首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A phylogenetic and systematic study of Orius species (Heteroptera: Anthocoridae) from Korea has been conducted using both morphological and molecular characters. Thirty morphological character states were coded for 10 strains of 9 species. Five molecular markers, partial cytochrome c oxidase I (COI), cytochrome b (CytB), 16S rRNA (16S), 18S rRNA (18S), and 28S rRNA (28S), from mitochondrial and nuclear genes, were tested. Phylogenetic analyses based on molecular data were conducted by minimum evolution, maximum parsimony, maximum likelihood, and Bayesian phylogenetic (BP) analyses. Analysis of morphological data was performed using the parsimony programs NONA, and the combined dataset of morphological and molecular data was analyzed using BP analyses. The results of this study indicate that use of COI and CytB enabled relatively effective identification of species, whereas the sequences of 16S, 18S and 28S did not enable identification of closely related species such as Orius minutus and O. strigicollis. We discuss the usefulness of the five molecular markers for determining phylogenetic relationships and identifying the species.  相似文献   

2.
Partial sequences of mitochondrial 12S and 16S rRNA genes from 19 Asian frog species of the tribe Paini (Ranidae, Dicroglossinae) allowed a first molecular study of the phylogenetic relationships of this tribe. This analysis confirmed that this tribe is a monophyletic group, but suggested relationships did not agree with previous generic classification of this clade based on morphology. Two major clades were recognized within the Paini. For one of them, the generic name Quasipaa is available. Phylogenetic relationships within the other group are not yet fully clarified and need further study.  相似文献   

3.
The Notothenioidei dominates the fish fauna of the Antarctic in both biomass and diversity. This clade exhibits adaptations related to metabolic function and freezing avoidance in the subzero Antarctic waters, and is characterized by a high degree of morphological and ecological diversity. Investigating the macroevolutionary processes that may have contributed to the radiation of notothenioid fishes requires a well-resolved phylogenetic hypothesis. To date published molecular and morphological hypotheses of notothenioids are largely congruent, however, there are some areas of significant disagreement regarding higher-level relationships. Also, there are critical areas of the notothenioid phylogeny that are unresolved in both molecular and morphological phylogenetic analyses. Previous molecular phylogenetic analyses of notothenioids using partial mtDNA 12S and 16S rRNA sequence data have resulted in limited phylogenetic resolution and relatively low node support. One particularly controversial result from these analyses is the paraphyly of the Nototheniidae, the most diverse family in the Notothenioidei. It is unclear if the phylogenetic results from the 12S and 16S partial gene sequence dataset are due to limited character sampling, or if they reflect patterns of evolutionary diversification in notothenioids. We sequenced the complete mtDNA 16S rRNA gene for 43 notothenioid species, the largest sampling to-date from all eight taxonomically recognized families. Phylogenetic analyses using both maximum parsimony and maximum likelihood resulted in well-resolved trees with most nodes supported with high bootstrap pseudoreplicate scores and significant Bayesian posterior probabilities. In all analyses the Nototheniidae was monophyletic. Shimodaira–Hasegawa tests were able to reject two hypotheses that resulted from prior morphological analyses. However, despite substantial resolution and node support in the 16S rRNA trees, several phylogenetic hypotheses among closely related species and clades were not rejected. The inability to reject particular hypotheses among species in apical clades is likely due to the lower rate of nucleotide substitution in mtDNA rRNA genes relative to protein coding regions. Nevertheless, with the most extensive notothenioid taxon sampling to date, and the much greater phylogenetic resolution offered by the complete 16S rRNA sequences over the commonly used partial 12S and 16S gene dataset, it would be advantageous for future molecular investigations of notothenioid phylogenetics to utilize at the minimum the complete gene 16S rRNA dataset.  相似文献   

