首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 188 毫秒
1.
Mutation at the GLC1 locus in Saccharomyces cerevisiae resulted in simultaneous deficiencies in glycogen and trehalose accumulation. Extracts of yeast cells containing the glc1 mutation exhibited an abnormally high trehalase activity. This elevated activity was associated with a defective cyclic AMP (cAMP)-dependent monocyclic cascade which, in normal cells, regulates trehalase activity by means of protein phosphorylation and dephosphorylation. Trehalase in extracts of normal cells was largely in a cryptic form which could be activated in vitro by ATP . Mg in the presence of cAMP. Normal extracts also exhibited a correlated cAMP-dependent protein kinase which catalyzed incorporation of label from [gamma-32P]ATP into protamine. In contrast, cAMP had little or no additional activating effect on trehalase or on protamine phosphorylation in extracts of glc1 cells. Similar, unregulated activation of cryptic trehalase was also found in glycogen-deficient strains bearing a second, independently isolated mutant allele, glc1-2. Since trehalase activity was not directly affected by cAMP, the results indicate that the glc1 mutation results in an abnormally active protein kinase which has lost its normal dependence on cAMP. Trehalase in extracts of either normal or mutant cells underwent conversion to a cryptic form in an Mg2+-dependent, fluoride-sensitive reaction. Rates of this reversible reduction of activity were similar in extracts of mutant and normal cells. This same, unregulated protein kinase would act on glycogen synthase, maintaining it in the phosphorylated low-activity D-form. The glc1 mutants provide a novel model system for investigating the in vivo metabolic functions of a specific, cAMP-dependent protein kinase.  相似文献   

2.
Summary The recessive, nuclear gene mutation glc1, which causes glycogen deficiency in Saccharomyces cerevisiae, is highly plciotropic. Studies of the inheritance of glc1 revealed two classes of phenotypic characteristics: I. Traits invariably associated with the mutant gene and II. Traits whose expressions require the presence of glc1 and one or more additional genes. Class I traits include glycogen deficiency and the loss of capacity to accumulate trehalose in nonproliferating conditions. Traits in the second class include a decreased rate of growth on ethanol medium, a deficiency in cytochrome a.a 3 and an enhanced accumulation of pigment, probably a metalloporphyrin. Constructed strains containing both glc1 and the constitutive maltose fermentation gene MAL4 0 can accumulate trehalose but not glycogen during growth on glucose. However, accumulated trehalose is degraded when cells are exposed to nonproliferating conditions. It is proposed that the glc1 mutation affects a regulatory system, probably involving a protein kinase and/or protein phosphatase, which regulates glycogen synthase and trehalase. Independent regulation of trehalose synthesis by a system controlled by MAL4 0 is indicated.  相似文献   

3.
4.
We cloned the GLC7/DIS2S1 gene by complementation of the cid1-226 mutation, which relieves glucose repression in Saccharomyces cerevisiae. GLC7 encodes the catalytic subunit of type 1 protein phosphatase (PP1). Genetic analysis and sequencing showed that cid1-226 is an allele of GLC7, now designated glc7-T152K, which alters threonine 152 to lysine. We also show that the glc7-1 and glc7-T152K alleles cause distinct phenotypes: glc7-1 causes a severe defect in glycogen accumulation but does not relieve glucose repression, whereas glc7-T152K does not prevent glycogen accumulation. These findings are discussed in light of evidence that interaction with different regulatory or targeting subunits directs the participation of PP1 in diverse cellular regulatory mechanisms. Finally, genetic studies suggest that PP1 functions antagonistically to the SNF1 protein kinase in the regulatory response to glucose.  相似文献   

