首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple method is described for determining the valency of binding of immunoglobulin G to immobilized influenza A virus. Where there is a free Fab arm (monovalent binding), a second virus particle is captured. This is detected by surface plasmon resonance. The methodology should be applicable to all enveloped and nonenveloped viruses.  相似文献   

2.
Inhibitors of hemagglutination by type A2 influenza virus and a recently isolated strain of type B influenza virus were separated by sucrose density gradient centrifugation and agarose gel filtration from horse serum. Using selected reagents, it was demonstrated that the active substituent on the horse serum inhibitor of A2 influenza virus was 4-O-acetyl-N-acetylneuraminic acid; however, the active substituent on the inhibitor of the influenza B virus was shown to be N-acetylneuraminic acid (NANA). Sodium metaperiodate treatment of a component of horse serum resulted in a 10 to 15-fold enhancement of inhibitory activity against the type B virus, whereas the A2 inhibitor was completely destroyed. Since this enhancement did not occur with influenza B viruses isolated prior to 1965, it was considered that this sensitivity to an oxidized NANA glycoside may have been a reflection of an antigenic change which occurred at that time. The use of different virus strains and selected chemical reagents to define the important sialic acid prosthetic groups active in inhibition was described.  相似文献   

3.
M Saito  A Rosenberg 《Biochemistry》1984,23(16):3784-3788
We have identified N-acetyl-2,3-didehydro-2-deoxyneuraminic acid (NADNA) in bovine and in rat brain. Identification was made by mass spectrometric and gas-liquid chromatographic analysis of the per(trimethylsilyl) derivative of the purified brain compound. Central nervous system NADNA hitherto has escaped detection; it behaves chromogenically and chromatographically during purification on ion-exchange chromatography as free N-acetylneuraminic acid (NANA) that also occurs in brain. Although NADNA is a dehydro analogue of NANA, we have ascertained that brain NANA does not give rise to NADNA as an artifact during its purification from brain. Three hours after intracranial injection of [14C]-N-acetylmannosamine [( 14C]ManNAc), we detected [14C]NANA but no [14C]NADNA in rat brain. ManNAc is a brain NANA precursor, and at this time, formation of cytidine 5'-phosphate (CMP)-[14C]NANA from [14C]ManNAc is at a maximum. This finding precludes decomposition of CMP-NANA as a source of brain NADNA. Upon intracranial injection of [14C]ManNAc, [14C]NADNA became detectable at 19 h and reached a maximum level around 40 h later; this maximum of labeling of NADNA coincides with the maximum label in brain sialo conjugate-NANA. These findings clearly demonstrate the occurrence of NADNA in mammalian brain. From the evidence, NADNA may derive enzymatically from brain sialo conjugates.  相似文献   

4.
A method of immobilizing clenbuterol (CLEN) on the sensor chip for spectral surface plasmon resonance imaging (SPRi) was experimentally investigated. The bioprobes on the sensor chip were prepared by immobilizing bovine serum albumin (BSA) protein and conjugating CLEN molecules to BSA, which provides more active points and free orientations for specific binding. The calibration curve showed that the wavelength resonance shift decreased as the concentration of CLEN analyte increased, consistent with the inhibition principle. The limit of detection (LOD) was estimated to be 6.32 μg/ml. This method proved to be highly specific, high throughput, label free, and operationally convenient.  相似文献   

5.
Machaidze G  Ziegler A  Seelig J 《Biochemistry》2002,41(6):1965-1971
Ro 09-0198 (cinnamycin) is a tetracyclic peptide antibiotic that is used to monitor the transbilayer movement of phosphatidylethanolamine (PE) in biological membranes during cell division and apoptosis. The molecule is one of the very rare examples where a small peptide binds specifically to a particular lipid. In model membranes and biological membranes containing phosphatidylethanolamine, Ro 09-0198 forms a 1:1 complex with this lipid. We have measured the thermodynamic parameters of complex formation with high sensitivity isothermal titration calorimetry and have investigated the structural consequences with deuterium and phosphorus solid-state NMR. Complex formation is characterized by a large binding constant, K0, of 10(7) to 10(8) M(-1), depending on the experimental conditions. The reaction enthalpy, DeltaHdegrees, varies between zero at 10 degrees C to strongly exothermic -10 kcal/mol at 50 degrees C. For large vesicles with a diameter of approximately 100 nm, DeltaHdegrees decreases linearly with temperature and the molar heat capacity of complex formation can be evaluated as = -245 cal/mol, indicating a hydrophobic binding mechanism. The free energy of binding is DeltaGdegrees = -10.5 kcal/mol and shows only little temperature dependence. The constancy of DeltaGdegrees together with the distinct temperature-dependence of DeltaHdegrees provide evidence for an entropy-enthalpy compensation mechanism: at 10 degrees C, complex formation is completely entropy-driven, at 50 degrees C it is enthalpy-driven. Varying the PE fatty acid chain-length between 6 and 18 carbon atoms produces similar binding constants and DeltaHdegrees values. Addition of Ro 09-0198 to PE containing bilayers eliminates the typical bilayer structure and produces 2H- and 31P-NMR spectra characteristic of slow isotropic tumbling. This reorganization of the lipid matrix is not limited to PE but also includes other lipids.  相似文献   