4.
Abstract. The phylogenetic relationships among the “archaeogastropod” clades Patellogastropoda, Vetigastropoda, Neritimorpha, and Neomphalina are uncertain; the phylogenetic placement of these clades varies across different analyses, and particularly among those using morphological characteristics and those relying on molecular data. This study explores the relationships among these groups using a combined analysis with seven molecular loci (18S rRNA, 28S rRNA, histone H3, 16S rRNA, cytochrome c oxidase subunit I [COI], myosin heavy-chain type II, and elongation factor-1α [EF-1α]) sequenced for 31 ingroup taxa and eight outgroup taxa. The deep evolutionary splits among these groups have made resolution of stable relationships difficult, and so EF-1α and myosin are used in an attempt to re-examine these ancient radiation events. Three phylogenetic analyses were performed utilizing all seven genes: a single-step direct optimization analysis using parsimony, and two-step approaches using parsimony and maximum likelihood. A single-step direct optimization parsimony analysis was also performed using only five molecular loci (18S rRNA, 28S rRNA, histone H3, 16S rRNA, and COI) in order to determine the utility of EF-1α and myosin in resolving deep relationships. In the likelihood and POY optimal phylogenetic analyses, Gastropoda, Caenogastropoda, Neritimorpha, Neomphalina, and Patellogastropoda were monophyletic. Additionally, Neomphalina and Pleurotomariidae fell outside the remaining vetigastropods, indicating the need for further investigation into the relationship of these groups with other gastropods.  相似文献   

5.
Tiger beetles are a remarkable group that captivates amateur entomologists, taxonomists and evolutionary biologists alike. This diverse clade of beetles comprises about 2300 currently described species found across the globe. Despite the charisma and scientific interest of this lineage, remarkably few studies have examined its phylogenetic relationships with large taxon sampling. Prior phylogenetic studies have focused on relationships within cicindeline tribes or genera, and none of the studies have included sufficient taxon sampling to conclusively examine broad species patterns across the entire subfamily. Studies that have attempted to reconstruct higher‐level relationships of Cicindelinae have yielded conflicting results. Here, we present the first taxonomically comprehensive molecular phylogeny of Cicindelinae to date, with the goal of creating a framework for future studies focusing on this important insect lineage. We utilized all available published molecular data, generating a final concatenated dataset including 328 cicindeline species, with molecular data sampled from six protein‐coding gene fragments and three ribosomal gene fragments. Our maximum‐likelihood phylogenetic inferences recover Cicindelinae as sister to the wrinkled bark beetles of the subfamily Rhysodinae. This new phylogenetic hypothesis for Cicindelinae contradicts our current understanding of tiger beetle phylogenetic relationships, with several tribes, subtribes and genera being inferred as paraphyletic. Most notably, the tribe Manticorini is recovered nested within Platychilini including the genera Amblycheila Say, Omus Eschscholtz, Picnochile Motschulsky and Platychile Macleay. The tribe Megacephalini is recovered as paraphyletic due to the placement of the monophyletic subtribe Oxycheilina as sister to Cicindelini, whereas the monophyletic Megacephalina is inferred as sister to Oxycheilina, Cicindelini and Collyridini. The tribe Collyridini is paraphyletic with the subtribes Collyridina and Tricondylina in one clade, and Ctenostomina in a second one. The tribe Cicindelini is recovered as monophyletic although several genera are inferred as para‐ or polyphyletic. Our results provide a novel phylogenetic framework to revise the classification of tiger beetles and to encourage the generation of focused molecular datasets that will permit investigation of the evolutionary history of this lineage through space and time.  相似文献   

