首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Klebsiella pneumoniae can use nitrate and nitrite as sole nitrogen sources during aerobic growth. Assimilatory nitrate and nitrite reductases convert nitrate through nitrite to ammonium. We report here the molecular cloning of the nasA and nasB genes, which encode assimilatory nitrate and nitrite reductase, respectively. These genes are tightly linked and probably form a nasBA operon. In vivo protein expression and DNA sequence analysis revealed that the nasA and nasB genes encode 92- and 104-kDa proteins, respectively. The NASA polypeptide is homologous to other prokaryotic molybdoenzymes, and the NASB polypeptide is homologous to eukaryotic and prokaryotic NADH-nitrite reductases. The narL gene product positively regulates expression of the structural genes for respiratory nitrate reductase, narGHJI. Surprisingly, we found that the nasBA operon is tightly linked to the narL-narGHJI region in K. pneumoniae, even though the nitrate assimilatory and respiratory enzymes serve different physiological functions.  相似文献   

2.
Previous studies have shown that narL+ is required for nitrate induction of nitrate reductase synthesis and for nitrate inhibition of fumarate reductase synthesis in Escherichia coli. We cloned narL on a 5.1-kilobase HindIII fragment. Our clone also contained a previously unidentified gene, which we propose to designate as narX, as well as a portion of narK. Maxicell experiments indicated that narL and narX encode proteins with approximate MrS of 28,000 and 66,000, respectively. narX insertion mutations reduced nitrate reductase structural gene expression by less than twofold. Expression of phi (narL-lacZ) operon fusions was weakly induced by nitrate but was indifferent to aerobiosis and independent of fnr. Expression of phi (narX-lacZ) operon fusions was induced by nitrate and was decreased by narL and fnr mutations. A phi (narK-lacZ) operon fusion was induced by nitrate, and its expression was fully dependent on narL+ and fnr+. Analysis of these operon fusions indicated that narL and narX are transcribed counterclockwise with respect to the E. coli genetic map and that narK is transcribed clockwise.  相似文献   

3.
In Escherichia coli, aerobiosis inhibits the synthesis of enzymes for anaerobic respiration (e.g., nitrate reductase and fumarate reductase) and for fermentation (e.g., formate-hydrogen lyase). Anaerobically, nitrate induces nitrate reductase synthesis and inhibits the formation of both fumarate reductase and formate-hydrogen lyase. Previous work has shown that narL+ is required for the effects of nitrate on synthesis of both nitrate reductase and fumarate reductase. Another gene, narK (whose function is unknown), has no observable effect on formation of these enzymes. We report here our studies on the role of nar genes in fumarate reductase and formate-hydrogen lyase gene expression. We observed that insertions in narX (also of unknown function) significantly relieved nitrate inhibition of fumarate reductase gene expression. This phenotype was distinct from that of narL insertions, which abolished this nitrate effect under certain growth conditions. In contrast, insertion mutations in narK and narGHJI (the structural genes for the nitrate reductase enzyme complex) significantly relieved nitrate inhibition of formate-hydrogen lyase gene expression. Insertions in narL had a lesser effect, and insertions in narX had no effect. We conclude that nitrate affects formate-hydrogen lyase synthesis by a pathway distinct from that for nitrate reductase and fumarate reductase.  相似文献   