6.
The kinetics of cholesterol extraction from cellular membranes is complex and not yet completely understood. In this paper we have developed an experimental approach to directly monitor the extraction of cholesterol from lipid membranes by using surface plasmon resonance and model lipid systems. Methyl-beta-cyclodextrin was used to selectively remove cholesterol from large unilamellar vesicles of various compositions. The amount of extracted cholesterol is highly dependent on the composition of lipid membrane, i.e. the presence of sphingomyelin drastically reduced and slowed down cholesterol extraction by methyl-beta-cyclodextrin. This was confirmed also in the erythrocyte ghosts system, where more cholesterol was extracted after erythrocytes were treated with sphingomyelinase. We further show that the kinetics of the extraction is mono-exponential for mixtures of 1,2-dioleoyl-sn-glycero-3-phosphocholine and cholesterol. The kinetics is complex for ternary lipid mixtures composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine, bovine brain sphingomyelin and cholesterol. Our results indicate that the complex kinetics observed in experiments with cells may be the consequence of lateral segregation of lipids in cell plasma membrane.  相似文献   

7.
8.
T Nowak  M J Lee 《Biochemistry》1977,16(7):1343-1350
The formation of multiple ligand complexes with muscle pyruvate kinase was measured in terms of dissociation constants and the standard free energies of formation were calculated. The binding of Mn2+ to the enzyme (KA = 55 +/- 5 X 10(-6) M; deltaF degrees = -5.75 +/- 0.05 kcal/mol) and to the enzyme saturated with phosphoenolpyruvate (conditional free energy) KA' = 0.8 +/- 0.4 X 10(-6) M; deltaF degrees = -8.22 +/- 0.34 kcal/mol) has been measured under identical conditions giving a free energy of coupling, delta(deltaF degrees) = -2.47 +/- 0.34 kcal/mol. Such a large negative free energy of coupling is diagnostic of a strong positively cooperative effect in ligand binding. The binding of the substrate phosphoenolpyruvate to free enzyme and the enzyme-Mn2+ complex was, by necessity, measured by different methods. The free energy of phosphoenolpyruvate binding to free enzyme (KS = 1.58 +/- 0.10 X 10(-4)M; deltaF degrees = -5.13 +/- 0.04 kcal/mol) and to the enzyme-Mn2+ complex (K3 = 0.75 +/- 0.10 X 10(-6)M; deltaF degrees = -8.26 +/- 0.07 kcal/mol) also gives a large negative free energy of coupling, delta(deltaF degrees) = -3.16 +/- 0.08 kcal/mol. Such a large negative value confirms reciprocal binding effects between the divalent cation and the substrate phosphoenolpyruvate. The binding of Mn2+ to the enzyme-ADP complex was also investigated and a free energy of coupling, delta(deltaF degrees) = -0.08 +/- 0.08 kcal/mol, was measured, indicative of little or no cooperativity in binding. The free energy of coupling with Mn2+ and pyruvate was measured as -1.52 +/- 0.14 kcal/mol, showing a significant amount of cooperativity in ligand binding but a substantially smaller effect than that observed for phosphoenolpyruvate binding. The magnitude of the coupling free energy may be related to the role of the divalent cation in the formation of the enzyme-substrate complexes. In the absence of the activating monovalent cation, the coupling free energies for phosphoenolpyruvate and pyruvate binding decrease by 40-60% and 25%, respectively, substantiating a role for the monovalent cation in the formation of enzyme-substrate complexes with phosphoenolpyruvate and with pyruvate.  相似文献   

