首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
CAPRICE (CPC) encodes a small protein with an R3 MYB motif and promotes root hair cell differentiation in Arabidopsis thaliana. Three additional CPC-like MYB genes, TRY (TRIPTYCHON), ETC1 (ENHANCER OF TRY AND CPC 1) and ETC2 (ENHANCER OF TRY AND CPC 2) act in a redundant manner with CPC in trichome and root hair patterning. In this study, we identified an additional homolog, CPC-LIKE MYB 3 (CPL3), which has high sequence similarity to CPC, TRY, ETC1 and ETC2. Overexpression of CPL3 results in the suppression of trichomes and overproduction of root hairs, as has been observed for CPC, TRY, ETC1 and ETC2. Morphological studies with double, triple and quadruple homolog mutants indicate that the CPL3 gene cooperatively regulates epidermal cell differentiation with other CPC homologs. Promoter-GUS analyses indicate that CPL3 is specifically expressed in leaf epidermal cells, including stomate guard cells. Notably, the CPL3 gene has pleiotropic effects on flowering development, epidermal cell size and trichome branching through the regulation of endoreduplication.  相似文献   

3.
4.
The idea of common pathways guiding different fates is an emerging concept in plant development, and epidermal cell-fate specification in Arabidopsis thaliana is an excellent example to illustrate it. In the root epidermis, both hair patterning and differentiation depend on a complex interaction between both negative (WER, TTG, GL3, EGL3, and GL2) and positive (CPC, TRY, and ETC1) regulators of hair cell fate. These regulators pattern and differentiate hairs through a bi-directional signalling mechanism. The same molecular components (WER, TTG, GL3, EGL3, and GL2) seem to be involved in the patterning of stomata in the embryonic stem. However, the possible role of CPC, TRY, and ETC1 on stomatal patterning and/or differentiation has not been studied, questioning whether they, and the underlying bi-directional mechanism, guide patterning formation and differentiation in the hypocotyl.  相似文献   

5.
《Annals of botany》1996,77(6):547-553
The epidermis of roots is composed of hair and non-hair cells. Patterning of this epidermis results from spatially regulated differentiation of these cell types. Root epidermal development in vascular plants may be divided into three broad groups based on the mode of hair development; Type 1: any cell in the epidermis can form a root hair; Type 2: the smaller product of an asymmetric cell division forms a root hair; Type 3: the epidermis is organized into discrete files of hair and non-hair cells. TheArabidopsisroot epidermis is composed of discrete files of hair and non-hair cells (Type 3). Genetic and physiological evidence indicates that ethylene is a positive regulator of hair cell development. Genes with opposite roles in the development of hair cells in the shoot (trichomes) and hair cells in the root have been identified. Plants with presumptive loss of function alleles in theTRANSPARENT TESTA GLABRA (TTG)orGLABRA2(GL2) genes are devoid of trichomes indicating that these genes are positive regulators of trichome development. The development of supernumerary root hair cells in these mutant backgrounds illustrates that these genes are also negative regulators of root hair cell development. A model that explains the spatial pattern of epidermal cell differentiation implicates ethylene or its precursor 1-amino-1-cyclopropane carboxylate as a diffusible signal. Possible roles for theTTGandGL2genes in relation to the ethylene signal are discussed.  相似文献   

6.
植物根毛生长发育及分子调控机理   总被引:2,自引:0,他引:2  
植物根毛是植物吸收营养的主要器官, 了解根毛的发生、发育及遗传规律, 能对植物的养分吸收研究提供有利依据。文章旨在介绍植物根毛形态发生特性、发育生长过程及分子调控机理的研究进展, 利用比较基因组学方法研究农作物根毛形态和功能, 及有目的性的对根生长发育进行调控提供参考。研究发现植物根毛发育有反馈侧向抑制(lateral inhibition with feedback)和位置决定模式(position-dependent pattern of cell differentiation)两种方式。拟南芥根表皮细胞是以位置方式决定毛或非毛细胞发育类型, 已成为研究植物细胞命运和分化的模型。目前, 已经鉴定出控制根毛发育的基因, 包括一些转录因子如MYB家族蛋白TRIPTYCHON(TRY)、CAPRICE(CPC)和basic Helix-Loop-Helix (bHLH)蛋白GLABRA3、ENHANCER OF GLABRA3(EGL3)及WD-repeat蛋白等基因。最后针对根毛研究前景提出展望。  相似文献   