6.
The anuran tribe Paini, family Dicroglossidae, is known in this group only from Asia. The phylogenetic relationships and often the taxonomic recognition of species are controversial. In order to stabilize the classification, we used approximately 2100 bp of nuclear (rhodopsin, tyrosinase) and mitochondrial (12S, 16S rRNA) DNA sequence data to infer the phylogenetic relationships of these frogs. Phylogenetic trees reconstructed using Bayesian inference and maximum parsimony methods supported a monophyletic tribe Paini. Two distinct groups (I,II) were recovered with the mtDNA alone and the total concatenated data (mtDNA+nuDNA). The recognition of two genera, Quasipaa and Nanorana, was supported. Group I, Quasipaa, is widespread east of the Hengduan Mountain Ranges and consists of taxa from relatively low elevations in southern China, Vietnam and Laos. Group II, Nanorana, contains a mix of species occurring from high to low elevation predominantly in the Qinghai-Tibetan Plateau and Hengduan Mountain Ranges. The occurrence of frogs at high elevations appears to be a derived ecological condition. The composition of some major species groups based on morphological characteristics strongly conflicts with the molecular analysis. Some possible cryptic species are indicated by the molecular analyses. The incorporation of genetic data from type localities helped to resolve some of the taxonomic problems, although further combined analyses of morphological data from type specimens are required. The two nuDNA gene segments proved to be very informative for resolving higher phylogenetic relationships and more nuclear data should be explored to be more confident in the relationships.  相似文献   

7.
Phylogenetic relationships within the Acanthocephala have remained unresolved. Past systematic efforts have focused on creating classifications with little consideration of phylogenetic methods. The Acanthocephala are currently divided into three major taxonomic groups: Archiacanthocephala, Palaeacanthocephala, and Eoacanthocephala. These groups are characterized by structural features in addition to the taxonomy and habitat of hosts parasitized. In this study the phylogenetic relationships of 11 acanthocephalan species are examined with 18S rDNA sequences. Maximum parsimony, minimum evolution, and maximum likelihood methods are used to estimate phylogenetic relationships. Within the context of sampled taxa, all phylogenetic analyses are consistent with monophyly of the major taxonomic groups of the Acanthocephala, suggesting that the current higher order classification is natural. The molecular phylogeny is used to examine patterns of character evolution for various structural and ecological characteristics of the Acanthocephala. Arthropod intermediate host distributions, when mapped on the phylogeny, are consistent with monophyletic groups of acanthocephalans. Vertebrate definitive host distributions among the Acanthocephala display independent radiations into similar hosts. Levels of uncorrected sequence divergence among acanthocephalans are high; however, relative-rate tests indicate significant departure from rate uniformity among acanthocephalans, arthropods, and vertebrates. This precludes comparison of 18S divergence levels to assess the relative age of the Acanthocephala. However, other evidence suggests an ancient origin of the acanthocephalan-arthropod parasitic association.  相似文献   

8.
Relative to its diversity (34 genera, 700 species), Scolopendromorpha has been undersampled in molecular phylogenetic analyses compared with the other chilopod orders. Previous analyses based on morphology have not resolved several key controversies in systematics and evolutionary morphology unambiguously. Here we apply new molecular and morphological data to scolopendromorph phylogenetics, with a focus on the evolution of blindness. The taxonomic sample includes 19 genera, many lacking previous molecular data, and diverse, cosmopolitan genera of Scolopendridae are sampled by multiple species. Phylogenetic analysis with Direct Optimization used 94 morphological characters and ca. 4.5 kb of sequence data from two nuclear (18S and 28S rRNA) and two mitochondrial (16S rRNA and COI) loci. A single most‐parsimonious cladogram selected after sensitivity analyses resolves Scolopendromorpha as monophyletic, and divides it into a blind clade of three families (Plutoniumidae, Cryptopidae, Scolopocryptopidae) and its ocellate sister group, Scolopendridae. Some species‐rich, cosmopolitan genera (Cormocephalus, Otostigmus, Scolopendra) in Scolopendridae are non‐monophyletic, and in several instances (e.g. New and Old World Scolopendra) relationships are more congruent with geographical distributions than with traditional classifications. The tribe Asanadini is particularly subject to parameter‐sensitivity, nesting in the combined analysis within Scolopendrini but as sister to all other Scolopendrinae for molecular data alone. The total‐evidence tree unambiguously optimizes trunk segmentation: a 23‐segmented trunk has a single origin in the blind clade. © The Willi Hennig Society 2011.  相似文献   