5.
Loss-of-function gac1 mutants of Saccharomyces cerevisiae fail to accumulate normal levels of glycogen because of low glycogen synthase activity. Increased dosage of GAC1 results in increased activity of glycogen synthase and a corresponding hyperaccumulation of glycogen. The glycogen accumulation phenotype of gac1 is similar to that of glc7-1, a type 1 protein phosphatase mutant. We have partially characterized the GAC1 gene product (Gac1p) and show that levels of Gac1p increase during growth with the same kinetics as glycogen accumulation. Gac1p is phosphorylated in vivo and is hyperphosphorylated in a glc7-1 mutant. Gac1p and the type 1 protein phosphatase directly interact in vitro, as assayed by coimmunoprecipitation, and in vivo, as determined by the dihybrid assay described elsewhere (S. Fields and O.-k. Song, Nature [London] 340:245-246, 1989). The interaction between Gac1p and the glc7-1-encoded form of the type 1 protein phosphatase is defective, as assayed by either immunoprecipitation or the dihybrid assay. Increased dosage of GAC1 partially suppresses the glycogen defect of glc7-1. Collectively, our data support the hypotheses that GAC1 encodes a regulatory subunit of type 1 protein phosphatase and that the glycogen accumulation defect of glc7-1 is due at least in part to the inability of the mutant phosphatase to interact with its regulatory subunit.  相似文献   

6.
The activation of neutral trehalase (Ntp1) by metabolic and physical stresses in Schizosaccharomyces pombe is dependent on protein kinases Pka1 or Sck1. Mutant ntp1 alleles altered for potentially phosphorylatable serine residues within the regulatory domain of the enzyme were integrated under the control of the native promoter in an ntp1-deleted background. The trehalase variants were expressed to a level similar to that of wild type trehalase from control cells. Wild type trehalase protein accumulated and became activated upon stress while a single change in the evolutionary conserved perfect consensus site for Pka1-dependent phosphorylation (Ser71), as well as point mutations in two other putative phosphorylation sites (Ser6, Ser51), produced inactive trehalases unresponsive to stress. Trehalose content in the trehalase mutated strains increased upon salt stress to a level comparable to that shown by an ntp1-deleted mutant. When exposed to heat shock, trehalose hyperaccumulated in the ntp1-null strain lacking trehalase protein and this phenotype was shown by some (Ser71), but not all, strains with serine mutated trehalases. The mutant trehalases retained the ability to form complexes with trehalose-6-phosphate synthase. These data support a role of potentially phosphorylated specific sites for the activation of S. pombe neutral trehalase and for the heat shock-induced accumulation of trehalose.  相似文献   

7.
In Saccharomyces cerevisiae, trehalase activity in crude extracts obtained from wild type cells was activated about 3-fold by preincubation with cAMP and ATP. The inactive trehalase fractionated by DEAE-Sephacel chromatography was activated by the addition of the cAMP-dependent protein kinase fraction from wild type cells in the presence of cAMP and ATP. Using the crude extract obtained from bcy1 mutant cells which were deficient in the regulatory subunit of cAMP-dependent protein kinase, the stimulation of trehalase activity was observed in the absence of cAMP. The cAMP-dependent protein kinase of CYR3 mutant cells which had a high Ka value for cAMP in the phosphorylation reaction required a high cAMP concentration for activation of trehalase. Increased activation of partially purified inactive trehalase (Mr = 320,000) was observed to correlate with increased phosphorylation of a protein (Mr = 80,000) identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The assay results using various mutants altered in cAMP metabolism indicated that the activation and phosphorylation of inactive trehalase fractions depended on the cAMP concentration accumulated in mutant cells. Inactivation and dephosphorylation of active trehalase fractions were observed by treatment with alkaline phosphatase or crude cell extracts. The results indicated that the conversion of inactive form of trehalase to the active form is regulated by cAMP through cAMP-dependent protein kinase.  相似文献   

8.
Trehalose is a major storage carbohydrate in budding yeast, Saccharomyces cerevisiae. Alterations in trehalose synthesis affect carbon source-dependent growth, accumulation of glycogen and sporulation. Trehalose is synthesized by trehalose phosphate synthase (TPS), which is a complex of at least four proteins. In this work, we show that the Tps1p subunit protein catalyses trehalose phosphate synthesis in the absence of other TPS components. The tps1-H223Y allele (glc6-1) that causes a semidominant decrease in glycogen accumulation exhibits greater enzyme activity than wild-type TPS1 because, unlike the wild-type enzyme, TPS activity in tps1-H223Y cells is not inhibited by phosphate. Poor sporulation in tps1 null diploids is caused by reduced expression of meiotic inducers encoded by IME1, IME2 and MCK1. Furthermore, high-copy MCK1 or heterozygous hxk2 mutations can suppress the tps1 sporulation trait. These results suggest that the trehalose-6-phosphate inhibition of hexokinase activity is required for full induction of MCK1 in sporulating yeast cells.  相似文献   