4.
5.
The narL gene product, NarL, is the nitrate-responsive regulator of anaerobic respiratory gene expression. We used genetic analysis of narL mutants to better understand the mechanism of NarL-mediated gene regulation. We selected and analyzed seven nitrate-independent narL mutants. Each of three independent, strongly constitutive mutants had changes of Val-88 to Ala. The other four mutants were weakly constitutive. The narL505(V88A) allele was largely dominant to narL+, while narX+ had a negative influence on its constitutive phenotype, suggesting that NarX may play a negative role in nitrate regulation. We also constructed two narL mutations that are analogous to previously characterized constitutive degU alleles. The first, narL503(H15L), was a recessive null allele. The second, narL504(D110K), functioned essentially as wild type but was dependent on narX+ for full activity. We changed Asp-59 of NarL, which corresponds to the site of phosphorylation of other response regulators, to Asn. This change, narL502(D59N), was a recessive null allele, which is consistent with the hypothesis that NarL requires phosphorylation for activation. Finally, we tested the requirement for molybdate on regulation in a narL505(V88A) strain. Although narL505(V88A) conferred some nitrate-independent expression of fdnGHI (encoding formate dehydrogenase-N) in limiting molybdate, it required excess molybdate for full induction both in the absence and in the presence of nitrate. This finding suggests that narL505(V88A) did not confer molybdate-independent expression of fdnGHI.  相似文献   

6.
7.
B. L. Berg  V. Stewart 《Genetics》1990,125(4):691-702
Formate oxidation coupled to nitrate reduction constitutes a major anaerobic respiratory pathway in Escherichia coli. This respiratory chain consists of formate dehydrogenase-N, quinone, and nitrate reductase. We have isolated a recombinant DNA clone that likely contains the structural genes, fdnGHI, for the three subunits of formate dehydrogenase-N. The fdnGHI clone produced proteins of 110, 32 and 20 kDa which correspond to the subunit sizes of purified formate dehydrogenase-N. Our analysis indicates that fdnGHI is organized as an operon. We mapped the fdn operon to 32 min on the E. coli genetic map, close to the genes for cryptic nitrate reductase (encoded by the narZ operon). Expression of phi(fdnG-lacZ) operon fusions was induced by anaerobiosis and nitrate. This induction required fnr+ and narL+, two regulatory genes whose products are also required for the anaerobic, nitrate-inducible activation of the nitrate reductase structural gene operon, narGHJI. We conclude that regulation of fdnGHI and narGHJI expression is mediated through common pathways.  相似文献   

8.
narL and narX mediate nitrate induction of nitrate reductase synthesis and nitrate repression of fumarate reductase synthesis. We report here the nucleotide sequences of narL and narX. The deduced protein sequences aid in defining distinct subclasses of regulators and sensors in the family of two-component regulatory proteins.  相似文献   

9.
Previous studies have shown that narL+ is required for nitrate regulation of anaerobic respiratory enzyme synthesis, including formate dehydrogenase-N, nitrate reductase, and fumarate reductase. Insertions in the closely linked narX gene decrease, but do not abolish, nitrate regulation of anaerobic enzyme synthesis. Analysis of sequence similarities suggests that NarX and NarL comprise a two-component regulatory pair. We constructed lacZ operon and gene fusions to investigate the operon structure of narXL. We found evidence for a complex operon with at least two promoters; PXL-narX-PL-narL. We also investigated the role of NarX in nitrate regulation of anaerobic respiratory enzyme synthesis by constructing nonpolar loss of function narX alleles. These deletions were studied on narL+ lambda specialized transducing bacteriophage. The narX deletions had no effect on nitrate regulation in delta (narXL) strains. This finding suggest that the subtle effects of previously studied narX insertions are due to decreased expression of narL and that narX+ is not essential for normal nitrate regulation. The role of NarX in nitrate regulation remains to be determined.  相似文献   

10.
In response to nitrate availability, Escherichia coli regulates the synthesis of a number of enzymes involved in anaerobic respiration and fermentation. When nitrate is present, nitrate reductase (narGHJI) gene expression is induced, while expression of the DMSO/TMAO reductase (dmsABC), fumarate reductase (frdABCD) and fermentation related genes are repressed. The narL and narX gene products are required for this nitrate-dependent control, and apparently function as members of a two-component regulatory system. NarX is a presumed sensor-transmitter for nitrate and possibly molybdenum detection. The presumed response-regulator, NarL, when activated by NarX then binds at the regulatory DNA sites of genes to modulate their expression. In this study a third nitrate regulatory gene, narQ, was identified that also participates in nitrate-dependent gene regulation. Strains defective in either narQ or narX alone exhibited no nitrate-dependent phenotype whereas mutants defective in both narQ and narX were fully inactive for nitrate-dependent repression or activation. In all conditions tested, this regulation required a functional narL gene product. These findings suggest that the narX and narQ products have complementary sensor-transmitter functions for nitrate detection, and can work independently to activate NarL, for eliciting nitrate-dependent regulation of anaerobic electron transport and fermentation functions. The narQ gene was cloned, sequenced, and compared with the narX gene. Both gene products are similar in size, hydrophobicity, and sequence, and contain a highly conserved histidine residue common to sensor-transmitter proteins.  相似文献   