9.
We investigated the phylogenetic relationships among 20 species of Oriental torrent frogs in the genus Amolops and its allies from China and Southeast Asia based on 1346-bp sequences of the mitochondrial 12S and 16S rRNA genes. Oriental species of the tribe Ranini form a monophyletic group containing 11 clades (Rana temporaria + Pseudoamolops, R. chalconota, four clades of Amolops, Meristogenys, three clades of Huia species, and Staurois) for which the phylogenetic relationships are unresolved. The genus Amolops consists of southern Chinese, southwestern Chinese, Thai, and Vietnamese-Malaysian lineages, but their relationships are also unresolved. The separation of southern and southwestern lineages within China conforms to previous morphological and karyological results. Species of Huia do not form a monophyletic group, whereas those of Meristogenys are monophyletic. Because P. sauteri is a sister species of R. temporaria, distinct generic status of Pseudoamolops is unwarranted.  相似文献   

10.
Phylogeny of protostome worms derived from 18S rRNA sequences   总被引:13,自引:3,他引:10  
The phylogenetic relationships of protostome worms were studied by comparing new complete 18S rRNA sequences of Vestimentifera, Pogonophora, Sipuncula, Echiura, Nemertea, and Annelida with existing 18S rRNA sequences of Mollusca, Arthropoda, Chordata, and Platyhelminthes. Phylogenetic trees were inferred via neighbor-joining and maximum parsimony analyses. These suggest that (1) Sipuncula and Echiura are not sister groups; (2) Nemertea are protostomes; (3) Vestimentifera and Pogonophora are protostomes that have a common ancestor with Echiura; and (4) Vestimentifera and Pogonophora are a monophyletic clade.   相似文献   

11.
While the phylogenetic position of Chaetognatha has became central to the question of early bilaterian evolution, the internal systematics of the phylum are still not clear. The phylogenetic relationships of the chaetognaths were investigated using newly obtained small subunit ribosomal RNA nuclear 18S (SSU rRNA) sequences from 16 species together with 3 sequences available in GenBank. As previously shown with the large subunit ribosomal RNA 28S gene, two classes of Chaetognatha SSU rRNA gene can be identified, suggesting a duplication of the whole ribosomal cluster; allowing the rooting of one class of genes by another in phylogenetic analyses. Maximum Parsimony, Maximum Likelihood and Bayesian analyses of the molecular data, and statistical tests showed (1) that there are three main monophyletic groups: Sagittidae/Krohnittidae, Spadellidae/Pterosagittidae, and Eukrohniidae/Heterokrohniidae, (2) that the group of Aphragmophora without Pterosagittidae (Sagittidae/Krohnittidae) is monophyletic, (3) the Spadellidae/Pterosagittidae and Eukrohniidae/Heterokrohniidae families are very likely clustered, (4) the Krohnittidae and Pterosagittidae groups should no longer be considered as families as they are included in other groups designated as families, (5) suborder Ctenodontina is not monophyletic and the Flabellodontina should no longer be considered as a suborder, and (6) the Syngonata/Chorismogonata and the Monophragmophora/Biphragmophora hypotheses are rejected. Such conclusions are considered in the light of morphological characters, several of which are shown to be prone to homoplasy.  相似文献   