9.
Transport of trehalose in Salmonella typhimurium.   总被引:10,自引:4,他引:6       下载免费PDF全文
We have studied trehalose uptake in Salmonella typhimurium and the possible involvement of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) in this process. Two transport systems could recognize and transport trehalose, the mannose PTS and the galactose permease. Uptake of trehalose via the latter system required that it be expressed constitutively (due to a galR or galC mutation). Introduction of a ptsM mutation, resulting in a defective IIMan/IIIMan system, in S. typhimurium strains that grew on trehalose abolished growth on trehalose. A ptsG mutation, eliminating IIGlc of the glucose PTS, had no effect. In contrast, a crr mutation that resulted in the absence of IIIGlc of the glucose PTS prevented growth on trehalose. The inability of crr and also cya mutants to grow on trehalose was due to lowered intracellular cyclic AMP synthesis, since addition of extracellular cyclic AMP restored growth. Subsequent trehalose metabolism could be via a trehalose phosphate hydrolase, if trehalose phosphate was formed via the PTS, or trehalase. Trehalose-grown cells contained trehalase activity, but we could not detect phosphoenolpyruvate-dependent phosphorylation of trehalose in toluenized cells.  相似文献   

10.
11.
In the yeast Saccharomyces cerevisiae, the synthesis of endogenous trehalose is catalyzed by a trehalose synthase complex, TPS, and its hydrolysis relies on a cytosolic/neutral trehalase encoded by NTH1. In this work, we showed that NTH2, a paralog of NTH1, encodes a functional trehalase that is implicated in trehalose mobilization. Yeast is also endowed with an acid trehalase encoded by ATH1 and an H+/trehalose transporter encoded by AGT1, which can together sustain assimilation of exogenous trehalose. We showed that a tps1 mutant defective in the TPS catalytic subunit cultivated on trehalose, or on a dual source of carbon made of galactose and trehalose, accumulated high levels of intracellular trehalose by its Agt1p-mediated transport. The accumulated disaccharide was mobilized as soon as cells entered the stationary phase by a process requiring a coupling between its export and immediate extracellular hydrolysis by Ath1p. Compared to what is seen for classical growth conditions on glucose, this mobilization was rather unique, since it took place prior to that of glycogen, which was postponed until the late stationary phase. However, when the Ath1p-dependent mobilization of trehalose identified in this study was impaired, glycogen was mobilized earlier and faster, indicating a fine-tuning control in carbon storage management during periods of carbon and energy restriction.  相似文献   

12.
The cyr2 mutant of yeast, Saccharomyces cerevisiae, required cAMP for growth at 35 degrees C. The cyr2 mutation was suppressed by the bcy1 mutation which resulted in deficiency of the regulatory subunit of cAMP-dependent protein kinase. The DEAE-Sephacel elution profile of cyr2 cAMP-dependent protein kinase was markedly different from that observed for the wild-type enzyme. With histone as substrate, the cAMP-dependent protein kinase activity of cyr2 cells showed 100-fold greater Ka value for activation by cAMP at 35 degrees C than that of the wild-type cells, while the Kd value for cAMP of the mutant enzyme was not altered. The electrophoretic character, molecular weight, and pI value of the regulatory subunit of the mutant enzyme were the same as those of the wild-type enzyme. When histone, trehalase, and glutamate dehydrogenase were used as substrate, the free catalytic subunit of the mutant enzyme showed a markedly decreased affinity for ATP and was more thermolabile compared to that of the wild-type enzyme. The results indicated that the cyr2 phenotype was produced by a structural mutation in the cyr2 gene coding for the catalytic subunit of cAMP-dependent protein kinase in yeast.  相似文献   