9.
An RNA aptamer has been selected by SELEX against bovine factor IX using an RNA pool containing 74-nucleotides randomized region. Selected RNA aptamer (Clone 5) could discriminate bovine factor IX effectively from human factor IX. Interestingly, the nucleotide regions 73-78 and 80-83 of the selected aptamer were determined to be important for bovine factor IX-binding using phosphate interference. Based on phosphate interference and binding studies the minimal motif for aptamer with discriminating ability is found with the nucleotide regions from 65 to 106. The discriminating ability of this mini aptamer is calculated as more than 1,000 fold. The equilibrium dissociation constant (K(d)) for the above complex was 10 nM as determined by surface plasmon resonance. Based on the available structural informations, probable binding site of aptamer on the target was predicted.  相似文献   

10.
To elucidate the molecular mechanisms of transmission of influenza viruses between different host species, such as human and birds, binding properties of sialic acid-containing carbohydrates that are recognized by human and/or avian influenza viruses were characterized by the surface plasmon resonance (SPR) method. Differences in the binding of influenza viruses to three gangliosides were monitored in real-time and correlated with receptor specificity between avian and human viruses. SPR analysis with ganglioside-containing lipid bilayers demonstrated the recognition profile of influenza viruses to not only sialic acid linkages, but also core carbohydrate structures on the basis of equilibrated rate constants. Kinetic analysis showed different binding preferences to gangliosides between avian and human strains. An avian strain bound to Neu5Acα2-3nLc4Cer with much slower dissociation rate than its sialyl-linkage analog, Neu5Acα2-6nLc4Cer, on the lipid bilayer. In contrast, a human strain bound equally to both gangliosides. An avian strain, but not a human strain, also interacted with GM3 carrying a shorter carbohydrate chain. Our findings demonstrated the remarkable distinction in the binding kinetics of sialic acid-containing carbohydrates between avian and human influenza viruses on the lipid bilayer.  相似文献   

11.
Complex formation between horse heart cytochrome c (cyt c) and bovine cytochrome c oxidase (cco) incorporated into a supported planar egg phosphatidylcholine membrane containing varying amounts of cardiolipin (CL) (0-20 mol%) has been studied under low (10 mM) and medium (160 mM) ionic strength conditions by surface plasmon resonance (SPR) spectroscopy. Both specific and nonspecific modes of cyt c binding are observed. The dissociation constant of the specific interaction between cyt c and cco increases from approximately 6.5 microM at low ionic strength to 18 microM at medium ionic strength, whereas the final saturation level of bound protein is independent of salt concentration and corresponds to approximately 53% of the total cco molecules present in the membrane. This suggests a 1:1 binding stoichiometry between the two proteins. The nonspecific binding component is governed by electrostatic interactions between cyt c and the membrane lipids and results in a partially ionic strength-reversible protein-membrane association. Thus, hydrophobic interactions between cyt c and the membrane, which are the predominant mode of binding in the absence of cco, are greatly suppressed. Both the amount of nonspecifically bound protein and the binding affinity can be varied over a broad range by changing the ionic strength and the extent of CL incorporation into the membrane. Under conditions approximating the physiological state in the mitochondrion (i.e., 20 mol% CL and medium ionic strength), 1-1.5 cyt c molecules are bound to the lipid phase per molecule of cco, with a dissociation constant of 0.1 microM. The possible physiological significance of these observations is discussed.  相似文献   

12.
During formation of the intercellular membranes of mammalian stratum corneum, sphingomyelin and glucosylceramide are converted enzymatically to ceramide. To model in isolation the possible effect of such a lipid modification on the phase behavior of the ensemble, we used proton and deuterium nuclear magnetic resonance to compare an equimolar dispersion of bovine brain sphingomyelin, cholesterol, and perdeuterated palmitic acid (at pH 6.2), with an equivalent dispersion in which bovine brain ceramide was substituted for sphingomyelin. While the sphingomyelin dispersions remain in a homogeneous fluid lamellar phase from 20-75 degrees C under these conditions, those containing ceramide display complex polymorphism.  相似文献   

13.
The binding interactions of small molecules with carbonic anhydrase II were used as model systems to compare the reaction constants determined from surface- and solution-based biophysical methods. Interaction data were collected for two arylsulfonamide compounds, 4-carboxybenzenesulfonamide (CBS) and 5-dimethyl-amino-1-naphthalene-sulfonamide (DNSA), binding to the enzyme using surface plasmon resonance, isothermal titration calorimetry, and stopped-flow fluorescence. We demonstrate that when the surface plasmon resonance biosensor experiments are performed with care, the equilibrium, thermodynamic, and kinetic constants determined from this surface-based technique match those acquired in solution. These results validate the use of biosensor technology to collect reliable data on small molecules binding to immobilized macromolecular targets. Binding kinetics were shown to provide more detailed information about complex formation than equilibrium constants alone. For example, although carbonic anhydrase II bound DNSA with twofold higher affinity than CBS, kinetic analysis revealed that CBS had a fourfold slower dissociation rate. Analysis of the binding and transition state thermodynamics also revealed significant differences in the enthalpy and entropy of complex formation. The lack of labeling requirements, high information content, and high throughput of surface plasmon resonance biosensors will make this technology an important tool for characterizing the interactions of small molecules with enzymes and receptors.  相似文献   

