction pathway.  相似文献   

6.
7.
In six liquid culture media, all of which stimulated Candida albicans to grow in the hyphal form, the rates of hyphal extension and increase in cellular ATP concentration, hyphal diameters, times of evagination of hyphae, times of septum formation and positions of septa in the hyphae appeared to vary independently. There were no discernible associations between properties such as length or volume of hyphal compartments at the time of septation and temporal parameters of hyphal growth. The results suggest that growth environment influences many of the processes contributing to hyphal development, but that these processes are not necessarily interrelated.  相似文献   

8.
InSaccharomyces cerivisiae intracellular cAMP mediates environmental signals that regulate cellular metabolism and growth. The studies on the cAMP-requiring mutants and their suppressors in the yeast revealed that cAMP-dependent protein phosphorylation is involved in the G1 phase of the cell cycle, stimulation of the phosphoinositide pathway and the post-meiotic stage of spourlation, and that inhibition of cAMP-dependent protein phosphorylation is required to go into the GO stage of and to induce meiotic division. Growth of some filamentous fungi was observed with significantly reduced levels of cAMP, suggesting that cAMP may not be essential for growth in some species of fungi. Germination of fungal spores, yeast-mycelium dimorphism and hyphal morphogenesis of several species of fungi were affected by cAMP. cAMP was involved in extension of hyphae, formation of hyphal aggregates and fruit body formation. Phosphorylation of cellular proteins is required in these processes, and the nature of these proteins phosphorylated by cAMP-dependent protein kinase is important to the understanding of the role of cAMP for growth and differentistion in fungal cells.  相似文献   

9.
Unlike most other cells, hyphae of filamentous fungi permanently elongate and lack nonpolar growth phases. We identified AgBoi1/2p in the filamentous ascomycete Ashbya gossypii as a component required to prevent nonpolar growth at hyphal tips. Strains lacking AgBoi1/2p frequently show spherical enlargement at hyphal tips with concomitant depolarization of actin patches and loss of tip-located actin cables. These enlarged tips can repolarize and resume hyphal tip extension in the previous polarity axis. AgBoi1/2p permanently localizes to hyphal tips and transiently to sites of septation. Only the tip localization is important for sustained elongation of hyphae. In a yeast two-hybrid experiment, we identified the Rho-type GTPase AgRho3p as an interactor of AgBoi1/2p. AgRho3p is also required to prevent nonpolar growth at hyphal tips, and strains deleted for both AgBOI1/2 and AgRHO3 phenocopied the respective single-deletion strains, demonstrating that AgBoi1/2p and AgRho3p function in a common pathway. Monitoring the polarisome of growing hyphae using AgSpa2p fused to the green fluorescent protein as a marker, we found that polarisome disassembly precedes the onset of nonpolar growth in strains lacking AgBoi1/2p or AgRho3p. AgRho3p locked in its GTP-bound form interacts with the Rho-binding domain of the polarisome-associated formin AgBni1p, implying that AgRho3p has the capacity to directly activate formin-driven actin cable nucleation. We conclude that AgBoi1/2p and AgRho3p support polarisome-mediated actin cable formation at hyphal tips, thereby ensuring permanent polar tip growth.  相似文献   

10.
11.
12.
The incidence of clamp connections among surface hyphae at thecolony margin of apparent dikaryons from four stocks of Coprinusdisseminatus has been investigated under several environmentalconditions. On 2 per cent malt agar, clamp connections are formed at allnodes of the main leader hyphae, but they are absent from theearlier-formed nodes of primary branch hyphae. Most primarybranches have begun to form clamp connections by their fifthcell division, and continue to do so subsequently. Onset ofclamp connection formation in primary branches is delayed whenthe concentration of malt in the medium is reduced. The occurrenceof clamp connections on main leader hyphae is reduced or preventedwhen nutrient supply in the medium is reduced, or when the mediumis ‘pre-staled’ by previous growth of C. disseminatus.Clamp-free main hyphal tips revert to formation of clamp connectionswhen the intact hyphal system is transferred to more favourableenvironmental conditions. Presence of clamp connections on bothmain and branch hyphae is associated with high hyphal diameter,and in some instances, also with high hyphal extension rate. The significance of these observations to mechanisms of growthof hyphal branching systems and their relevance to other speciesthat form clamp connections intermittently, are discussed.  相似文献   