11.
12.
Escherichia coli strain LCB2048 is a double mutant defective in the synthesis of the two membrane-associated nitrate reductases A and Z. This strain can grow anaerobically on a non-fermentable carbon source, glycerol, in the presence of nitrate even in media supplemented with high concentrations of tungstate. This growth was totally dependent upon a highly active, periplasmic nitrate reductase (Nap). Due to the presence of a previously unreported narL mutation, synthesis of the periplasmic nitrate reductase by this strain was induced during anaerobic growth by nitrate. We have also demonstrated that methyl viologen is an ineffective electron donor to Nap: its use leads to an underestimation of the contribution of Nap activity to the rate of nitrate reduction in vivo.  相似文献   

13.
Klebsiella pneumoniae can use nitrate and nitrite as sole nitrogen sources through the nitrate assimilatory pathway. The structural genes for assimilatory nitrate and nitrite reductases together with genes necessary for nitrate transport form an operon, nasFEDCBA. Expression of the nasF operon is regulated both by general nitrogen control and also by nitrate or nitrite induction. We have identified a gene, nasR, that is necessary for nitrate and nitrite induction. The nasR gene, located immediately upstream of the nasFEDCBA operon, encodes a 44-kDa protein. The NasR protein shares carboxyl-terminal sequence similarity with the AmiR protein of Pseudomonas aeruginosa, the positive regulator of amiE (aliphatic amidase) gene expression. In addition, we present evidence that the nasF operon is not autogenously regulated.  相似文献   

14.
Three nitrate reductase activities were detected in Alcaligenes eutrophus strain H16 by physiological and mutant analysis. The first (NAS) was subject to repression by ammonia and not affected by oxygen indicating a nitrate assimilatory function. The second (NAR) membrane-bound activity was only formed in the absence of oxygen and was insensitive to ammonia repression indicating a nitrate respiratory function. The third (NAP) activity of potential respiratory function occurred in the soluble fraction of cells grown to the stationary phase of growth. In contrast to NAR and NAS, expression of NAP did not require nitrate for induction and was independent of the rpoN gene product. Genes for the three reductases map at different loci. NAR and NAS are chromosomally encoded whereas NAP is a megaplasmid-borne activity in A. eutrophus.  相似文献   

15.
Seven known genes control Pseudomonas aeruginosa nitrate assimilation. Three of the genes, designated nas, are required for the synthesis of assimilatory nitrate reductase: nasC encodes a structural component of the enzyme; nasA and nasB encode products that participate in the biosynthesis of the molybdenum cofactor of the enzyme. A fourth gene (nis) is required for the synthesis of assimilatory nitrite reductase. The remaining three genes (ntmA, ntmB, and ntmC) control the assimilation of a number of nitrogen sources. The nas genes and two ntm genes have been located on the chromosome and are well separated from the known nar genes which encode synthesis of dissimilatory nitrate reductase. Our data support the previous conclusion that P. aeruginosa has two distinct nitrate reductase systems, one for the assimilation of nitrate and one for its dissimilation.  相似文献   