14.
Versican is a large (1-2 x 10(6) Da) chondroitin-sulfate proteoglycan that can form large aggregates by means of interaction with hyaluronan and also binds to a series of other extracellular matrix proteins, chemokines and cell-surface molecules. Versican is a multifunctional molecule with roles in cell adhesion, matrix assembly, cell migration and proliferation. Characterization of the binding interactions mediated by the various domains of versican is a first step towards understanding the functions of versican and interacting molecules in the extracellular matrix. In this study we investigated a recombinant construct corresponding to the C-type lectin domain of versican and demonstrated a calcium-dependent self-association of this region by blot overlay and plasmon surface resonance assays. Electron microscopy provided further evidence of the relevance of the binding reaction by demonstrating a mixture of monomers, dimers and complex aggregates of recombinant versican C-type lectin domain. This binding reaction could contribute to the ability of versican to organize formation of the proteoglycan extracellular matrix by inducing binding of individual versican molecules or by modulating binding reactions to other matrix components.  相似文献   

15.
Human apurinic/apyrimidinic (AP) endonuclease (hAPE) initiates the repair of an abasic site (AP site). To gain insight into the mechanisms of damage recognition of hAPE, we conducted surface plasmon resonance spectroscopy to study the thermodynamics and kinetics of its interaction with substrate DNA containing an abasic site (AP DNA). The affinity of hAPE binding toward DNA increased as much as 6-fold after replacing a single adenine (equilibrium dissociation constant, K(D), 5.3 nm) with an AP site (K(D), 0.87 nm). The enzyme-substrate complex formation appears to be thermodynamically stabilized and favored by a large change in Gibbs free energy, DeltaG degrees (-50 kJ/mol). The latter is supported by a high negative change in enthalpy, DeltaH degrees (-43 kJ/mol) and also positive change in entropy, DeltaS degrees (24 J/(K mol)), and thus the binding process is spontaneous at all temperatures. Analysis of kinetic parameters reveals small enthalpy of activation for association, DeltaH degrees++(ass) (-17 kJ/mol), and activation energy for association (E(a), -14 kJ/mol) when compared with the enthalpy of activation for dissociation, DeltaH degrees++(diss) (26 kJ/mol), and activation energy in the reverse direction (E(d), 28 kJ/mol). Furthermore, varying concentration of KCl showed an increase in binding affinity at low concentration but complete abrogation of the binding at higher concentration, implying the importance of hydrophobic, but predominantly ionic, forces in the Michaelis-Menten complex formation. Thus, low activation energy and the enthalpy of activation, which are perhaps a result of dipole-dipole interactions, play critical roles in AP site binding of APE.  相似文献   

16.
The formaldehyde-induced formation of tightly bound RNA-protein complexes of rod-like plant viruses was studied. The preparations of tobacco mosaic virus and closely related cucumber virus 4 were incubated with 1.5% formaldehyde for 20-50 hrs at 50 degrees C. Then the viral particles were disrupted, free protein was removed and viral RNA was centrifuged in the linear gradient of Cs2SO4. The RNAs from the formaldehyde-untreated viruses and RNA from the formaldehyde-treated tobacco masaic virus had the density of 1.65-1.66 g/cm3, while RNA from the formaldehyde-treated cucumber virus had the density of 1.57-1.42 g/cm3, depending on the incubation time. This is indicative of the protein binding to RNA. Treatment of the cucumber virus complex with pronase resulted in a liberation of free RNA with the density of 1.66 g/cm3; incubation for 2 min at 100 degrees C in a dissociating mixture (2% sodium dodecyl sulfate + 0.2% mercaptoethanol) did not cause the dissociation of the complex. Polyacrylamide gel electrophoresis showed that the most part of the protein molecules are bound within the complex not by covalent protein-protein cross-links.  相似文献   