12.
The Coccinellidae (ladybirds) is a highly speciose family of the Coleoptera. Ladybirds are well known because of their use as biocontrol agents, and are the subject of many ecological studies. However, little is known about phylogenetic relationships of the Coccinellidae, and a precise evolutionary framework is needed for the family. This paper provides the first phylogenetic reconstruction of the relationships within the Coccinellidae based on analysis of five genes: the 18S and 28S rRNA nuclear genes and the mitochondrial 12S, 16S rRNA and cytochrome oxidase subunit I (COI) genes. The phylogenetic relationships of 67 terminal taxa, representative of all the subfamilies of the Coccinellidae (61 species, 37 genera), and relevant outgroups, were reconstructed using multiple approaches, including Bayesian inference with partitioning strategies. The recovered phylogenies are congruent and show that the Coccinellinae is monophyletic but the Coccidulinae, Epilachninae, Scymninae and Chilocorinae are paraphyletic. The tribe Chilocorini is identified as the sister-group of the Coccinellinae for the first time.  相似文献   

13.
时敏  陈学新  马云  何俊华 《昆虫学报》2007,50(2):153-164
本研究选取矛茧蜂亚科Doryctinae(昆虫纲Insecta:膜翅目Hymenoptera:茧蜂科Braconidae)的6族15属18种做内群,茧蜂科其它7亚科11属11种做外群,首次结合同源核糖体28S rDNA D2基因序列片段和100个形态学和解剖学特征对该亚科进行了系统发育学研究。利用“非圆口类"的小腹茧蜂亚科Microgastrinae为根,以PAUP*4.0和MrBayes 3.0B4软件分别应用最大简约法(MP)和贝叶斯法对矛茧蜂亚科的分子数据和分子数据与非分子数据的结合体进行了运算分析;并以PAUP*4.0对矛茧蜂亚科的28S rDNA D2基因序列片段的碱基组成与碱基替代情况进行了分析。结果表明:矛茧蜂亚科的28S rDNA D2基因序列片段的GC含量在39.33%~48.28%之间变动,而对于碱基替代情况来讲,矛茧蜂亚科各成员间序列变异位点上颠换(transversion)大于转换(transition)。不同的分析算法所产生的系统发育树都表明矛茧蜂亚科是一个界限分明的单系群;在矛茧蜂亚科内,除了吉丁茧蜂族Siragrini为单系群外,其他族(矛茧蜂族Doryctini和方头茧蜂族Hecabolini)都是并系群。对于矛茧蜂亚科内各属之间的相互亲缘关系,不同算法所得的系统发育树的拓扑结构不完全一致,表明矛茧蜂亚科内(属及族)的系统发育关系还有待于进一步研究。  相似文献   

14.
The D2 variable region of 28S ribosomal RNA was sequenced from ethanol specimens or obtained from the literature to provide the first phylogenetie reconstruction of the subfamily Euphorinae (Hymenoptera;Braconidae). Phylogenetic relationships were established by comparing the results using two different methods (distance-based neighbor-joining, NJ; and maximum parsimony, MP) and three different outgroups. The monophyly of the Euphorinae is well supported by all trees generated from molecular data. All phylogenetic reconstructions yielded trees with very similar topologies that only partially resolved the morphologically defined tribes and the relationships within the subfamily. We found no evidence for the monophyletic natures of the tribes Euphorinl, Dinocampini,Perilitini, Syntretini, Comsophorini and Centisitini, but we did find some evidence for the tribes Meteorini and Microctonini. The monophyletic nature of the tribe Meteodnl was well-supported in all trees. We also found the clade containing the LecythodeUa,Microctonus, Orionis and Streblocera to be a monophyletic group, which corresponded to the tribe Microtonini, with Orionis transferred from the tribe Eupholini into Microtonini.Among the genera of Euphorini our results showed strong support for a paraphyletic nature of this group, which can be roughly divided into two clades, one consisting of Aridelus Wesmaelia, the other of Leiophron Peristenus, suggesting both of which may be given tribal rank. The placement of the genus Chrysopophorus is largely uncertain. Two clades,Dinocampus Perilitus and Cosmophorus Rhopalophorus, were constantly resolved in our analyses, with 42-96 and 97-100 bootstrap value support, respectively, suggesting that both of them form monophyletic groups. For members of the Centistini, Pygostolus may be removed and included in Microctonini or other relative tribe.  相似文献   

