首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coiled-coil domain containing 134 (CCDC134) has been shown to serve as an immune cytokine to exert antitumor effects and to act as a novel regulator of hADA2a to affect PCAF acetyltransferase activity. While Ccdc134 loss causes abnormal brain development in mice, the significance of CCDC134 in neuronal development in vivo is controversial. Here, we report that CCDC134 is highly expressed in Purkinje cells (PCs) at all developmental stages and regulates mammalian cerebellar development in a cell type-specific manner. Selective deletion of Ccdc134 in mouse neural stem cells (NSCs) caused defects in cerebellar morphogenesis, including a decrease in the number of PCs and impairment of PC dendritic growth, as well as abnormal granule cell development. Moreover, loss of Ccdc134 caused progressive motor dysfunction with deficits in motor coordination and motor learning. Finally, Ccdc134 deficiency inhibited Wnt signaling but increased Ataxin1 levels. Our findings provide evidence that CCDC134 plays an important role in cerebellar development, possibly through regulating Wnt signaling and Ataxin1 expression levels, and in controlling cerebellar function for motor coordination and motor learning, ultimately making it a potential contributor to cerebellar pathogenesis.  相似文献   

2.
3.
Since testicular orphan nuclear receptor 4 (TR4) was cloned, its physiological function has remained largely unknown. Throughout postnatal development, TR4-knockout (TR4-/-) mice exhibited behavioral deficits in motor coordination, suggesting impaired cerebellar function. Histological examination of the postnatal TR4-/- cerebellum revealed gross abnormalities in foliation; specifically, lobule VII in the anterior vermis was missing. Further analyses demonstrated that the laminations of the TR4-/- cerebellar cortex were changed, including reductions in the thickness of the molecular layer and the internal granule layer, as well as delayed disappearance of the external granule cell layer (EGL). These lamination irregularities may result from interference with granule cell proliferation within the EGL, delayed inward migration of postmitotic granule cells, and a higher incidence of apoptotis. In addition, abnormal development of Purkinje cells was observed in the postnatal TR4-/- cerebellum, as evidenced by aberrant dendritic arborization and reduced calbindin staining intensity. Expression of Pax-6, Sonic Hedgehog (Shh), astrotactin (Astn), reelin, and Cdk-5, genes correlated with the morphological development of the cerebellum, is reduced in the developing TR4-/- cerebellum. Together, our findings suggest that TR4 is required for normal cerebellar development.  相似文献   

4.
The cerebellum maintains balance and orientation, refines motor action, stores motor memories, and contributes to the timing aspects of cognition. We generated two mouse lines for making Cre recombinase-mediated gene disruptions largely confined to adult cerebellar granule cells. For this purpose we chose the GABA(A) receptor alpha6 subunit gene, whose expression marks this cell type. Here we describe mouse lines expressing Cre recombinase generated by 1) Cre knocked into the native alpha6 subunit gene by homologous recombination in embryonic stem cells; and 2) Cre recombined into an alpha6 subunit gene carried on a bacterial artificial chromosome (BAC) genomic clone. The fidelity of Cre expression was tested by crossing the mouse lines with the ROSA26 reporter mice. The particular alpha6BAC clone we identified will be valuable for delivering other gene products to cerebellar granule cells.  相似文献   

5.
6.
Abstract: We studied the neurotoxic effects of β25–35 amyloid fragment (β25–35) on cerebellar granule cells and the intracellular mechanisms involved. Treatment for 3 days with peptide greatly reduced the survival of 1 day in vitro (DIV) cultures kept in 5 m M KCl but slightly modified the survival of 25 m M KCl-cultured cerebellar granule cells. We also studied the effect of glutamate on survival of undifferentiated cerebellar granules. We report no neurotoxic effect of glutamate on 3-DIV-treated cultures; whereas in β25–35-pretreated cells, a significant glutamate toxicity was observed. Treatment of 6-DIV cells with β25–35, performed with 25 m M KCl, induced a late but significant neurotoxic effect after 5 days of exposure, and death occurred within 8 days. Differentiated cerebellar granule cells were also sensitive to glutamate-related neurotoxicity, and this effect was enhanced by β25–35 pretreatment. To study the molecular mechanisms underlying the neurotoxic effects of β25–35, changes in calcium homeostasis after glutamate stimulation were evaluated in control and β25–35-treated cells. β25–35 did not affect basal [Ca2+]i but modified glutamate-induced [Ca2+]i increase, causing a sustained plateau phase that persisted even after the removal of the agonist. These results show that β25–35 induces neurotoxicity in cerebellar granule cells and that this effect is related to modifications in the control of calcium homeostasis.  相似文献   