16.
We have developed a rapid and sensitive fluorimetric method, based on the formation of a fluorescent product from nitrosation of 2,3-diaminonaphthalene, for measuring the ability of bacteria to catalyze nitrosation of amines. We have shown in Escherichia coli that nitrosation can be induced under anaerobic conditions by nitrite and nitrate, that formate is the most efficient electron donor for this reaction, and that nitrosation may be catalyzed by nitrate reductase (EC 1.7.99.4). The narG mutants defective in nitrate reductase do not catalyze nitrosation, and the fnr gene is essential for nitrosation. Induction by nitrite or nitrate of nitrosation, N2O production, and nitrate reductase activity all require the narL gene.  相似文献   

17.
In Escherichia coli the presence of nitrate prevents the utilization of fumarate as an anaerobic electron acceptor. The induction of the narC operon encoding the nitrate reductase is coupled to the repression of the frd operon encoding the fumarate reductase. This coupling is mediated by nitrate as an effector and the narL product as the regulatory protein (S. Iuchi and E. C. C. Lin, Proc. Natl. Acad. Sci. USA 84:3901-3905, 1987). The protein-ligand complex appears to control narC positively but frd negatively. In the present study we found that a molybdenum coeffector acted synergistically with nitrate in the regulation of frd and narC. In chlD mutants believed to be impaired in molybdate transport (or processing), full repression of phi(frd-lac) and full induction of phi(narC-lac) by nitrate did not occur unless the growth medium was directly supplemented with molybdate (1 microM). This requirement was not clearly manifested in wild-type cells, apparently because it was met by the trace quantities of molybdate present as a contaminant in the mineral medium. In chlB mutants, which are known to accumulate the Mo cofactor because of its failure to be inserted as a prosthetic group into proteins such as nitrate reductase, nitrate repression of frd and induction of narC were also intensified by molybdate supplementation. In this case a deficiency of the molybdenum coeffector might have resulted from enhanced feedback inhibition of molybdate transport (or processing) by the elevated level of the unutilized Mo cofactor. In addition, mutations in chlE, which are known to block the synthesis of the organic moiety of the Mo cofactor, lowered the threshold concentration of nitrate (< 1 micromole) necessary for frd repression and narC induction. These changes could be explained simply by the higher intracellular nitrate attainable in cells lacking the ability to destroy the effector.  相似文献   

18.
19.
Assimilatory NADH:nitrate reductase (EC 1.6.6.1), a complex Mo-pterin-, cytochrome b(557)-, and FAD-containing protein, catalyzes the regulated and rate-limiting step in the utilization of inorganic nitrogen by higher plants. A codon-optimized gene has been synthesized for expression of the central cytochrome b(557)-containing fragment, corresponding to residues A542-E658, of spinach assimilatory nitrate reductase. While expression of the full-length synthetic gene in Escherichia coli did not result in significant heme domain production, expression of a Y647* truncated form resulted in substantial heme domain production as evidenced by the generation of "pink" cells. The histidine-tagged heme domain was purified to homogeneity using a combination of NTA-agarose and size-exclusion FPLC, resulting in a single protein band following SDS-PAGE analysis with a molecular mass of approximately 13 kDa. MALDI-TOF mass spectrometry yielded an m/z ratio of 12,435 and confirmed the presence of the heme prosthetic group (m/z=622) while cofactor analysis indicated a 1:1 heme to protein stoichiometry. The oxidized heme domain exhibited spectroscopic properties typical of a b-type cytochrome with a visible Soret maximum at 413 nm together with epr g-values of 2.98, 2.26, and 1.49, consistent with low-spin bis-histidyl coordination. Oxidation-reduction titrations of the heme domain indicated a standard midpoint potential (E(o)') of -118 mV. The isolated heme domain formed a 1:1 complex with cytochrome c with a K(A) of 7 microM (micro=0.007) and reconstituted NADH:cytochrome c reductase activity in the presence of a recombinant form of the spinach nitrate reductase flavin domain, yielding a k(cat) of 1.4 s(-1) and a K(m app) for cytochrome c of 9 microM. These results indicate the efficient expression of a recombinant form of the heme domain of spinach nitrate reductase that retained the spectroscopic and thermodynamic properties characteristic of the corresponding domain in the native spinach enzyme.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号