首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The potential of adherent Madin Darby Canine Kidney (MDCK) cells for the production of influenza viruses and canine adenovirus type 2 (CAV-2) for vaccines or gene therapy approaches has been shown. Recently, a new MDCK cell line (MDCK.SUS2) that was able to grow in suspension in a fully defined system was established. In this work, we investigated whether the new MDCK.SUS2 suspension cell line is suitable for the amplification of CAV-2 under serum-free culture conditions. Cell growth performance and CAV-2 production were evaluated in three serum-free media: AEM, SMIF8, and EXCELL MDCK. CAV-2 production in shake flasks was maximal when AEM medium was used, resulting in an amplification ratio of infectious particles (IP) of 142 IP out/IP in and volumetric and cell-specific productivities of 2.1?×?108 IP/mL and 482 IP/cell, respectively. CAV-2 production was further improved when cells were cultivated in a 0.5-L stirred tank bioreactor. To monitor infection and virus production, cells were analyzed by flow cytometry. A correlation between the side scatter measurement and CAV-2 productivity was found, which represents a key feature to determine the best harvesting time during process development of gene therapy vectors that do not express reporter genes. This work demonstrates that MDCK.SUS2 is a suitable cell substrate for CAV-2 production, constituting a step forward in developing a production process transferable to industrial scales. This could allow for the production of high CAV-2 titers either for vaccination or for gene therapy purposes.  相似文献   

3.

Objective

To establish a serum-free suspension process for production of recombinant human factor IX (rhFIX) based on the human cell line HEK 293T by evaluating two approaches: (1) serum-free suspension adaptation of previously genetic modified cells (293T-FIX); and (2) genetic modification of cells already adapted to such conditions (293T/SF-FIX).

Results

After 10 months, 293T-FIX cells had become adapted to FreeStyle 293 serum-free medium (SFM) in Erlenmeyer flasks. After 48 and 72 h of culture, 2.1 µg rhFIX/ml and 3.3 µg rhFIX/ml were produced, respectively. However, no biological activity was detected. In the second approach, wild-type 293T cells were adapted to the same SFM (adaptation process took only 2 months) and then genetically modified for rhFIX production. After 48 h of culture, rhFIX reached 1.5 µg/ml with a biological activity of 0.2 IU/ml, while after 72 h, the production was 2.4 µg/ml with a biological activity of 0.3 IU/ml.

Conclusion

The findings demonstrate that the best approach to establish an rhFIX production process in suspension SFM involves the genetic modification of cells already adapted to the final conditions. This approach is time saving and may better ensure the quality of the produced protein.
  相似文献   

4.
To characterize the changes in cell growth rate and adenovirus vector (AdV) production capability of 293 cells during culture passages, 293 cells obtained at the 31st culture passage from ATCC (293M #31) were maintained as a monolayer culture and 293 cells obtained at an unknown culture passage from Invitrogen (293S) were maintained as suspension culture. In monolayer culture, the specific growth rate () of 293M cells increased rapidly with culture passage up to passage 65 and thereafter became saturated. The of 293M passage 43 (#43) was 0.29 day–1, while the average of 293M from #66 to #86 was 0.74±0.01 day–1 (average ± standard deviation). It was also noted that the cells became smaller in size during early culture passages. AdV production was also influenced by the number of culture passages. The AdV titer in the culture of 293M #66 was ca. tenfold higher than that of 293M #44, resulting from both a higher cell concentration and a higher AdV titer per cell at #66. In contrast, the , cell size, and AdV production of 293S cells in suspension culture did not change significantly as the culture passage number increased up to #40. Taken together, the culture passage influenced cell growth and AdV production of 293M cells in monolayer culture, but not those of 293S cells in suspension culture.  相似文献   