13.
Somatic cell fusion is common during organogenesis in multicellular eukaryotes, although the molecular mechanism of cell fusion is poorly understood. In filamentous fungi, somatic cell fusion occurs during vegetative growth. Filamentous fungi grow as multinucleate hyphal tubes that undergo frequent hyphal fusion (anastomosis) during colony expansion, resulting in the formation of a hyphal network. The molecular mechanism of the hyphal fusion process and the role of networked hyphae in the growth and development of these organisms are unexplored questions. We use the filamentous fungus Neurospora crassa as a model to study the molecular mechanism of hyphal fusion. In this study, we identified a deletion mutant that was restricted in its ability to undergo both self-hyphal fusion and fusion with a different individual to form a heterokaryon. This deletion mutant displayed pleiotropic defects, including shortened aerial hyphae, altered conidiation pattern, female sterility, slow growth rate, lack of hyphal fusion, and suppression of vegetative incompatibility. Complementation with a single open reading frame (ORF) within the deletion region in this mutant restored near wild-type growth rates, female fertility, aerial hyphae formation, and hyphal fusion, but not vegetative incompatibility and wild-type conidiation pattern. This ORF, which we named ham-2 (for hyphal anastomosis), encodes a putative transmembrane protein that is highly conserved, but of unknown function among eukaryotes.  相似文献   

14.
Trimeric G-proteins transmit extracellular signals to various downstream effectors (e.g. MAP kinases) in eukaryotes. In the rice blast fungus Magnaporthe grisea, the Pmk1 MAP kinase is essential for appressorium formation and infectious growth. The pmk1 deletion mutant fails to form appressoria but still responds to exogenous cAMP for tip deformation. Since gene disruption mutants of three Galpha subunits still form appressoria and are phenotypically different from pmk1 mutants, it is likely that the Pmk1 pathway is activated by Gbeta in M. grisea. In this study, we isolated and characterized the MGB1 gene that encodes the G subunit in M. grisea. Mutants disrupted in MGB1 were reduced in conidiation. Conidia from mgb1 mutants were defective in appressorium formation and failed to penetrate or grow invasively on rice leaves. Exogenous cAMP induced appressorium formation in mgb1 mutants, but these appressoria were abnormal in shape and could not penetrate. The intracellular cAMP level was reduced in mgb1 mutants and the defects in conidiation and hyphal growth were partially suppressed with 1 mM cAMP. Transformants expressing multiple copies of MGB1 were able to form appressoria on hydrophilic surfaces. Our results suggest that MGB1 may be involved in the cAMP signalling for regulating conidiation, surface recognition and appressorium formation. The Pmk1 pathway may be the downstream target of MGB1 for regulating penetration and infectious hyphae growth in M. grisea.  相似文献   

15.
Long-distance transport is crucial for polar-growing cells, such as neurons and fungal hyphae. Kinesins and myosins participate in this process, but their functional interplay is poorly understood. Here, we investigate the role of kinesin motors in hyphal growth of the plant pathogen Ustilago maydis. Although the microtubule plus-ends are directed to the hyphal tip, of all 10 kinesins analyzed, only conventional kinesin (Kinesin-1) and Unc104/Kif1A-like kinesin (Kinesin-3) were up-regulated in hyphae and they are essential for extended hyphal growth. deltakin1 and deltakin3 mutant hyphae grew irregular and remained short, but they were still able to grow polarized. No additional phenotype was detected in deltakin1rkin3 double mutants, but polarity was lost in deltamyo5rkin1 and deltamyo5rkin3 mutant cells, suggesting that kinesins and class V myosin cooperate in hyphal growth. Consistent with such a role in secretion, fusion proteins of green fluorescent protein and Kinesin-1, Myosin-V, and Kinesin-3 accumulate in the apex of hyphae, a region where secretory vesicles cluster to form the fungal Spitzenk?rper. Quantitative assays revealed a role of Kin3 in secretion of acid phosphatase, whereas Kin1 was not involved. Our data demonstrate that just two kinesins and at least one myosin support hyphal growth.  相似文献   