15.
18S rRNA genes (SSU rDNA) of five newly sequenced species were used as molecular markers to infer phylogenetic relationships within the euglenoids. Two members of the order Euglenales ( Lepocinclis ovata Playfair , Phacus similis Christen), two of the order Eutreptiales ( Distigma proteus Ehrenberg, , D. curvata Pringsheim) and Gyropaigne lefévrei Bourelly et Georges of the order Rhabdomonadales were used in parsimony, maximum likelihood, and distance analyses. All trees derived from SSU rRNA data strongly supported the monophyletic origin of the Euglenozoa, with kinetoplastids as sister clade to the euglenoids and Petalomonas cantuscygni Cann et Pennick diverging at the base of the monophyletic euglenoid lineage. The data also supported the theory that phagotrophic euglenoids arose prior to osmotrophs and phototrophs. A lineage of Peranema trichophorum Ehrenberg and all sequenced Euglenales formed a sister clade to the osmotrophs. This suggests that the evolution of phototrophy within the euglenoids radiated from a single event.  相似文献   

16.
Complete 18S ribosomal RNA sequence data from representatives of all extant pteridophyte lineages together with RNA sequences from different seed plants were used to infer a molecular phylogeny of vascular plants that included all major land plant lineages. The molecular data indicate that lycopsids are monophyletic and are the earliest diverging group within the vascular land plants, whereasPsilotum nudum is more closely related to the seed plants than to other pteridophyte lineages. The phylogenetic trees based on maximum likelihood, parsimony and distance analyses show substantial agreement with the evolutionary relationships of land plants as interpreted from the fossil record.  相似文献   

17.
Within the Polyceridae, Nembrothinae includes some of the most striking and conspicuous sea slugs known, although several features of their biology and phylogenetic relationships remain unknown. This paper reports a phylogenetic analysis based on partial sequences of two mitochondrial genes (cytochrome c oxidase subunit I and 16S rRNA) and morphology for most species included in Nembrothinae. Our phylogenetic reconstructions using both molecular and combined morphological and molecular data support the taxonomic splitting of Nembrothinae into several taxa. Excluding one species (Tambja tentaculata), the monophyly of Roboastra was supported by all the phylogenetic analyses of the combined molecular data. Nembrotha was monophyletic both in the morphological and molecular analyses, always with high support. However, Tambja was recovered as para- or polyphyletic, depending on the analysis performed. Our study also rejects the monophyly of "phanerobranch" dorids based on molecular data.  相似文献   

18.
Phylogenetic relationships among all of the major decapod infraorders have never been estimated using molecular data, while morphological studies produce conflicting results. In the present study, the phylogenetic relationships among the decapod basal suborder Dendrobranchiata and all of the currently recognized decapod infraorders within the suborder Pleocyemata (Caridea, Stenopodidea, Achelata, Astacidea, Thalassinidea, Anomala, and Brachyura) were inferred using 16S mtDNA, 18S and 28S rRNA, and the histone H3 gene. Phylogenies were reconstructed using the model-based methods of maximum likelihood and Bayesian methods coupled with Markov Chain Monte Carlo inference. The phylogenies revealed that the seven infraorders are monophyletic, with high clade support values (bp>70; pP>0.95) under both methods. The two suborders also were recovered as monophyletic, but with weaker support (bp=70; pP=0.74). Although the nodal support values for infraordinal relationships were low (bp<50; pP<0.77) the Anomala and Brachyura were basal to the rest of the 'Reptantia' in both reconstructions and using Bayesian tree topology tests alternate morphology-based hypotheses were rejected (P<0.01). Newly developed multi-locus Bayesian and likelihood heuristic rate-smoothing methods to estimate divergence times were compared using eight fossil and geological calibrations. Estimated times revealed that the Decapoda originated earlier than 437MYA and that the radiation within the group occurred rapidly, with all of the major lineages present by 325MYA. Node time estimation under both approaches is severely affected by the number and phylogenetic distribution of the fossil calibrations chosen. For analyses incorporating fossils as fixed ages, more consistent results were obtained by using both shallow and deep or clade-related calibration points. Divergence time estimation using fossils as lower and upper limits performed well with as few as one upper limit and a single deep fossil lower limit calibration.  相似文献   