5.
Human Embryonic Kidney 293 (HEK293) cells were adapted into a serum-free suspension medium through steps of gradual serum weaning for the production of adenoviral (AdV) gene therapy vectors. The presence of sodium heparin in the medium formulation reduced cell clumping dramatically in suspension culture. The adapted cells were ready to grow either in serum-containing medium as an attached culture or in serum-free medium in suspension culture. A scalable production process was developed in shake flasks and was then evaluated in stirred tank bioreactors. This process includes a growth phase in batch-mode followed by a production phase involving medium perfusion and supplementation. Fortification with calcium chloride post viral inoculation resulted in an increase in virus production by at least one fold. Addition of stimulating agents such as sodium butyrate, N-acetyl-L-cysteine (NAC), dimethyl sulfoxide(DMSO), or ethyl alcohol post infection was shown to further improve virus production in a dose-dependent manner. The serum-free suspension process described here should be suitable for the manufacturing of other E1-deleted AdV vectors and could potentially be used for the production of recombinant proteins by HEK293 cells. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
The application of a stoichiometric medium design approach was studied in fed-batch cultivation of Chinese hamster ovary (CHO) cells. A serum-free medium containing a very low protein concentration (2 mg/L insulin) was developed. A supplemental medium was formulated according to the stoichiometric equation governing cell growth using cell composition obtained from hybridoma cells. Fed-batch culture was conducted in spinner flasks using the supplemental medium for feeding. Significant improvement in cell growth, by-product reduction, and Gamma-Interferon (IFN-gamma) production was achieved as compared to a typical batch culture. Results indicate that the stoichiometric approach, originally developed for hybridoma cultures, is a fast and effective method for cell culture process design and improvement. The glycosylation of IFN-gamma was monitored off-line during the culture process. The accumulative IFN-gamma glycosylation efficiency was slightly improved as compared to that of the batch culture, due to the nutritional control through the stoichiometric feeding. Periodic glucose starvation was observed during the fed-batch culture as a result of the manual feeding. Pulse-chase radiolabeling assay shows that glucose starvation leads to a deteriorated IFN-gamma glycosylation efficiency. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 577-582, 1997.  相似文献   

7.
Adenovirus vector production by anchorage-independent 293 cells immobilized using porous biomass support particles (BSPs) was investigated in static and shake-flask cultures for efficient large-scale production of adenovirus vectors for gene therapy applications. The density of cells immobilized within BSPs was evaluated by measuring their WST-8 (2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt) reduction activity. In shake-flask culture, 293-F cells, which were adapted to serum-free suspension culture, were not successfully retained within reticulated polyvinyl formal (PVF) resin BSPs (2 × 2 × 2 mm cubes) with matrices of relatively small pores (pore diameter 60 μm). When the BSPs were coated with a cationic polymer polyethyleneimine, a high cell density of more than 107 cells cm−3-BSP was achieved in both static and shake-flask cultures with regular replacement of the culture medium. After infection with an adenovirus vector carrying the enhanced green fluorescent protein gene (Ad EGFP), the specific Ad EGFP productivity of the immobilized cells was comparable to the maximal productivity of non-immobilized 293-F cells by maintaining favorable conditions in the culture environment.  相似文献   

8.
The human adenovirus/293S cell expression system is used for the production of either recombinant protein or adenovirus vectors for use in gene therapy. In this work, the production of protein tyrosine phosphatase (PTP1C) was used as a model for the scale-up of both applications. Maximum specific production of 30 to 45 mug of active protein/10(6) cells was maintained upon infection with adenovirus vectors at cell densities between 2 x 10(6) to 3 x 10(6) cells/mL in a 3.5-L bioreactor. This was achieved by resuspending the culture in fresh medium at infection time. The pH was kept at 7.0 throughout the experiment and, at 24 h postinfection, glucose and essential amino acids were added. Attempts to replace the complete change of medium at the time of infection with nutrient supplementation of the used medium led to lower production levels, suggesting that protein expression was limited not by the absence of a key nutrient but by inhibitory factors. Two potentially inhibitory factors were investigated: lactic acid accumulation and increased osmolarity. Medium acidification such as that which would be brought about by lactic acid accumulation was shown to depress PTP1C production. The lactate molecule itself decreased the cell viability when added in concentrations of 20 mM or more. But the specific productivity was affected at higher lactate concentrations of 40 mM or more. Additions of glucose, amino acids, and NaHCO(3) used to control pH, led to increases in osmolarity. Osmolarities above 400 mOsm lowered cell density. However, specific production was not significantly affected below 500 mOsm. But, at 500 mOsm, PTP1C production peak was shifted from 48 to 72 hpi. Because of the cell loss, this per cell yield increase did not translate into higher volumetric production. When glucose concentrations was kept at 5 mM by fed-batch addition, lactate production and increases in osmolarity were reduced. In shake flasks, this method permitted maximum production with cells resuspended either in fresh or spent medium at infection. This fed-batch process was implemented successfully at the 3.5-L scale. Fed-batch with glucose may provide a means to increase infected-cell density beyond 3 x 10(6) cells/mL.  相似文献   

