首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cells in mechanically challenged environments must cope with high amplitude forces to maintain cell viability and tissue homeostasis. Currently, force-induced cell death and the identity of mechanoprotective factors are not defined. We examined death in cultured periodontal fibroblasts, connective tissue cells that are exposed to heavy applied forces in vivo. Static tensile forces (0.48 piconewtons/microm2 cell area) were applied through magnetite beads coated with collagen or bovine serum albumin. There was a time-dependent increase of the percentage of propidium iodide-permeable cells in force-loaded cultures incubated with collagen but not bovine serum albumin beads, indicating a role for integrins. Cells exhibited reduced mitochondrial membrane potential, increased caspase-3 activation, nuclear condensation, terminal deoxynucleotidyl transferase nick end labeling staining, and detachment from the culture dish. The caspase-3 inhibitor acetyl-Asp-Glu-Val-Asp-aldehyde reduced detachment 3-fold. There was a rapid (<10-s) decrease in plasma membrane potential after force application, which, in filamin A-deficient melanoma cells, contributed to irreversible cell depolarization. In fibroblast cultures, cells with increased permeability to propidium iodide exhibited approximately 2-fold less filamin A content than impermeable cells. Fibroblasts transfected with antisense filamin A constructs or with filamin A constructs without an actin-binding domain exhibited 2-3-fold increased proportions of dead cells relative to controls. We conclude that high amplitude forces delivered through integrins can promote apoptosis in a proportion of cells and that filamin A confers mechanoprotection by preventing membrane depolarization.  相似文献   

2.
The mitogen-activated protein kinase p38 is activated by mechanical force, but the cellular elements that mediate force-induced p38 phosphorylation are not defined. As alpha-smooth muscle actin (SMA) is an actin isoform associated with force generation in fibroblasts, we asked if SMA participates in the activation of p38 by force. Tensile forces (0.65 pn/mum(2)) generated by magnetic fields were applied to collagen-coated magnetite beads bound to Rat-2 cells. Immunoblotting showed that p38alpha was the predominant p38 isoform. Analysis of bead-associated proteins demonstrated that SMA enrichment of collagen receptor complexes required the alpha2beta1 integrin. SMA was present almost entirely as filaments. Swinholide depolymerized SMA filaments and blocked force-induced p38 phosphorylation and force-induced increases of SMA. Knockdown of SMA (70% reduction) using RNA interference did not affect beta-actin but inhibited force-induced p38 phosphorylation by 50%. Inhibition of Rho kinase blocked SMA filament assembly, force-induced increases of SMA, and force-induced p38 activation. Force application increased SMA content and enhanced the association of phosphorylated p38 with SMA filaments. Blockade of p38 phosphorylation by SB203586 abrogated force-induced increases of SMA. In cells transfected with SMA promoter-beta-galactosidase fusion constructs, co-transfection with constitutively active p38 or MKK6 increased SMA promoter activity by 2.5-3-fold. Dominant negative p38 blocked force-induced activation of the SMA promoter. In SMA negative cells, there was no force-induced p38 phosphorylation. We conclude that force-induced p38 phosphorylation is dependent on an SMA filament-dependent pathway that uses a feed-forward amplification loop to synergize force-induced SMA expression with p38 activation.  相似文献   

3.
The myocardium responds to chronic pressure or volume overload by activation and proliferation of cardiac fibroblasts and their differentiation into myofibroblasts. Because alpha-smooth muscle actin (SMA) expression is the classical marker for myofibroblast differentiation, we examined force-induced SMA expression and regulation by specific MAPK pathways. Rat cardiac fibroblasts were separated from myocytes and smooth muscle cells, cultured, and phenotyped by using the presence of SMA, vimentin, and ED-A fibronectin and the absence of desmin as myofibroblast markers. Static tensile forces (0.65 pN/microm2) were applied to fibroblasts via collagen-coated magnetite beads. In neonatal cardiac fibroblasts cultured for 1 day, immunostaining and Western and Northern blotting showed very low basal levels of SMA. After the application of force, there were 1.5- to 2-fold increases of SMA protein and mRNA within 4 h. Force-induced SMA expression was dependent on ERK phosphorylation and on intact actin filaments. In contrast to cells cultured for 1 day, cells grown for 3 days on rigid substrates showed prominent stress fibers and high basal levels of SMA, which were reduced by 32% within 4 h after force application. ERK was not activated by force, but p38 phosphorylation was required for force-induced inhibition of SMA expression. These results indicate that mechanical force-induced regulation of SMA content is dependent on myofibroblast differentiation and by selective activation of MAPKs.  相似文献   

