首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Vegetative cells as well myxospores ofMyxococcus xanthus have shown anticomplementary activity and the capacity to be used as active agents in the skin preparation of the Shwartzman reaction and in its intravenous induction. These endotoxin-like properties were not extractable by the hot phenol-water methods. Our results suggest the presence of a lipid A analog in both vegetative cells and myxospores, and emphasize the difficulty of lipopolysaccharide detection; this is perhaps a consequence of a developing associated change in polysaccharide moiety of the myxobacterial lipopolysaccharides; this may be the basis of the special immunomodulation pattern shown byM. xanthus myxospores.  相似文献   

2.
3.
The effect of mecillinam, a beta-lactam antibiotic that specifically binds penicillin-binding protein 2 of Escherichia coli, causes transition from rod to coccal shape, and inhibits cell division in sensitive cells, has been tested on three different E. coli temperature-sensitive cell division mutants. At the nonpermissive temperature, the antibiotic allows an increase in cell number for strains BUG6 and AX655 but not for AX621. In strain AX655, the cell division stimulation was observed only if the antibiotic was added immediately after shifting to the nonpermissive temperature, whereas in BUG6, the rise in cell number was observed also when mecillinam was added after 90 min of incubation at the nonpermissive temperature. In all cases, cell division began occurring 30 min after addition of the antibiotic. Mecillinam had no effect on division of dnaA, dnaB temperature-sensitive mutants or on division of BUG6 derivatives made resistant to this antibiotic. Other beta-lactam antibiotics such as penicillin, ampicillin, cephalexin, and piperacillin and non beta-lactam antibiotics such as fosfomycin, teichomycin, and vancomycin that inhibit cell wall synthesis did not show any effect on cell division for any of the mutants. The response of the three cell division mutants to mecillinam is interpreted in terms of a recently proposed model for shape regulation in bacteria.  相似文献   

4.
Successful development in multicellular eukaryotes requires cell-cell communication and the coordinated spatial and temporal movements of cells. The complex array of networks required to bring eukaryotic development to fruition can be modeled by the development of the simpler prokaryoteMyxococcus xanthus. As part of its life cycle,M. xanthus forms multicellular fruiting bodies containing differentiated cells. Analysis of the genes essential forM. xanthus development is possible because strains with mutations that block development can be maintained in the vegetative state. Development inM. xanthus is induced by starvation, and early events in development suggest that signaling, stages have evolved to monitor the metabolic state of the developing cell. In the absence of these signals, which include amino acids, α-keto acids, and other intermediary metabolites, the ability of cells to differentiate into myxospores is impaired. Mutations that block genes controlling gliding, motility disrupt the morphogenesis of fruiting bodies and sporogenesis in surprising ways. In this review, we present data that encourage future genetic and biochemical studies of the relationships between motility, cell-cell signaling, and development inM. xanthus.  相似文献   

5.
6.
7.
Inhibition of cell division by blue light   总被引:2,自引:0,他引:2  
Microsporocytes of Lilium and Trillium can revert into a mitotic cycle when separated from the anther before the beginning of meiosis and cultured in vitro. Repeated short daily irradiations with visible blue light (106 ergs cm−2 sec−1) inhibit the onset of mitosis; the cells remain in interphase instead. The inhibition of cell division is reversed after the end of the light treatment. Meiosis is not affected by light. Part of the premeiotic G2 phase is light sensitive. No arrest of DNA-, RNA- or protein synthesis is involved in the photoinhibition of onset of mitosis. Irradiation with blue light decreases the α- absorption band of cytochrome a3 but not of cytochrome a. This effect on cytochrome oxidase, however, is observed in all stages of meitotic prophase as well as in G2 cells.  相似文献   

8.
9.
Inhibition of mycoplasma cell division by cytochalasin B   总被引:3,自引:0,他引:3  
A Ghosh  J Maniloff  D A Gerling 《Cell》1978,13(1):57-64
Mycoplasma gallisepticum has subcellular organelles which may function as a primitive "mitotic-like" apparatus. To investigate these further, we have studied the effects of cytochalasin B (CB) on M. gallisepticum. We found that CB inhibits cell division; this is the only procaryote thus far reported to be inhibited by CB. CB does not inhibit glucose or macromolecule precursor uptake. It stops cellular DNA synthesis, however, although RNA and protein synthesis continue (at a reduced rate). CB removal results in a resumption of DNA synthesis, followed by cell division. There appears to be some degree of cell synchrony in this first division after CB removal. These results, together with morphological data, indicate that CB blocks at two points in the cell cycle: at the time "mitotic-like" structures are formed and at the time of cell division. It is suggested that the CB blocks may result from a disruption of actin-like protein structures required at these points in the cell cycle.  相似文献   

10.
We have isolated and purified a cell surface sialoglycopeptide (SGP) from bovine cerebral cortex cells that previously was shown to be a potent inhibitor of cellular protein synthesis. The following studies were carried out to characterize the potential ability of the SGP to inhibit DNA synthesis and to arrest cell division. Treatment of exponentially proliferating Swiss 3T3 cells with the SGP inhibitor resulted in a marked inhibition of thymidine incorporation within 24 h. When the SGP was removed from inhibited cultures, a sharp rise in 3H-thymidine incorporation followed within 3-4 h that peaked well above that measured in exponentially growing cultures, suggesting that the inhibitory action of the SGP was reversible and that a significant proportion of the arrested cells was synchronized in the mitotic cycle. In addition to DNA synthesis, the inhibitory action of the SGP was monitored by direct measurement of cell number. Consistent with the thymidine incorporation data, the SGP completely inhibited 3T3 cell division 20 h after its addition to exponentially growing cultures. Upon reversal there was a delay of 15 h before cell division resumed, when the arrested cells quickly doubled. Most, if not all, of the growth-arrested cells appeared to have been synchronized by the SGP. The SGP inhibited DNA synthesis in a surprisingly wide variety of target cells, and the relative degree of their sensitivity to the inhibitor was remarkably similar. Cells sensitive to the SGP ranged from vertebrate to invertebrate cells, fibroblast and epitheliallike cells, primary cells and established cell cultures, as well as a wide range of transformed cell lines.  相似文献   

