首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We isolated Mu dI1734 insertion mutants of Klebsiella pneumoniae that were unable to assimilate nitrate or nitrite as the sole nitrogen source during aerobic growth (Nas- phenotype). The mutants were not altered in respiratory (anaerobic) nitrate and nitrite reduction or in general nitrogen control. The mutations were linked and thus defined a single locus (nas) containing genes required for nitrate assimilation. beta-Galactosidase synthesis in nas+/phi(nas-lacZ) merodiploid strains was induced by nitrate or nitrite and was inhibited by exogenous ammonia or by anaerobiosis. beta-Galactosidase synthesis in phi(nas-lacZ) haploid (Nas-) strains was nearly constitutive during nitrogen-limited aerobic growth and uninducible during anaerobic growth. A general nitrogen control regulatory mutation (ntrB4) allowed nitrate induction of phi(nas-lacZ) expression during anaerobic growth. This and other results suggest that the apparent anaerobic inhibition of phi(nas-lacZ) expression was due to general nitrogen control, exerted in response to ammonia generated by anaerobic (respiratory) nitrate reduction.  相似文献   

2.
Klebsiella pneumoniae can use nitrate and nitrite as sole nitrogen sources through the nitrate assimilation pathway. We previously identified structural genes for assimilatory nitrate and nitrite reductases, nasA and nasB, respectively. We report here our further identification of four genes, nasFEDC, upstream of the nasBA genes. The nasFEDCBA genes probably form an operon. Mutational and complementation analyses indicated that both the nasC and nasA genes are required for nitrate assimilation. The predicted NASC protein is homologous to a variety of NADH-dependent oxidoreductases. Thus, the NASC protein probably mediates electron transfer from NADH to the NASA protein, which contains the active site for nitrate reduction. The deduced NASF, NASE, and NASD proteins are homologous to the NRTA, NRTB, and NRTD proteins, respectively, that are involved in nitrate uptake in Synechococcus sp. (T. Omata, X. Andriesse, and A. Hirano, Mol. Gen. Genet. 236:193-202, 1993). Mutational and complementation studies indicated that the nasD gene is required for nitrate but not nitrite assimilation. By analogy with the Synechococcus nrt genes, we propose that the nasFED genes are involved in nitrate transport in K. pneumoniae.  相似文献   

3.
4.
Klebsiella pneumoniae can use nitrate and nitrite as sole nitrogen sources during aerobic growth. Assimilatory nitrate and nitrite reductases convert nitrate through nitrite to ammonium. We report here the molecular cloning of the nasA and nasB genes, which encode assimilatory nitrate and nitrite reductase, respectively. These genes are tightly linked and probably form a nasBA operon. In vivo protein expression and DNA sequence analysis revealed that the nasA and nasB genes encode 92- and 104-kDa proteins, respectively. The NASA polypeptide is homologous to other prokaryotic molybdoenzymes, and the NASB polypeptide is homologous to eukaryotic and prokaryotic NADH-nitrite reductases. The narL gene product positively regulates expression of the structural genes for respiratory nitrate reductase, narGHJI. Surprisingly, we found that the nasBA operon is tightly linked to the narL-narGHJI region in K. pneumoniae, even though the nitrate assimilatory and respiratory enzymes serve different physiological functions.  相似文献   

5.
Klebsiella pneumoniae can use nitrate and nitrite as sole nitrogen sources through the nitrate assimilatory pathway. The structural genes for assimilatory nitrate and nitrite reductases together with genes necessary for nitrate transport form an operon, nasFEDCBA. Expression of the nasF operon is regulated both by general nitrogen control and also by nitrate or nitrite induction. We have identified a gene, nasR, that is necessary for nitrate and nitrite induction. The nasR gene, located immediately upstream of the nasFEDCBA operon, encodes a 44-kDa protein. The NasR protein shares carboxyl-terminal sequence similarity with the AmiR protein of Pseudomonas aeruginosa, the positive regulator of amiE (aliphatic amidase) gene expression. In addition, we present evidence that the nasF operon is not autogenously regulated.  相似文献   

6.
Summary The role of theKlebsiella pneumoniae PII protein (encoded byglnB) in nitrogen regulation has been studied using two classes ofglnB mutants. In Class I mutants PII appears not to be uridylylated in nitrogen-limiting conditions and in Class II mutants PII is not synthesised. The effects of these mutations on expression from nitrogen-regulated promoters indicate that PII is not absolutely required for nitrogen control. Furthermore the uridylylated form of PII(PII-UMP) plays a significant role in the response to changes in nitrogen status by counteracting the effect of PII on NtrB-mediated dephosphorylation of NtrC. PII is not involved in thenif-specific response to changes in nitrogen status mediated by NifL.  相似文献   

7.