16.
17.
Fungi can grow in a variety of growth forms: yeast, pseudohyphae and hyphae. The human fungal pathogen Candida albicans can grow in all three of these forms. In this fungus, hyphal growth is distinguished by the presence of a Spitzenk?rper-like structure at the hyphal tip and a band of septin bars around the base of newly evaginated germ tubes. The budding yeast Saccharomyces cerevisiae grows as yeast and pseudohyphae, but is not normally considered to show hyphal growth. We show here that in mating projections of both C. albicans and S. cerevisiae a Spitzenk?rper-like structure is present at the growing tip and a band of septin bars is present at the base. Furthermore, in S. cerevisiae mating projections, Spa2 and Bni1 form a cap to the 3-dimensional ball of FM4-64 staining, exactly as previously observed in C. albicans hyphae, suggesting that the putative Spitzenk?rper may be a distinct structure from the polarisome. Taken together this work shows that mating projections of both S. cerevisiae and C. albicans show the key characteristics of hyphal growth.  相似文献   

18.
Although phospholipase B (PLB) enzymes have been described in eukaryotes from yeasts to mammals, their biological functions are poorly understood. Here we describe the characterization of plb1, one of five genes predicted to encode PLB homologs in the fission yeast, Schizosaccharomyces pombe. The plb1 gene is dispensable under normal growth conditions but required for viability in high-osmolarity media and for normal osmotic stress-induced gene expression. Unlike mutants defective in function for the stress-activated MAP kinase Spc1, plb1Delta cells are not hypersensitive to oxidative or temperature stresses, nor do they undergo a G2-specific arrest in response to osmotic stress. In addition to defects in osmotic stress response, plb1Delta cells exhibit a cold-sensitive defect in nutrient-mediated mating repression, a phenotype reminiscent of mutants in the cyclic AMP (cAMP) pathway. We show that, like plb1Delta cells, mutants in the cAMP pathway are defective for growth in high-osmolarity media, demonstrating a previously unrecognized role for the cAMP pathway in osmotic stress response. Furthermore, we show that gain-of function in the cAMP pathway can rescue the osmosensitive growth defect of plb1Delta cells, suggesting that the cAMP pathway is a potential downstream target of the actions of Plb1 in S. pombe.  相似文献   

19.
Directional growth is a function of polarized cells such as neurites, pollen tubes, and fungal hyphae. Correct orientation of the extending cell tip depends on signaling pathways and effectors that mediate asymmetric responses to specific environmental cues. In the hyphal form of the eukaryotic fungal pathogen Candida albicans, these responses include thigmotropism and galvanotropism (hyphal turning in response to changes in substrate topography and imposed electrical fields, respectively) and penetration into semisolid substrates. During vegetative growth in C. albicans, as in the model yeast Saccharomyces cerevisiae, the Ras-like GTPase Rsr1 mediates internal cellular cues to position new buds in a prespecified pattern on the mother cell cortex. Here, we demonstrate that Rsr1 is also important for hyphal tip orientation in response to the external environmental cues that induce thigmotropic and galvanotropic growth. In addition, Rsr1 is involved in hyphal interactions with epithelial cells in vitro and its deletion diminishes the hyphal invasion of kidney tissue during systemic infection. Thus, Rsr1, an internal polarity landmark in yeast, is also involved in polarized growth responses to asymmetric environmental signals, a paradigm that is different from that described for the homologous protein in S. cerevisiae. Rsr1 may thereby contribute to the pathogenesis of C. albicans infections by influencing hyphal tip responses triggered by interaction with host tissues.  相似文献   

20.
Using image analysis the growth kinetics of the single hyphae of the filamentous fungus Aspergillus oryzae has been determined on-line in a flow-through cell at different glucose concentrations in the range from 26 mg L-1 to 20 g L-1. The tip extension rate of the individual hyphae can be described with saturation type kinetics with respect to the length of the hyphae. The maximum tip extension rate is constant for all hyphae measured at the same glucose concentration, whereas the saturation constant for the hyphae varies significantly between the hyphae even within the same hyphal element. When apical branching occurs, it is observed that the tip extension rate decreases temporarily. The number of branches formed on a hypha is proportional to the length of the hypha that exceeds a certain minimum length required to support the growth of a new branch. The observed kinetics has been used to simulate the outgrowth of a hyphal element from a single spore using a Monte Carlo simulation technique. The simulations shows that the observed kinetics for the individual hyphae result in an experimentally verified growth pattern with exponential growth in both total hyphal length and number of tips.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号