7.
Histological and neurochemical changes related to motor dysfunction observed in rats after neonatal treatment with nitrosoureas were examined. Neonatal rats received subcutaneous injections of methylnitrosourea (MNU: 0.125 mmol/kg, s.c.) or ethylnitrosourea (ENU: 0.25 mmol/kg, s.c.) daily at 4,5,6 and 7 days post partum, a period of cerebellar granule cell, stellate cell and basket cell formation. At 14 days and 45 days after birth, MNU-treated rats displayed a lowering in motor coordination skills measured by tests of retainment ability on a rod of 26 mm diameter, chinningclimbing ability on parallel rods or retainment ability on a rotating rod. Histological examination at 14 days after birth showed a cerebellar hypoplasia with reduced cellularity of the internal granule cell layer and a disperse disposition of Purkinje cells in the granule cell layer. Cerebellar growth and cerebellar content and concentration of DNA were remarkably reduced in the MNU-treated rat. The degree of the reduction in cerebellar content of glutamic acid paralleled the degree of the cerebellar hypoplasia at 14 and 45 days after birth. In contrast, the concentrations of gamma-aminobutyric acid, acetylcholine, 5-hydroxytryptamine and norepinephrine were significantly increased by MNU treatment. ENU treatment control did not exert any significant changes in the neurotransmitters and motor coordination. These results suggest that the motor dysfunctions observed in MNU treated rats are induced by unbalanced output activities from Purkinje cells to motor neurons.  相似文献   

8.
Long-term depression at parallel fiber-Purkinje cell synapses (PF-PC LTD) has been proposed to be required for cerebellar motor learning. To date, tests of this hypothesis have sought to interfere with receptors (mGluR1) and enzymes (PKC, PKG, or αCamKII) necessary for induction of PF-PC LTD and thereby determine if cerebellar motor learning is impaired. Here, we tested three mutant mice that target the expression of PF-PC LTD by blocking internalization of AMPA receptors. Using three different cerebellar coordination tasks (adaptation of the vestibulo-ocular reflex, eyeblink conditioning, and locomotion learning on the Erasmus Ladder), we show that there is no motor learning impairment in these mutant mice that lack PF-PC LTD. These findings demonstrate that PF-PC LTD is not essential for cerebellar motor learning.  相似文献   

9.
The implications for motor learning of the model developed in the previous article are analyzed using idealized Pavlovian eyelid conditioning trials, a simple example of cerebellar motor learning. Results suggest that changes in grPkj synapses produced by a training trial disrupt equilibrium and lead to subsequent changes in the opposite direction that restore equilibrium. We show that these opposing phases would make the net plasticity at each grPkj synapse proportional to the change in its activity during the training trial, as influenced by a factor that precludes plasticity when changes in activity are inconsistent. This yields an expression for the component of granule cell activity that supports learning, the across-trials consistency vector, the square of which determines the expected rate of learning. These results suggest that the equilibrium maintained by the cerebellar-olivary system must be disrupted in a specific and systematic manner to promote cerebellar-mediated motor learning.  相似文献   

10.
Pax6 has been implicated in cerebellar granule cell development, however the neonatal lethality of the Sey/Sey mutant has precluded a more detailed study of this late developing neuronal type. In this study we use experimental mouse chimeras made from wildtype and Pax6-null embryos to circumvent early lethality and assess the developmental potential of mutant cells in the construction of the cerebellum. We have identified the granule cell as a direct target of mutant gene action, with glia and Purkinje cells being affected in what is largely a non-cell autonomous manner.Most dramatically, in postnatal day 21 (P21) chimeras, mutant cells are largely absent in the anterior and posterior cerebellum while present in central lobules, but amidst disorganized cerebellar architecture. Analysis of P0/1 and P10 chimeras demonstrates a profound temporally based defect where mutant cells colonize the anterior and posterior EGL but fail to migrate to the IGL. Mutant granule cells in the central lobules can reach the IGL in an abnormal manner, with large streams of cells forming raphes through the molecular layer.These studies provide new insights into the role of Pax6 in postnatal cerebellar development that pinpoint the granule cell as an intrinsic target of the mutant gene and key events in the life of the developing granule cell that depend upon normal Pax6 expression.  相似文献   