4.
5.
6.
Cells in mechanically challenged environments cope with high-amplitude exogenous forces that can lead to cell death, but the mechanisms that mediate force-induced apoptosis and the identity of mechanoprotective cellular factors are not defined. We assessed apoptosis in NIH 3T3 and HEK (human embryonic kidney)-293 cells exposed to tensile forces applied through β1-integrins. Apoptosis was mediated by Rac-dependent activation of p38α. Depletion of Pak1 (p21-activated kinase 1), a downstream effector of Rac, prevented force-induced p38 activation and apoptosis. Rac was recruited to sites of force transfer by filamin A, which inhibited force-induced apoptosis mediated by Rac and p38α. We conclude that, in response to tensile force, filamin A regulates Rac-dependent signals, which induce apoptosis through Pak1 and p38.  相似文献   

7.
Chronic ventricular pressure overload can regulate expression of alpha-smooth muscle actin (SMA) in cardiac fibroblasts, but it is unclear if force alone or the concomitant activity of angiotensin II is the principal regulatory factor. To test if SMA mRNA and protein in rat cardiac fibroblasts are regulated directly by force, we first induced SMA expression in cultured cells and then applied magnetically generated perpendicular forces through focal adhesions using collagen-coated magnetite beads. Continuous static forces (0.65 pN/micrometer(2)) selectively reduced SMA but not beta-actin mRNA and protein content within 4 h (to 55 +/- 9% of controls); SMA returned to baseline by 8 h. There was no change in SMA content after force application with either plasma or the cellular fibronectin IIIA domain, BSA, or poly-L-lysine beads. The early loss of SMA was apparently due to selective leakage into the cell culture medium. Treatment with angiotensin II (10 nM) abrogated the force-induced reduction of SMA and increased the levels of this protein. The stress kinase p38 was phosphorylated by force, whereas extracellular signal-regulated kinase 1/2 and c-Jun NH(2)-terminal kinase were unaffected. The p38 kinase inhibitor SB-203580 relieved the force-induced SMA reduction. We conclude that force-induced inhibition of SMA is mediated through the p38 kinase pathway, and this pathway antagonizes angiotensin II regulation of SMA.  相似文献   

8.
Mechanical stretch regulates alpha-smooth muscle actin (SMA) expression in myofibroblasts but limited replication and cellular heterogeneity have hampered definitive studies in vitro. We examined the role of applied force in regulating SMA expression in conditionally immortalized cardiac fibroblast lines derived from H-2Kb-tsA58 transgenic mice. When plated in differentiating conditions (37 degrees C without interferon-gamma), transgenic myofibroblasts exhibited vimentin staining, no desmin staining and abundant SMA in well-developed stress fibers that were indistinguishable from controls. Magnetically-generated tensile forces (approximately 500 pN/cell) applied through collagen-coated magnetite beads selectively reduced SMA but not beta-actin mRNA and protein content in both cell types. The early loss of SMA was due in part to selective leakage into the cell culture medium. Depolymerization of actin filaments with cytochalasin D blocked the force-induced reduction of SMA. Cardiac fibroblast lines established from H-2Kb-tsA58 transgenic mice provide a phenotypically stable source of cells for studying the role of physical forces in regulating SMA.  相似文献   

9.
The ability of adhesion receptors to transmit biochemical signals and mechanical force across cell membranes depends on interactions with the actin cytoskeleton. Human filamins are large actin cross-linking proteins that connect integrins to the cytoskeleton. Filamin binding to the cytoplasmic tail of β integrins has been shown to prevent integrin activation in cells, which is important for controlling cell adhesion and migration. The molecular-level mechanism for filamin binding to integrin has been unclear, however, as it was recently demonstrated that filamin undergoes intramolecular auto-inhibition of integrin binding. In this study, using steered molecular dynamics simulations, we found that mechanical force applied to filamin can expose cryptic integrin binding sites. The forces required for this are considerably lower than those for filamin immunoglobulin domain unfolding. The mechanical-force-induced unfolding of filamin and exposure of integrin binding sites occur through stable intermediates where integrin binding is possible. Accordingly, our results support filamin's role as a mechanotransducer, since force-induced conformational changes allow binding of integrin and other transmembrane and intracellular proteins. This observed force-induced conformational change can also be one of possible mechanisms involved in the regulation of integrin activation.  相似文献   