19.
Seasonal development and ecology of Anthocoridae are reviewed. Most of 500–600 species in the family are predacious or zoo-phytophagous, and a few other species are exclusively phytophagous or myrmecophilous. Some anthocorids are (and many others can potentially be) used as biological control agents in the Integrated Pest Management (IPM). Overwintering at the adult stage is typical of anthocorid bugs from the temperate zone (especially for the subfamily Anthocorinae). The known exceptions are the embryonic diapause in Tetraphleps abdulghanii, Temnostethus pusillus, and T. gracilis (Anthocorinae) and continuous development through all seasons (a homodynamic seasonal cycle) in Lyctocoris campestris and some species of Xylocoris (Lyctocorinae). In a number of species, especially in the genera Anthocoris and Orius, copulation occurs before overwintering and only females survive winter, a feature very unusual for Heteroptera and insects in general. Many anthocorid species are multivoltine in the temperate zone, producing several (up to 8 in some cases) generations per year. The number of generations typically decreases to 1 per year towards the north. Seasonal development of multivoltine species is chiefly controlled by daylength and temperature. All multivoltine anthocorids of the temperate zone studied to date have photoperiodic response of a long-day type: the females reproduce under the long-day conditions, but enter diapause under the short-day conditions. Towards the south, the photoperiodic response gradually becomes weaker: some populations do not enter diapause even under the short-day conditions, especially at higher temperatures. Termination of diapause is poorly understood in anthocorids, but a number of species require low-temperature treatment for a few weeks prior to the start of oviposition. Alary and color polymorphism are rare in the family, and they have never been shown to be seasonal or environmentally controlled. Pronounced seasonal migrations and aggregation behavior also have never been reported in Anthocoridae. Summer diapause appears to be very unusual for the family, having been reported only in Tetraphleps abdulghanii. The seasonal change of host plants, known in some populations of Anthocoris nemorum and A. nemoralis, is also a seasonal adaptation unusual for Heteroptera. Seasonality of tropical and subtropical species is poorly studied, but anthocorids developing without winter diapause are considered promising agents for the biological control of arthropod pests. Further studies of ecophysiology of Anthocoridae will optimize application and mass rearing of these predators in IPM programs.  相似文献   

20.
Previous phylogenetic analyses of the tribe Phyllotini, one of the largest components of the subfamily Sigmodontinae, have been based on a single source of evidence. In particular, morphological analyses were largely based on craniodental data, almost neglecting the potential phylogenetic information present in the postcranium. Despite the significant advances made in relation to the knowledge of phyllotine phylogeny in recent times, there are several unsolved issues that highlight the importance of a phylogenetic analysis that integrates multiple sources of evidence, including previously considered sources as well as new sources of data. We present here the first combined phylogenetic analysis (morphological and molecular) of phyllotines, which includes the widest taxon and character sampling to date. Our dataset includes 164 morphological characters, of which 83 are postcranial characters, plus 3561 molecular characters, scored for 52 species from 34 genera of Oryzomyalia. In this study 75 postcranial characters not previously considered in this group are thoroughly described, and their utility for solving the relationships within Phyllotini is evaluated by means of different complementary analyses. Phyllotini was retrieved as a monophyletic clade in the combined analysis, with a composition that matches that obtained in most other recent analyses. All genera of phyllotines were monophyletic and show high support values. Abrotrichini, Akodontini and Oryzomyini were also monophyletic. The inclusion of postcranial data appears to be of limited utility to solve the phylogenetic relationships within Phyllotini.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号