11.
F3/contactin (CNTN1) and TAG-1 (CNTN2) are closely related axonal glycoproteins that are differentially regulated during development. In the cerebellar cortex TAG-1 is expressed first as granule cell progenitors differentiate in the premigratory zone of the external germinal layer. However, as these cells begin radial migration, TAG-1 is replaced by F3/contactin. To address the significance of this differential regulation, we have generated transgenic mice in which F3/contactin expression is driven by TAG-1 gene regulatory sequences, which results in premature expression of F3/contactin in granule cells. These animals (TAG/F3 mice) display a developmentally regulated cerebellar phenotype in which the size of the cerebellum is markedly reduced during the first two postnatal weeks but subsequently recovers. This is due in part to a reduction in the number of granule cells, most evident in the external germinal layer at postnatal day 3 and in the inner granular layer between postnatal days 8 and 11. The reduction in granule cell number is accompanied by a decrease in precursor granule cell proliferation at postnatal day 3, followed by an increase in the number of cycling cells at postnatal day 8. In the same developmental window the size of the molecular layer is markedly reduced and Purkinje cell dendrites fail to elaborate normally. These data are consistent with a model in which deployment of F3/contactin on granule cells affects proliferation and differentiation of these neurons as well as the differentiation of their synaptic partners, the Purkinje cells. Together, these findings indicate that precise spatio-temporal regulation of TAG-1 and F3/contactin expression is critical for normal cerebellar morphogenesis.  相似文献   

12.
We investigated calretinin expression in cerebellar granule cells of 30-day-old leaner mice to understand possible changes in calcium homeostasis due to the calcium channel mutation that these mice carry. Quantitative in situ hybridization histochemistry showed decreased calretinin mRNA expression in the leaner cerebellum. Immunohistochemical staining also revealed decreased calretinin immunoreactivity in the leaner cerebellum. To exclude the effect of granule cell loss that occurs in the leaner mouse when comparing cerebellar calretinin expression, the number of granule cells per unit area in the cerebellum was compared to the wild-type cerebellum. Granule cell counts per unit area of cerebellum revealed similar numbers of granule cells present in wild-type and leaner mice. Laser capture microdissection (LCM) was employed to obtain an equal number of granule cells from wild-type and leaner mice. Western blot analysis with LCM-procured cerebellar granule cells showed decreased calretinin expression in leaner granule cells. These results indicate that there is an absolute decrease in calretinin expression in leaner granule cells even when granule cell loss is taken into account. Decreased calretinin expression in leaner granule cells may contribute to altered calcium buffering capacity. This alteration could be an adaptive change due to the calcium channel dysfunction, and may result in abnormal neuronal excitability and gene expression.  相似文献   

13.
During development, Met signaling regulates a range of cellular processes including growth, differentiation, survival and migration. The Met gene encodes a tyrosine kinase receptor, which is activated by Hgf (hepatocyte growth factor) ligand. Altered regulation of human MET expression has been implicated in autism. In mouse, Met signaling has been shown to regulate cerebellum development. Since abnormalities in cerebellar structure have been reported in some autistic patients, we have used the zebrafish to address the role of Met signaling during cerebellar development and thus further our understanding of the molecular basis of autism. We find that zebrafish met is expressed in the cerebellar primordium, later localizing to the ventricular zone (VZ), with the hgf1 and hgf2 ligand genes expressed in surrounding tissues. Morpholino knockdown of either Met or its Hgf ligands leads to a significant reduction in the size of the cerebellum, primarily as a consequence of reduced proliferation. Met signaling knockdown disrupts specification of VZ-derived cell types, and also reduces granule cell numbers, due to an early effect on cerebellar proliferation and/or as an indirect consequence of loss of signals from VZ-derived cells later in development. These patterning defects preclude analysis of cerebellar neuronal migration, but we have found that Met signaling is necessary for migration of hindbrain facial motor neurons. In summary, we have described roles for Met signaling in coordinating growth and cell type specification within the developing cerebellum, and in migration of hindbrain neurons. These functions may underlie the correlation between altered MET regulation and autism spectrum disorders.  相似文献   

14.
15.
Cerebellar granule neurons migrate from the external granule cell layer (EGL) to the internal granule cell layer (IGL) during postnatal morphogenesis. This migration process through 4 different layers is a complex mechanism which is highly regulated by many secreted proteins. Although chemokines are well-known peptides that trigger cell migration, but with the exception of CXCL12, which is responsible for prenatal EGL formation, their functions have not been thoroughly studied in granule cell migration. In the present study, we examined cerebellar CXCL14 expression in neonatal and adult mice. CXCL14 mRNA was expressed at high levels in adult mouse cerebellum, but the protein was not detected. Nevertheless, Western blotting analysis revealed transient expression of CXCL14 in the cerebellum in early postnatal days (P1, P8), prior to the completion of granule cell migration. Looking at the distribution of CXCL14 by immunohistochemistry revealed a strong immune reactivity at the level of the Purkinje cell layer and molecular layer which was absent in the adult cerebellum. In functional assays, CXCL14 stimulated transwell migration of cultured granule cells and enhanced the spreading rate of neurons from EGL microexplants. Taken together, these results revealed the transient expression of CXCL14 by Purkinje cells in the developing cerebellum and demonstrate the ability of the chemokine to stimulate granule cell migration, suggesting that it must be involved in the postnatal maturation of the cerebellum.  相似文献   