11.
12.
Addition of chloramphenicol or 0.5 M glycerol to growing Myxococcus xanthus resulted in an immediate cessation of cell division and 40% net increase in deoxyribonucleic acid (DNA). Although the chloramphenicol-treated cells divided in the presence of nalidixic acid after chloramphenicol was removed, glycerol-induced myxospores required DNA synthesis for subsequent cell division. Myxospores prepared from chloramphenicol-treated cells lost this potential to divide in the presence of nalidixic acid. The "critical period" of DNA synthesis necessary for cell division after germination overlapped in time (3 to 5 h) with initiation of net DNA synthesis. The length of the critical period of DNA synthesis was estimated at 12 min, or 5% of the M. xanthus chromosome. The requirement for cell division during germination also involved ribonucleic acid and protein synthesis after DNA synthesis. The data suggest that replication at or near the origin of the chromosome triggers the formation of a protein product that is necessary but not sufficient for subsequent cell division; DNA termination is also required. During myxospore formation, the postulated protein is destroyed, thereby reestablishing and making apparent this linkage between early DNA synthesis and cell division.  相似文献   

13.
1-O-Octadecyl-2-O-methyl-glycero-3-phosphocholine (ET-18-OCH(3)) selectively inhibits the growth of cancer cells. Here we show that in some cell types ET-18-OCH(3)and liposome-associated ET-18-OCH(3)inhibit cell division without concurrent inhibition of nuclear division, leading to multinucleate cell formation, and cell death through apoptosis. Cell cycle analysis revealed that ET-18-OCH(3)-treated U-937 cells continued to move through the cell cycle, but many cells were not able to divide and instead accumulated as tetraploid cells or octaploid cells in the G0/G1 phase of the cell cycle. Inhibition of cytokinesis has been shown to be paralleled by activation of U-937 cells, including upregulation of some cell-surface markers, acquisition of phagocytic activity, and secretion of tumor necrosis factor (TNF)-alpha (Pushkareva et al., 2000). Furthermore, treatment of cells with ET-18-OCH(3)results in the accumulation of apoptotic cells in time- and dose-dependent manner. It is possible that inhibition of cytokinesis may be related to cytoskeletal effects.  相似文献   

14.
15.
Summary The cytokinin isomers, 1- and 9-isopentenyladenine, are very active inhibitors of cell division in the protonema of the moss Ceratodon purpureus. They also abolish the N6-isopentenyladenine-induced stimulation of cell divisions in this material whereas they are inactive on the induction of gametophore buds in moss protonemata by cytokinins.This work was supported by the Polish Academy of Sciences within the project 09.3.1.  相似文献   

16.
17.
18.
The function of molecules associated with the cell surface may be determined by examining the phenotype of cells treated with inhibitors specific to these cell surface molecules. This strategy was used to examine the function of the major Congo red receptor of the myxobacterium Myxococcus xanthus, which has a developmental cycle that involves social interactions among cells. A class of social motility mutations (A+ S-), known as dsp, may inhibit the same subcellular component as Congo red because the phenotype of wild-type cells which had been treated with Congo red resembled in several ways the phenotype of the Dsp mutants. First, Congo red inhibited agglutination of wild-type cells, whereas Dsp cells were incapable of agglutinating, even in the absence of Congo red. Second, Congo red inhibited fruiting body formation by wild-type cells and reduced the yield of myxospores. Untreated Dsp cells were unable to form fruiting bodies and produced few myxospores. Third, Congo red reduced the rate of wild-type gliding motility to a level comparable to that of untreated Dsp cells, but did not inhibit the A motility of Dsp cells. Finally, binding studies showed that Dsp cells lacked the major Congo red receptor. Wild-type cells bound Congo red with an apparent association constant of 2.4 X 10(5) M-1, while Dsp cells bound it with an apparent association constant of 8.5 X 10(3) M-1. Binding of Congo red to wild-type cells was saturated in less than 10 min and was reversible when excess Congo red was removed. These results suggest that the Congo red receptors are controlled by the S motility system and that these receptors are involved in cell cohesion, social motility, and fruiting body formation.  相似文献   

19.
20.
Abscisic acid (ABA) is thought to play a role in inhibiting or aborting kernel growth during water deficit. To test the responsiveness of early endosperm development to ABA concentrations, cylinders containing (±)ABA in a buffered agar medium were applied to the apical pericarp surface of kernels on intact, well‐watered maize ( Zea mays L. cv. Pioneer Brand 3925) plants from 5 to 11 days after pollination (DAP). Endosperm nuclei were analyzed by flow cytometry to assess effects on cell division and endoreduplication. ABA treatments of ≥ 100 µM substantially decreased endosperm cell numbers and fresh weight accumulation, but did not affect average cell size. ABA at ≥ 300 µM decreased the proportion of nuclei in the size classes ≥ 12C, indicating that the rate of transition to endoreduplication status was inhibited, and decreased the progressive advance from 12C to 24C to 48C, indicating that the rate of S‐phase cycling of endoreduplicating cells was inhibited. We conclude that cell division was more responsive to ABA concentrations than were endoreduplication or cell expansion growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号