10.
The link between the biochemical and morphological differentiation of granulosa cells was studied by investigating the organization and the expression of cytoskeletal proteins which determine cell shape and contacts. In cells treated with follicle-stimulating hormone (FSH), in a serum- and growth factor-free medium, or with other compounds which elevate cellular cAMP levels, the synthesis of the adherens junction proteins, vinculin, alpha-actinin, and actin was reduced significantly when compared to unstimulated cells (7-fold for vinculin, 5-fold for alpha-actinin, and 3-fold for actin). The in vitro translatability of the mRNAs coding for these proteins and the level of actin mRNA determined by RNA blot hybridization were generally reduced in differentiating cells. The synthesis and the organization of vimentin and tubulin was unaffected during this process, whereas the organization of actin and vinculin was dramatically affected, with FSH-treated cells displaying a diffuse pattern of actin and vinculin, with very little vinculin in adhesion plaques. Gonadotropin-releasing hormone agonist and the phorbol ester 12-O-tetradecanoylphorbol-13-acetate which are known to antagonize the cAMP-mediated biochemical differentiation of granulosa cells by reducing cAMP levels or by activating protein kinase C and phospholipid turnover, blocked to a large extent the FSH-induced effect on the adherens junction proteins. Epidermal growth factor, which blocked the FSH-induced cAMP increase, but not the FSH-induced progesterone production, failed to block the synthesis of vinculin, alpha-actinin, and actin. Cytochalasin B could induce steroidogenesis and similar changes in the synthesis of these cytoskeletal proteins, whereas fibronectin, which causes cell spreading, blocked in part the FSH-induced effect on the expression of cytoskeletal proteins. The modulation of cytoskeletal proteins may therefore be an essential feature of programmed differentiation events leading to the final phenotype of granulosa cells.  相似文献   

11.
Cells in mechanically active environments are subjected to high-amplitude exogenous forces that can lead to cell death. Filamin A (FLNa) may protect cells from mechanically induced death by mechanisms that are not yet defined. We found that mechanical forces applied through integrins enhanced Rac-mediated lamellae formation in FLNa-null but not FLNa-expressing cells. Suppression of force-induced lamella formation was mediated by repeat 23 of FLNa, which also binds FilGAP, a recently discovered Rac GTPase-activating protein (GAP). We found that FilGAP is targeted to sites of force transfer by FLNa. This force-induced redistribution of FilGAP was essential for the suppression of Rac activity and lamellae formation in cells treated with tensile forces. Depletion of FilGAP by small interfering RNA, inhibition of FilGAP activity by dominant-negative mutation or deletion of its FLNa-binding domain, all resulted in a dramatic force-induced increase of the percentage of annexin-V–positive cells. FilGAP therefore plays a role in protecting cells against force-induced apoptosis, and this function is mediated by FLNa.  相似文献   

12.
Transcytosis via caveolae is critical for maintaining vascular homeostasis by regulating the tissue delivery of macromolecules, hormones, and lipids. In the present study, we test the hypothesis that interactions between F-actin cross-linking protein filamin A and caveolin-1 facilitate the internalization and trafficking of caveolae. Small interfering RNA-mediated knockdown of filamin A, but not filamin B, reduced the uptake and transcytosis of albumin by ∼35 and 60%, respectively, without altering the actin cytoskeletal structure or cell–cell adherens junctions. Mobility of both intracellular caveolin-1–green fluorescent protein (GFP)-labeled vesicles measured by fluorescence recovery after photobleaching and membrane-associated vesicles measured by total internal reflection-fluorescence microscopy was decreased in cells with reduced filamin A expression. In addition, in melanoma cells that lack filamin A (M2 cells), the majority of caveolin-1-GFP was localized on the plasma membrane, whereas in cells in which filamin A expression was reconstituted (A7 cells and M2 cells transfected with filamin A-RFP), caveolin-1-GFP was concentrated in intracellular vesicles. Filamin A association with caveolin-1 in endothelial cells was confirmed by cofractionation of these proteins in density gradients, as well as by coimmunoprecipitation. Moreover, this interaction was enhanced by Src activation, associated with increased caveolin-1 phosphorylation, and blocked by Src inhibition. Taken together, these data suggest that filamin A association with caveolin-1 promotes caveolae-mediated transport by regulating vesicle internalization, clustering, and trafficking.  相似文献   