16.
The Purkinje neuron, one of the most fascinating components of the cerebellar cortex, is involved in motor learning, motor coordination, and cognitive function. Purkinje cell protein 2 (Pcp2/L7) expression is highly restricted to Purkinje and retinal bipolar cells, where it has been exploited to enable highly specific, Cre recombinase-mediated, site-specific recombination. Previous studies showed that mice carrying a Cre transgene produced by insertion of Cre cDNA into a small 2.88-kb Pcp2 DNA fragment expressed Cre in Purkinje cells; however, some Cre activity was also observed outside the target tissues. Here, we used Red-mediated recombineering to insert Cre cDNA into a 173-kb BAC carrying the entire intact Pcp2 gene, and characterize the resultant BAC/Cre transgenic mice for Cre expression. We show that BAC/Cre transgenic mice have exclusive Cre expression in Purkinje and bipolar cells and nowhere else. These mice will facilitate Purkinje cell and retinal bipolar cell-specific genetic manipulation.  相似文献   

17.
With the aid of microarray and PCR analysis, this investigation sought expression profiles of BDNF-regulated genes in cultured mouse cerebellar granule cells and addressed their relevance to gene regulation in developing granule cells in vivo. Many of the BDNF-upregulated and downregulated genes identified were upregulated and downregulated, respectively, during cerebellar development. This developmental change was, at least partly, prevented in the TrkB receptor-deficient cerebellum. The BDNF-upregulated genes were distributed in either postmigratory or both premigratory and postmigratory granule cells at postnatal day 8 (P8) and were still present in mature granule cells at P21. In contrast, the BDNF-downregulated genes were predominantly expressed in premigratory granule cells at P8 and disappeared at P21. Furthermore, many of the BDNF-upregulated gene products are implicated in signaling cascades of N-methyl-D-aspartate receptors and MAP kinase. The results indicate that BDNF signaling plays a pivotal role in promoting gene expression in granule cell development and maturation.  相似文献   

18.
Successful learning of a motor skill requires repetitive training. Once the skill is mastered, it can be remembered for a long period of time. The durable memory makes motor skill learning an interesting paradigm for the study of learning and memory mechanisms. To gain better understanding, one scientific approach is to dissect the process into stages and to study these as well as their interactions. This article covers the growing evidence that motor skill learning advances through stages, in which different storage mechanisms predominate. The acquisition phase is characterized by fast (within session) and slow learning (between sessions). For a short period following the initial training sessions, the skill is labile to interference by other skills and by protein synthesis inhibition, indicating that consolidation processes occur during rest periods between training sessions. During training as well as rest periods, activation in different brain regions changes dynamically. Evidence for stages in motor skill learning is provided by experiments using behavioral, electrophysiological, functional imaging, and cellular/molecular methods.  相似文献   

19.
Tissue plasminogen activator (tPA) mRNA was localized in the developing cerebellum and the potentials role of tPA in migration of cerebellar granule cells was investigated. Proteolytic assays and Northern blots showed little variation in levels of tPA proteolytic activity or tPA mRNA expression in the developing cerebellum. The distribution of cerebellar tPA mRNA at different ages was visualized by in situ hybridization histochemistry. At postnatal day 7 (P7), most labeled cells were in the internal granule layer or developing white matter, and very few if any premigratory granule cells contained tPA mRNA. Although the molecular layer contained labeled cells at all ages, cell counts indicated that a greater percentage of cells in the molecular layer contained tPA mRNA during adulthood than during the period of granule cell migration. The most striking change in tPA mRNA expression was in Purkinje neurons, most of which began to express tPA mRNA between P7 and P14. The potential role of tPA in granule cell migration was investigated by performing migration assays in cerebellar slice explants in the presence or absence of protease inhibitors. The presence of inhibitors did not affect the distance that granule cells migrated. Data in the present study do not support a role for tPA in granule neuron migration; however, they do indicate that tPA is both spatially and temporally regulated during cerebellar development. Possible functions of tPA in the cerebellum are discussed. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号