17.
Innate immune response is important for viral clearance during influenza virus infection. Galectin-1, which belongs to S-type lectins, contains a conserved carbohydrate recognition domain that recognizes galactose-containing oligosaccharides. Since the envelope proteins of influenza virus are highly glycosylated, we studied the role of galectin-1 in influenza virus infection in vitro and in mice. We found that galectin-1 was upregulated in the lungs of mice during influenza virus infection. There was a positive correlation between galectin-1 levels and viral loads during the acute phase of viral infection. Cells treated with recombinant human galectin-1 generated lower viral yields after influenza virus infection. Galectin-1 could directly bind to the envelope glycoproteins of influenza A/WSN/33 virus and inhibit its hemagglutination activity and infectivity. It also bound to different subtypes of influenza A virus with micromolar dissociation constant (K(d)) values and protected cells against influenza virus-induced cell death. We used nanoparticle, surface plasmon resonance analysis and transmission electron microscopy to further demonstrate the direct binding of galectin-1 to influenza virus. More importantly, we show for the first time that intranasal treatment of galectin-1 could enhance survival of mice against lethal challenge with influenza virus by reducing viral load, inflammation, and apoptosis in the lung. Furthermore, galectin-1 knockout mice were more susceptible to influenza virus infection than wild-type mice. Collectively, our results indicate that galectin-1 has anti-influenza virus activity by binding to viral surface and inhibiting its infectivity. Thus, galectin-1 may be further explored as a novel therapeutic agent for influenza.  相似文献   

18.
Schubert F  Zettl H  Häfner W  Krauss G  Krausch G 《Biochemistry》2003,42(34):10288-10294
We report a kinetic and thermodynamic analysis of interactions between ssDNA and replication protein A (RPA) using surface plasmon resonance (SPR) and fluorescence correlation spectroscopy (FCS) at variable temperature. The two methods yield different values for the Gibbs free energy but nearly the same value for the reaction enthalpy of ssDNA-RPA complex formation. The Gibbs free energy was determined by SPR and FCS to be -62.6 and -54.7 kJ/mol, respectively. The values for the reaction enthalpy are -64.4 and -66.5 kJ/mol. It is concluded that the difference in Gibbs free energy measured by the two methods is due to different reaction entropies. The entropic contribution to the free energy at 25 degrees C is -1.8 kJ/mol for SPR and -11.8 kJ/mol for FCS. In SPR, the reaction is restricted to two dimensions because of immobilization of the DNA molecules to the sensor surface. In contrast, FCS is able to follow complex formation without spatial restrictions. In consequence, the reaction entropy determined from SPR experiments is lower than for FCS experiments.  相似文献   

19.
The kinetics of cholesterol extraction from cellular membranes is complex and not yet completely understood. In this paper we have developed an experimental approach to directly monitor the extraction of cholesterol from lipid membranes by using surface plasmon resonance and model lipid systems. Methyl-β-cyclodextrin was used to selectively remove cholesterol from large unilamellar vesicles of various compositions. The amount of extracted cholesterol is highly dependent on the composition of lipid membrane, i.e. the presence of sphingomyelin drastically reduced and slowed down cholesterol extraction by methyl-β-cyclodextrin. This was confirmed also in the erythrocyte ghosts system, where more cholesterol was extracted after erythrocytes were treated with sphingomyelinase. We further show that the kinetics of the extraction is mono-exponential for mixtures of 1,2-dioleoyl-sn-glycero-3-phosphocholine and cholesterol. The kinetics is complex for ternary lipid mixtures composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine, bovine brain sphingomyelin and cholesterol. Our results indicate that the complex kinetics observed in experiments with cells may be the consequence of lateral segregation of lipids in cell plasma membrane.  相似文献   

20.
We have found that N-acetylneuraminic acid (NANA) consumes toxic hydrogen peroxide (H(2)O(2)) under physiological conditions. Close investigation of this finding revealed that NANA was oxidized by an equimolar amount of H(2)O(2) to provide its decarboxylated product, 4-(acetylamino)-2,4-dideoxy-D-glycero-D-galacto-octonic acid (ADOA). To date, there have been little data on this reaction, and its physiological significance has not been discussed. Examining the detoxification of H(2)O(2) in cultured cells with NANA, we were able to confirm that the cell death caused by H(2)O(2) was suppressed by NANA in a dose-dependent manner. These results revealed a novel role for NANA as a reactive oxygen scavenger. It is known that terminal NANA residues are removed by neuraminidase and that free NANA molecules are recycled or degraded by enzymes. We propose that released monomeric NANA is the potent defense molecule against oxidative damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号