9.
Sun X  Goh PE  Wong KT  Mori T  Yap MG 《Biotechnology letters》2006,28(11):843-848
Enhanced green fluorescence protein (GFP) and erythropoietin (EPO) were used as reporters to assess and improve transient gene expression in HEK 293 EBNA1 cells. The production of EPO only lasted 3 days and reached 18.1 mg/l in suspension cultures in 1 l batch bioreactors. However, GFP expression examined in well-plate experiments persisted for 12 days in transfected cells but decreased rapidly within the next 15 days. These results suggest that the retaining of a plasmid in cells may not be a limiting factor for protein expression in large-scale transient transfection. To improve cell maintenance and protein expression, a fed-batch culture was performed using an enriched medium, a mixture of equal volumes of 293 SFM II medium and a 5 × amino acid solution prepared based on DMEM/F12 medium formula. EPO reached 33.6 mg/l, representing 86% increase over that of the batch culture. Moreover, the total amount of EPO produced was increased by 165% in view of the volume increase in the fed-batch culture. The serum-free medium used in this work enables cells growing well and transfection without medium change. Thus, the process reported here is simple and easy to scale up.  相似文献   

10.
As the market requirements for adenovirus vectors (AdV) increase, the maximisation of the virus titer per culture volume per unit time is a key requirement. However, despite the fact that 293 cells can grow up to 8 × 106 cell/mL in simple batch mode operations, for optimal AdV infection a maximum cell density of 1 × 106 cell/mL at infection time has usually been utilized due to the so called “cell density effect”. In addition, AdV titer appears to be dependent upon cell cycle phase at the time of infection. To evaluate the dependence of AdV production upon cell cycle phase, 293 cells were chemically synchronised at each phase of the cell cycle; a 2.6‐fold increase on AdV cell specific titer was obtained when the percentage of cells at the S phase of the cell cycle was increased from 36 to 47%; a mathematical equation was used to relate AdV cell specific productivities with cell synchronisation at the S phase using this data. To avoid the use of chemical inhibitors, a temperature shift strategy was also used for synchronisation at the S phase. S phase synchronisation was obtained by decreasing the culture temperature to 31°C during 67 h and restoring it to 37°C during 72 h. By using this strategy we were able to synchronise 57% of the population in the S phase of the cell cycle obtaining an increase of 7.3‐fold on AdV cell specific titer after infection. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

11.
To enhance the performance of a serum-free medium (SFM) for human thrombopoietin (hTPO) production in suspension cultures of recombinant Chinese hamster ovary (rCHO) cells, several low-cost hydrolysates such as yeast hydrolysate (YH), soy hydrolysate, wheat gluten hydrolysate and rice hydrolysate were tested as medium additives. Among various hydrolysates tested, the positive effect of YH on hTPO production was most significant. When 5 g l–1 YH was added to SFM, the maximum hTPO concentration in batch culture was 40.41 g ml–1, which is 11.5 times higher than that in SFM without YH supplementation. This enhanced hTPO production in YH-supplemented SFM was obtained by the combined effect of enhanced qhTPO (the specific rate of hTPO production). The supplementation of YH in SFM increased qhTPO by 294% and extended culture longevity by >2 days if the culture was terminated at a cell viability of 50%. Furthermore, cell viability throughout the culture using YH-supplemented SFM was higher than that using any other hydrolysate-supplemented SFM tested, thereby minimizing degradation of hTPO susceptible to proteolytic degradation. In addition, YH supplementation did not affect in vivo biological activity of hTPO. Taken together, the results obtained demonstrate the potential of YH as a medium additive for hTPO production in serum-free suspension cultures of rCHO cells.  相似文献   

12.
13.
Fed-batch cultures were implemented to study the metabolism of HEK-293 cells. Glucose, measured every 30 min by a FIA biosensor system, was maintained at 1 mM throughout the culture using an adaptive nonlinear controller based on minimal process modeling. The controller performed satisfactorily at both low and high cell concentrations without the need for retuning between different culture phases. Overall, lactate production was significantly reduced by maintaining a low glucose concentration, thus decreasing the rate of glycolysis. The rates of glucose and glutamine uptake as well as the lactate and ammonia production were compared to those obtained in batch mode with an initial glucose concentration of 21 mM. Basically, three phases were observed in both culture modes. The metabolic shift from the first to the second phase was characterized by a significant reduction in glucose consumption and lactate production while maximum growth rate was maintained. The specific respiration rate appeared unchanged during the first two phases, suggesting that no change occurred in the oxidative pathway capacity. In the third phase, cell growth became slower very likely due to glutamine limitation.  相似文献   