13.
Protein kinase A (PKA) activity was measured in situ in permeabilised Saccharomyces cerevisiae cells in the absence and the presence of cAMP. Four strains genetically predicted to have differential PKA-dependent phenotypes were used: a wild-type strain and a strain containing a bcy1-14 mutation (with almost constitutively active PKA), and the same strains with overexpression of the wild-type or mutant BCY1 gene, respectively. Cells were grown on galactose or glucose. The measured phenotypic characteristics were: trehalose and glycogen levels and the activity of a reporter gene under control of the NTH1 promoter. The 'endogenous' PKA activity (measured in situ in the absence of cAMP) showed the best correlation with the PKA-dependent phenotypes determined in vivo. We propose that this parameter offers a good estimate for the degree of activation of PKA in vivo.  相似文献   

14.
15.
We isolated a mutant carrying a conditional mutation in the GLC7 gene, encoding the catalytic subunit of a type 1 protein phosphatase, by selection of suppressors that restored the growth defect of cdc24 mutants at high temperature and simultaneously conferred cold-sensitive growth. This cold sensitivity for growth is caused by a single mutation (glc7Y-170) at position 170 of the Glc7 protein, resulting in replacement of cysteine with tyrosine. Genetic analysis suggested that the glc7Y-170 allele is associated with a recessive negative phenotype, reducing the activity of Glc7 in the cell. The glc7Y-170 mutant missegregated chromosome III at the permissive temperature, arrested growth as large-budded cells at the restrictive temperature, exhibited a significant increase in the number of nuclei at or in the neck, and had a short spindle. Furthermore, the glc7Y-170 mutant exhibited a high level of CDC28-dependent protein kinase activity when incubated at the restrictive temperature. These findings suggest that the glc7Y-170 mutation is defective in the G2/M phase of the cell cycle. Thus, type 1 protein phosphatase in Saccharomyces cerevisiae is essential for the G2/M transition.  相似文献   

16.
A yeast glc7-1 mutant expressing a variant of protein phosphatase type 1 fails to accumulate glycogen. This defect is associated with hyperphosphorylated and inactive glycogen synthase, consistent with Glc7p acting directly to dephosphorylate and activate glycogen synthase. To characterize the glycogen synthesis defect of this mutant in more detail, we isolated 26 pseudorevertants of the glc7-1 mutant. All pseudoreversion events were due to missense mutations in GSY2, the gene encoding the major isoform of glycogen synthase. A majority of the mutations responsible for the suppression were in the 3' end of the gene, corresponding to the phosphorylated COOH terminus of Gsy2p. Phosphorylation of the mutant proteins was reduced, suggesting that they are poor substrates for glycogen synthase kinases. Suppressor mutations outside this domain did not decrease the phosphorylation of the resulting proteins, indicating that these proteins are immune to the regulatory effects of phosphorylation. Since no growth defect has been observed for strains with altered glycogen levels, the relative levels of fitness of GSY2 mutants that fail to accumulate glycogen and that hyperaccumulate glycogen were assayed by cocultivation experiments. A wild-type strain outcompeted both hypo- and hyperaccumulating strains, suggesting that glycogen levels contribute substantially to the fitness of yeast.  相似文献   

17.
Accumulation of trehalose is widely believed to be a critical determinant in improving the stress tolerance of the yeast Saccharomyces cerevisiae, which is commonly used in commercial bread dough. To retain the accumulation of trehalose in yeast cells, we constructed, for the first time, diploid homozygous neutral trehalase mutants (Deltanth1), acid trehalase mutants (Deltaath1), and double mutants (Deltanth1 ath1) by using commercial baker's yeast strains as the parent strains and the gene disruption method. During fermentation in a liquid fermentation medium, degradation of intracellular trehalose was inhibited with all of the trehalase mutants. The gassing power of frozen doughs made with these mutants was greater than the gassing power of doughs made with the parent strains. The Deltanth1 and Deltaath1 strains also exhibited higher levels of tolerance of dry conditions than the parent strains exhibited; however, the Deltanth1 ath1 strain exhibited lower tolerance of dry conditions than the parent strain exhibited. The improved freeze tolerance exhibited by all of the trehalase mutants may make these strains useful in frozen dough.  相似文献   