13.
In mechanically active environments mammalian cells must cope with potentially injurious forces to survive, but the most proximal mechanosensors are largely unknown. How mechanoprotective responses to applied forces are generated and regulated is still a mystery. We consider recent evidence that suggests cellular mechanoprotective adaptations involve a coordinated remodeling of the cell membrane and the associated cytoskeleton. The plasma membrane ``protects' the cytoskeleton by maintenance of intracellular ionic balance and can modulate force-induced cytoskeletal rearrangements by stretch-activated (e.g., Ca2+) ion channels and mechanosensitive enzymes (e.g., Phospholipase A2 and Phospholipase C). Conversely, the cytoskeleton protects the plasma membrane by providing structural support, reinforcement of the cortical framework at sites of force application, modulation of mechanosensitive ion channels and by potentially contributing to the membrane resealing process after mechanical rupture. We suggest that the plasma membrane and the cytoskeleton are partners in the cytoprotective response to physical forces. Received: 8 September 1999/Revised: 15 December 1999  相似文献   

14.
Cells in mechanically active environments form extensive, cadherin-mediated intercellular junctions that are important in tissue remodeling and differentiation. Currently, it is unknown whether adherens junctions in connective tissue fibroblasts transmit mechanical signals and coordinate multicellular adaptations to physical forces. We hypothesized that cadherins mediate intercellular mechanotransduction by activating calcium-permeable, stretch-sensitive channels. Human gingival fibroblasts in suspension were plated on established homotypic monolayer cultures. The cells formed intercellular adherens junctions. Controlled mechanical forces were applied to intercellular junctions by electromagnets acting on cells containing internalized magnetite beads. At early but not later stages of intercellular attachment, force application visibly displaced magnetite bead-loaded cells and induced robust Ca(2+) transients (65 +/- 9.4 nm above base line). Similar Ca(2+) transients were induced by force application to anti-N-cadherin antibody-coated magnetite beads. Ca(2+) responses depended on influx of extracellular Ca(2+) through mechanosensitive channels because both Ca(2+) chelation and gadolinium chloride abolished the response and MnCl(2) quenched fura-2 fluorescence after force application. Force application induced accumulation of microinjected rhodamine-actin at intercellular contacts; actin assembly was inhibited by buffering intracellular calcium fluxes. Our results indicate that mechanical forces applied to adherens junctions activate stretch-sensitive calcium-permeable channels and increase actin polymerization. We suggest that N-cadherins in fibroblasts are intercellular mechanotransducers.  相似文献   

15.
Cell adhesion and spreading on collagen, which are essential processes for development and wound healing in mammals, are mediated by β1 integrins and the actin and intermediate filament cytoskeletons. The mechanisms by which these separate cytoskeletal systems interact to regulate β1 integrins and cell spreading are poorly defined. We previously reported that the actin cross-linking protein filamin A binds the intermediate filament protein vimentin and that these two proteins co-regulate cell spreading. Here we used deletional mutants of filamin A to define filamin A-vimentin interactions and the subsequent phosphorylation and re-distribution of vimentin during cell spreading on collagen. Imaging of fixed and live cell preparations showed that phosphorylated vimentin is translocated to the cell membrane during spreading. Knockdown of filamin A inhibited cell spreading and the phosphorylation and re-distribution of vimentin. Knockdown of filamin A and/or vimentin reduced the cell surface expression and activation of β1 integrins, as indicated by immunoblotting of plasma membrane-associated proteins and shear force assays. In vitro pull-down assays using filamin A mutants showed that both vimentin and protein kinase C? bind to repeats 1-8 of filamin A. Reconstitution of filamin-A-deficient cells with full-length filamin A or filamin A repeats 1-8 restored cell spreading, vimentin phosphorylation, and the cell surface expression of β1 integrins. We conclude that the binding of filamin A to vimentin and protein kinase Cε is an essential regulatory step for the trafficking and activation of β1 integrins and cell spreading on collagen.  相似文献   