7.
Phosphate (Pi) deficiency induces a multitude of responses aimed at improving the acquisition of Pi, including an increased density of root hairs. To understand the mechanisms involved in Pi deficiency-induced alterations of the root hair phenotype in Arabidopsis (Arabidopsis thaliana), we analyzed the patterning and length of root epidermal cells under control and Pi-deficient conditions in wild-type plants and in four mutants defective in the expression of master regulators of cell fate, CAPRICE (CPC), ENHANCER OF TRY AND CPC 1 (ETC1), WEREWOLF (WER) and SCRAMBLED (SCM). From this analysis we deduced that the longitudinal cell length of root epidermal cells is dependent on the correct perception of a positional signal (‘cortical bias’) in both control and Pi-deficient plants; mutants defective in the receptor of the signal, SCM, produced short cells characteristic of root hair-forming cells (trichoblasts). Simulating the effect of cortical bias on the time-evolving probability of cell fate supports a scenario in which a compromised positional signal delays the time point at which non-hair cells opt out the default trichoblast pathway, resulting in short, trichoblast-like non-hair cells. Collectively, our data show that Pi-deficient plants increase root hair density by the formation of shorter cells, resulting in a higher frequency of hairs per unit root length, and additional trichoblast cell fate assignment via increased expression of ETC1.  相似文献   

8.
9.
10.
Cell specification in the root epidermis of Arabidopsis generates a position-dependent pattern of root-hair cells and non-hair cells. Here we conduct a comprehensive analysis of the five members of a single-repeat R3 MYB gene family, including CAPRICE (CPC), TRIPTYCHON (TRY), ENHANCER of TRY and CPC 1, 2, and 3 (ETC1, ETC2, and ETC3), and study their role and functional relationship in root epidermal cell specification. Based on genetic and expression analyses, CPC, TRY and ETC1, but not ETC2 or ETC3, promote the hair cell fate by inhibiting non-hair specification. Further, we find that single-repeat MYB activity is required for epidermal patterning throughout root development, beginning during embryogenesis. We also identify a novel regulatory interaction whereby GLABRA2 (GL2) promotes TRY (but not CPC or ETC1) expression in the root epidermis, which generates a second lateral inhibition feedback loop. Gene fusion experiments combining CPC regulatory elements with protein-coding regions of each single-repeat MYB gene suggest that all five proteins are functionally similar, although TRY and ETC2 exhibit distinctions from CPC/ETC1/ETC3. These results provide new insight into the function of these single-repeat MYBs and suggest that divergence of their regulatory sequences is largely responsible for their distinct roles in epidermal cell patterning.  相似文献   

11.
12.
In Arabidopsis thaliana, R3-type MYB genes, CAPRICE (CPC) and its family of genes including TRIPTYCHON (TRY), ENHANCER OF TRY AND CPC1 (ETC1), ETC2 and CPC-LIKE MYB3 cooperatively regulate epidermal cell differentiation. Root hair formation is greatly reduced by a mutation in CPC, and try and etc1 enhance this phenotype. In this study, we demonstrate that CPC, TRY and ETC1 are also involved in root hair formation at the root-hypocotyl junction. The cpc try and cpc etc1 double mutants showed a reduced number of root hairs in that area. Additionally, the expression of ETC1::GUS was higher near this area. These results suggest that CPC family of genes also cooperatively regulates root hair formation at the root-hypocotyl junction in unique ways.  相似文献   