14.
One of the major restrictions on the production of adenoviral vectors (AdV) is due to the decrease in virus concentration concomitant with an increase in cell concentration at infection (CCI) which is known as “cell density effect”, this could be because of the limited access to the nutrients or significant accumulation of toxic by-products. However, current strategies, such as developing robust serum-free medium and performing nutrient feeding, will partially address this issue. Therefore, the objective of this study was to further optimize serum-free culture medium by exploring the influence of calcium ion on virus production. Our studies showed that an optimal concentration of calcium ion significantly enhances AdV production, especially at a high CCI. During the virus infection process, a high concentration of calcium ion (≥ 1 mM) caused a reduction in virus infection efficiency, possibly as a result of cell aggregation. However, by optimizing the timing of the addition of calcium ion (i.e., 12 hours post-infection [hpi]), high virus infection efficiency could be maintained. The addition of 0.1 to 2 mM calcium ion at 12 hpi increased virus proliferation dose-dependently. Therefore, the optimal selection of both the concentration and the supplementation time of calcium ion during the process of AdV production could minimize the “cell density effect,” and a 2.6- and 3.2-fold increase in virus concentration could be achieved at CCI3 and CCI4, respectively.  相似文献   

15.
Two methods for the calculation of optimal trajectories for the input variables of a fed-batch culture of hybridoma cells are compared. It pointed out that a gradient method based on Pontryagins' minimum principle based yields a significant better performance with respect to computational effort and the calculated minimum than a dynamic programming approach which has been presented in a previous paper [1] as the most suitable method.  相似文献   

16.
Summary Immobilized cells ofSolanum surattense Burm release far more solasodine into the medium than free cell suspension cultures. This enhancement is probably due to stabilization of cells after immobilization as well as the effect of growth hormones in the medium.  相似文献   

17.
Human 293S cells, a cell line adapted to suspension culture, were grown to 5×106 cells/mL in batch with calcium-free DMEM. These cells, infected with new constructions of adenovirus vectors, yielded as much as 10 to 20% recombinant protein with respect to the total cellular protein content. Until recently, high specific productivity of recombinant protein was limited to low cell density infected cultures of no more than 5×105 cells/mL. In this paper, we show with a model protein, Protein Tyrosine Phosphatase 1C how high product yield can be maintained at high cell densities of 2×106 cells/mL by a medium replacement strategy. This allows the production of as much as 90 mg/L of active recombinant protein per culture volume. Analysis of key limiting/inhibiting medium components showed that glucose addition along with pH control can yield the same productivity as a medium replacement strategy at high cell density in calcium-free DMEM. Finally, the above results were reproduced in 3L bioreactor suspension culture thereby establishing the scalability of this expression system. The process we developed is used routinely with the same success for the production of various recombinant proteins and viruses.Abbreviations CFDMEM calcium-free DMEM - CS bovine calf serum - hpi hours post-infection - J+ enriched Joklik medium - MLP major late promoter - MOI multiplicity of infection (# of infectious viral particle/cell) - q specific consumption rate (mole/cell.h) - pfu plaque forming unit (# of infectious viral particle) - Y yield (g/E6 cells or mole/cell)  相似文献   

18.
Summary The influence of initial concentration of glucose from 60 to 233 g/l on the production of L-lysine byCorynebacterium sp was studied first in batch culture. The maximum conversion rate into L-lysine was obtained at 165 g/l and the best specific production rate for L-lysine was observed at 65 g/l of glucose. In fed-batch fermentations, better conversion and the specific production rates were obtained. Maintaining of a high glucose concentration in the fed-batch technique allowed a 54% increase of the L-lysine production compared to the batch culture.  相似文献   

19.
Sf-9 insect cells were adapted to three different serum-free media (SF900II, EXCELL 401 and IPL/41 supplemented) in 125 ml stirred vessels by gradually reducing serum concentration from 10 to 0% (v/v). TC100 medium sup-plemented with 10% fetal bovine serum was used as control. With this procedure it was possible to obtain cells fully adapted to SF900II and EXCELL 401 in 5 weeks. The adapted cells could be frozen in serum-free medium and thawed without any decrease in specific growth rate or maximum cell concentration. Even after 4 months of culture in stirred vessels at 170 rpm the specific growth rate and maximum cell concentration (0.031 h and 4.8 × 10 cells/ml, respectively) remained constant.  相似文献   

20.
To meet increasing needs of adenovirus vectors for gene therapy programs, development of efficient and reproducible production processes is required. Perfusion cultures were employed to allow infection at greater cell concentrations. In an effort to define culture conditions resulting in enhanced productivities, experiments performed at different feed rates and infected at various cell densities were compared using metabolic flux analysis. The highest specific product yields were achieved in experiments performed at high perfusion rates and/or low cell concentrations. The intracellular flux analysis revealed that these experiments exhibited greater glycolytic fluxes, slightly higher TCA fluxes, and greater ATP production rates at the time of infection. In contrast, cultures infected at high cell density and/or low medium renewal rates were characterized by a more efficient utilization of glucose at the time of infection, but the specific product yields achieved were lower. The intracellular flux analysis provided a rational basis for the implementation of a feeding strategy that allowed successful infection at a density of 5x10(6)cells/ml.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号