18.
Yeast cells starved for inorganic phosphate on a glucose-containing medium arrest growth and enter the resting phase G0. We show that re-addition of phosphate rapidly affects well known protein kinase A targets: trehalase activation, trehalose mobilization, loss of heat resistance, repression of STRE-controlled genes and induction of ribosomal protein genes. Phosphate-induced activation of trehalase is independent of protein synthesis and of an increase in ATP. It is dependent on the presence of glucose, which can be detected independently by the G-protein coupled receptor Gpr1 and by the glucose-phosphorylation dependent system. Addition of phosphate does not trigger a cAMP signal. Despite this, lowering of protein kinase A activity by mutations in the TPK genes strongly reduces trehalase activation. Inactivation of phosphate transport by deletion of PHO84 abolishes phosphate signalling at standard concentrations, arguing against the existence of a transport-independent receptor. The non-metabolizable phosphate analogue arsenate also triggered signalling. Constitutive expression of the Pho84, Pho87, Pho89, Pho90 and Pho91 phosphate carriers indicated pronounced differences in their transport and signalling capacities in phosphate-starved cells. Pho90 and Pho91 sustained highest phosphate transport but did not sustain trehalase activation. Pho84 sustained both transport and rapid signalling, whereas Pho87 was poor in transport but positive for signalling. Pho89 displayed very low phosphate transport and was negative for signalling. Although the results confirmed that rapid signalling is independent of growth recovery, long-term mobilization of trehalose was much better correlated with growth recovery than with trehalase activation. These results demonstrate that phosphate acts as a nutrient signal for activation of the protein kinase A pathway in yeast in a glucose-dependent way and they indicate that the Pho84 and Pho87 carriers act as specific phosphate sensors for rapid phosphate signalling.  相似文献   

19.
D. Huang  K. T. Chun  M. G. Goebl    P. J. Roach 《Genetics》1996,143(1):119-127
Mutations in GLC7, the gene encoding the type 1 protein phosphatase catalytic subunit, cause a variety of abberrant phenotypes in yeast, such as impaired glycogen synthesis and relief of glucose repression of the expression of some genes. Loss of function of the REG1/HEX2 gene, necessary for glucose repression of several genes, was found to suppress the glycogen-deficient phenotype of the glc7-1 allele. Deletion of REG1 in a wild-type background led to overaccumulation of glycogen as well as slow growth and an enlarged cell size. However, loss of REG1 did not suppress other phenotypes associated with GLC7 mutations, such as inability to sporulate or, in cells bearing the glc7(Y-170) allele, lack of growth at 14°. The effect of REG1 deletion on glycogen accumulation is not simply due to derepression of glucose-repressed genes, although it does require the presence of SNF1, which encodes a protein kinase essential for expression of glucose-repressed genes and for glycogen accumulation. We propose that REG1 has a role in controlling glycogen accumulation.  相似文献   

20.
The glc7 mutant of the yeast Saccharomyces cerevisiae does not accumulate glycogen due to a defect in glycogen synthase activation (Peng, Z., Trumbly, R. J., and Reimann, E.M. (1990) J. Biol. Chem. 265, 13871-13877) whereas wild-type strains accumulate glycogen as the cell cultures approach stationary phase. We isolated the GLC7 gene by complementation of the defect in glycogen accumulation and found that the GLC7 gene is the same as the DIS2S1 gene (Ohkura, H., Kinoshita, N., Miyatani, S., Toda, T., and Yanagida, M. (1989) Cell 57, 997-1007). The protein product predicted by the GLC7 DNA sequence has a sequence that is 81% identical with rabbit protein phosphatase 1 catalytic subunit. Protein phosphatase 1 activity was greatly diminished in extracts from glc7 mutant cells. Two forms of protein phosphatase 1 were identified after chromatography of extracts on DEAE-cellulose. Both forms were diminished in the glc7 mutant and were partly restored by transformation with a plasmid carrying the GLC7 gene. Southern blots indicate the presence of a single copy of GLC7 in S. cerevisiae, and gene disruption experiments showed that the GLC7 gene is essential for cell viability. The GLC7 mRNA was identified as a 1.4-kilobase RNA that increases 4-fold at the end of exponential growth in wild-type cells, suggesting that activation of glycogen synthase is mediated by increased expression of protein phosphatase 1 as cells reach stationary phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号