13.
14.
15.
The Arabidopsis root epidermal cells decide their fates (root-hair cell and non-hair cell) according to their position. SCRAMBLED (SCM), an atypical leucine-rich repeat receptor-like kinase (LRR RLK) mediates the positional information to the epidermal cells enabling them to adopt the proper fate. Via feedback regulation, the SCM protein accumulates preferentially in cells adopting the root-hair cell fate. In this study, we determine that TRY, but not the related factor CPC, is responsible for this preferential SCM accumulation. We observed severe reduction of SCM::GUS expression in the try-82 mutant root, but not in the cpc-1 mutant. Furthermore, the overexpression of TRY by CaMV35S promoter caused an increase in the expression of SCM::GUS in the root epidermis. Intriguingly, the overexpression of CPC by CaMV35S promoter repressed the expression of SCM::GUS. Together, these results suggest that TRY plays a unique role in generating the appropriate spatial expression of SCM.  相似文献   

16.
17.
Cell division and cell fate decisions are highly regulated processes that need to be coordinated both spatially and temporally for correct plant growth and development. Gaining a deeper molecular and cellular understanding of these links is especially relevant for plant biology since, unlike in animals, formation of new organs is a process that takes place after embryogenesis and continues throughout the entire plant lifespan. The recent identification of a novel factor, GEM, has provided a molecular framework that coordinates cell division to cell fate in the Arabidopsis epidermis. GEM is an inhibitor of cell division through interacting with CDT1, a DNA replication protein. It also inhibits the expression of the homeobox GLABRA2 (GL2) gene that determines the hair/non-hair fate and the pavement/trichome fate in the root and leaf epidermis, respectively. GEM seems to be crucial in controlling the balance of activating/repressing histone modifications at its target promoters.Key Words: cell division, cell cycle, cell fate, GEM, GLABRA2, CDT1, DNA replication, chromatin, histone methylation, gene expression, root hair, Arabidopsis, plant  相似文献   

18.
In the Arabidopsis hypocotyl, stomata develop only from a set of epidermal cell files. Previous studies have identified several negative regulators of stomata formation. Such regulators also trigger non-hair cell fate in the root. Here, it is shown that TOO MANY MOUTHS (TMM) positively regulates CAPRICE (CPC) expression in differentiating stomaless-forming cell files, and that the CPC protein might move to the nucleus of neighbouring stoma-forming cells, where it promotes stomata formation in a redundant manner with TRIPTYCHON (TRY). Unexpectedly, the CPC protein was also localized in the nucleus and peripheral cytoplasm of hypocotyl fully differentiated epidermal cells, suggesting that CPC plays an additional role to those related to stomata formation. These results identify CPC and TRY as positive regulators of stomata formation in the embryonic stem, which increases the similarity between the genetic control of root hair and stoma cell fate determination.Key words: arabidopsis, epidermis, CPC, stomata, TMM  相似文献   

19.
20.
The Arabidopsis root is composed of radial cell layers, each with distinct identities. The epidermal layer is composed of rows of hair cells flanked on either side by rows of non-hair epidermal cells. The development of hair and non-hair cells is dependent on domains of positional information with strict boundaries. The pattern of cell differentiation and the expression of molecular markers of cell fate is altered in the ectopic root hair 3 (erh3) mutant epidermis indicating that ERH3 is required for the specification of cell fates from early in development (in the meristem) through differentiation. Furthermore the expression of molecular markers indicates that the specification of cell identities is defective within other radial cell layers. ERH3 encodes a p60 katanin protein that is expressed throughout the plant. Katanin proteins are known to sever microtubules, and have a role in the organisation of the plant cell wall since mutants with decreased katanin activity have been shown to have defective walls. We suggest that microtubules are involved in the specification of cell identities in cells of the Arabidopsis root. Microtubules may be required for the localization of positional cues in the wall that have previously been shown to operate in the development of the root epidermis. Alternatively microtubules may be involved in another as yet undefined process required for the specification of cell identity in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号