16.
17.
Induction of apoptosis by tensile forces is an important determinant of connective tissue destruction in osteoarthritis and periodontal diseases. We examined the role of molecular components of the unfolded protein response in force-induced apoptosis. Magnetic fields were used to apply tensile force through integrins to cultured fibroblasts bound with collagen-coated magnetite beads. Tensile force induced caspase 3 cleavage, DNA fragmentation, depolarization of mitochondria, and induction of CHOP10, all indicative of activation of apoptosis. Immunoblotting, immunocytochemistry, and release of Ca(2+) from the endoplasmic reticulum showed evidence for both physical and functional associations between bound beads and the endoplasmic reticulum. Force-induced apoptosis was not detected in PERK null cells, but reconstitution of wild-type PERK in PERK null cells restored the apoptotic response. Force-induced apoptosis did not require PKR, GCN2, eIF2alpha, or CHOP10. Furthermore, force more than 24 h did not activate other initiators of the unfolded protein response including IRE-1 and ATF6. However, force-induced activation of caspase 3 was dependent on caspase 9 but was independent of mitochondria. We conclude that force-induced apoptosis depends on a novel function of PERK that occurs in addition to its canonical role in the unfolded protein response.  相似文献   

18.
Human filamins are 280-kDa proteins containing an N-terminal actin-binding domain followed by 24 characteristic repeats. They also interact with a number of other cellular proteins. All of those identified to date, with the exception of actin, bind to the C-terminal third of a filamin. In a yeast two-hybrid search of a human placental library, using as bait repeats 10-18 of filamin B, we isolated a cDNA coding for a novel 374 amino acid protein containing a proline-rich domain near its N terminus and two LIM domains at its C terminus. We term this protein filamin-binding LIM protein-1, FBLP-1. Yeast two-hybrid studies with deletion mutants localized the areas of interaction in FBLP-1 to its N-terminal domain and in filamin B to repeats 10-13. FBLP-1 mRNA was detected in a variety of tissues and cells including platelets and endothelial cells. We also have identified two FBLP-1 variants. Both contain three C-terminal LIM domains, but one lacks the N-terminal proline-rich domain. Transfection of FBLP-1 into 293A cells promoted stress fiber formation, and both FBLP-1 and filamin B localized to stress fibers in the transfected cells. The association between filamin B and FBLP-1 may play a hitherto unknown role in cytoskeletal function, cell adhesion, and cell motility.  相似文献   

19.
《Cell》1986,45(3):407-415
We have analyzed intracellular distributions of mRNAs for the cytoskeletal proteins actin, vimentin, and tubulin by in situ hybridization. Although polyadenylated RNA was homogeneously distributed throughout the cell, actin mRNA demonstrated a nonhomogeneous distribution in 95% of randomly selected chicken embryonic myoblasts and fibroblasts, as detected by isotopic and nonisotopic techniques. Actin mRNA concentrations were highest at cell extremities, generally in lamellipodia, where grain densities were up to 16-fold higher than in areas near the nucleus. Vimentin mRNA, unlike actin mRNA, was distributed near the nucleus. Tubulin mRNA appeared most concentrated in the peripheral cytoplasm. These results demonstrate that cytoplasmic mRNAs are localized in specific, nonrandom cellular patterns and that localized concentrations of specific proteins may result from corresponding localization of their respective mRNAs. Hence, actin mRNA distribution may result in increased concentration of actin filaments in lamellipodia of motile cells.  相似文献   

20.
The ability of cell shape to modulate proteoglycan synthesis in tendon fibroblasts was investigated by placing freshly isolated tendon fibroblasts and chondrocytes into primary culture either as adherent cells on a polystyrene substratum or as rounded cells in alginate beads. Chondrocytes and cells from the compressed region of adult tendon synthesized predominantly large proteoglycan when maintained either as dense monolayers, where actin stress fibers in the cytoskeleton were prominent, or in alginate beads, where actin fibers could not be detected. After three rounds of proliferation as elongated adherent cells the synthesis of large proteoglycan was greatly reduced, i.e. the chondrocytic cells underwent 'dedifferentiation'. Cells from the tensional region of adult tendon synthesized predominantly small proteoglycan when in primary culture as a monolayer, after proliferation on a flat substratum, or as round cells in alginate beads. Fibroblasts from the tensional region of newborn tendon showed no tendency toward increased synthesis of large proteoglycan when maintained as round cells in alginate beads for 7 weeks. In tendon there appears to be a mechanically induced developmental transition from fibroblastic to chondrocytic cells. However, neither the change to a rounded cell shape nor the lack of organized cytoskeletal actin fibers was sufficient to induce chondrocyte-like proteoglycan synthesis in differentiated tendon fibroblasts in culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号