Background  

Inhibin is a tumor-suppressor and activin antagonist. Inhibin-deficient mice develop gonadal tumors and a cachexia wasting syndrome due to enhanced activin signaling. Because activins signal through SMAD2 and SMAD3 in vitro and loss of SMAD3 attenuates ovarian tumor development in inhibin-deficient females, we sought to determine the role of SMAD2 in the development of ovarian tumors originating from the granulosa cell lineage.  相似文献   

8.
9.
10.
11.
Fluorescent rhizosphere Pseudomonas sp. strain NZ130 promotes plant growth, and may do so in part because of its production of a growth inhibitory factor that is active against phytopathogenic fungi. Analysis of the inhibitory factor that is active against the phytopathogen Pythium ultimum showed that its activity is antagonized at iron concentrations above 10 microM. The iron-antagonized inhibitor was separated from the fluorescent siderophore of this pseudomonad by gel filtration. Mutants that lacked either the iron-antagonized inhibitor or the fluorescent siderophore were isolated. Results of complementation analysis of these mutants by use of a cosmid library indicated that distinct DNA sequences are required for the production of each factor. Analysis of isogenic mutant strains showed that the genetic requirements for the production of the iron-antagonized inhibitor and the fluorescent siderophore are different, and that only the fluorescent siderophore is required for iron assimilation. Fusions of these same sequences to a beta-galactosidase gene were used to show that the regions required for the production of both the fluorescent siderophore and the iron-antagonized inhibitor were iron-regulated.  相似文献   

12.
M B Rotheim  B Love  V Thatte  V N Iyer 《Plasmid》1988,19(2):161-163
IncN group plasmids, including pCU1, are able to kill Klebsiella pneumoniae when conjugatively transferred from an Escherichia coli donor. Transposon mutagenesis and deletion analysis of the known tra complementation groups were used to demonstrate that the tra gene products inactivated are not required for the Kik phenotype.  相似文献   

13.
14.
15.
16.
Klebsiella oxytoca can use nitrate and nitrite as sole nitrogen sources. The enzymes required for nitrate and nitrite assimilation are encoded by the nasFEDCBA operon. We report here the complete nasFED sequence. Sequence comparisons indicate that the nasFED genes encode components of a conventional periplasmic binding protein-dependent transport system consisting of a periplasmic binding protein (NasF), a homodimeric intrinsic membrane protein (NasE), and a homodimeric ATP-binding cassette (ABC) protein (NasD). The NasF protein and the related NrtA and CmpA proteins of cyanobacteria contain leader (signal) sequences with the double-arginine motif that is hypothesized to direct prefolded proteins to an alternate protein export pathway. The NasE protein and the related NrtB and CmpB proteins of cyanobacteria contain unusual variants of the EAA loop sequence that defines membrane-intrinsic proteins of ABC transporters. To characterize nitrate and nitrite transport, we constructed in-frame nonpolar deletions of the chromosomal nasFED genes. Growth tests coupled with nitrate and nitrite uptake assays revealed that the nasFED genes are essential for nitrate transport and participate in nitrite transport as well. Interestingly, the ΔnasF strain exhibited leaky phenotypes, particularly at elevated nitrate concentrations, suggesting that the NasED proteins are not fully dependent on the NasF protein.  相似文献   

17.
18.
Selection for chlorate resistance yields mol (formerly chl) mutants with defects in molybdenum cofactor synthesis. Complementation and genetic mapping analyses indicated that the Klebsiella pneumoniae mol genes are functionally homologous to those of Escherichia coli and occupy analogous genetic map positions. Hypoxanthine utilization in other organisms requires molybdenum cofactor as a component of xanthine dehydrogenase, and thus most chlorate-resistant mutants cannot use hypoxanthine as a sole source of nitrogen. Surprisingly, the K. pneumoniae mol mutants and the mol+ parent grew equally well with hypoxanthine as the sole nitrogen source, suggesting that K. pneumoniae has a molybdenum cofactor-independent pathway for hypoxanthine utilization.  相似文献   

19.
Surprisingly little is known about the role of host factors in regulating transposition, despite the potentially deleterious rearrangements caused by the movement of transposons. An extensive mutant screen was therefore conducted to identify Escherichia coli host factors that regulate transposition. An E. coli mutant library was screened using a papillation assay that allows detection of IS903 transposition events by the formation of blue papillae on a colony. Several host mutants were identified that exhibited a unique papillation pattern: a predominant ring of papillae just inside the edge of the colony, implying that transposition was triggered within these cells based on their spatial location within the colony. These mutants were found to be in pur genes, whose products are involved in the purine biosynthetic pathway. The transposition ring phenotype was also observed with Tn552, but not Tn10, establishing that this was not unique to IS903 and that it was not an artifact of the assay. Further genetic analyses of purine biosynthetic mutants indicated that the ring of transposition was consistent with a GTP requirement for IS903 and Tn552 transposition. Together, our observations suggest that transposition occurs during late stages of colony growth and that transposition occurs inside the colony edge in response to both a gradient of exogenous purines across the colony and the developmental stage of the cells.  相似文献   

20.
We examined a series of extrachromosomal DNA substrates for V(D)J recombination under replicating and nonreplicating conditions. Complete and partial replications were examined by monitoring the loss of prokaryote-specific adenine methylation at 14 to 22 MboI-DpnI restriction sites (GATC) on the substrates. Some of these sites are within 2 bases of the signal sequence ends. We found that neither coding joint nor signal joint formation requires substrate replication. After ruling out replication as a substrate requirement, we determined whether replication had any effect on the efficiency of V(D)J recombination. Quantitation of V(D)J recombination efficiency on nonreplicating substrates requires some method of monitoring the entry of substrate molecules into the cells. We devised such a method by monitoring DNA repair of substrates into which we had substituted deoxyuridine for 10 to 20% of the thymidine nucleotides in the DNA. The substrates which enter the lymphoid cells were repaired efficiently in vivo by the eukaryotic uracil DNA repair system. Upon plasmid harvest, we distinguished repaired (entered) from unrepaired (not entered) plasmids by cleaving unrepaired molecules with uracil DNA glycoylase and Escherichia coli endonuclease IV in vitro. This method of monitoring DNA entry does not appear to underestimate or overestimate the amount of DNA entry. By using this method, we found no significant quantitative effect of DNA replication on V(D)J recombination efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号