首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Currently, optimization of feed efficiency is one of the main challenges in improvement programs of livestock and poultry genetics. The objective of this review is to present the genetic aspects of feed efficiency related traits in meat-type chicken and possible ways to reduce the environmental impact of poultry meat production with effective breeding. Basic measures of feed efficiency are defined and the genetic background of these traits, including a review of heritabilities is described. Moreover, a number of genomic regions and candidate genes determining feed efficiency traits of broilers that were detected over the past decades are described. Classical and genomic selection strategies for feed efficiency in the context of its relationships with other performance traits are discussed as well. Finally, future strategies to improve feed digestibility are described as it is expected that they will decrease wastes and greenhouse gas emission. Further genetic improvement of feed efficiency, should be examined jointly with appropriate feeding strategies in broilers.  相似文献   

2.
The field of behavioral genetics has enormous potential to uncover both genetic and environmental influences on normal and deviant behavior. Behavioral-genetic methods are based on a solid foundation of theories and methods that successfully have delineated components of complex traits in plants and animals. New resources are now available to dissect the genetic component of these complex traits. As specific genes are identified, we can begin to explore how these interact with environmental factors in development. How we interpret such findings, how we ask new questions, how we celebrate the knowledge, and how we use or misuse this knowledge are all important considerations. These issues are pervasive in all areas of human research, and they are especially salient in human behavioral genetics.  相似文献   

3.
Human molecular genetics has successfully identified the genes involved in several monogenic disorders. It now aims at pinpointing the genetic determinants of polygenic or complex traits with a strong genetic component. This constitutes a new challenge. We discuss the methodological and practical aspects of identifying such genes as well as the challenges facing physicians that will have to use efficiently these new diagnostic tools.  相似文献   

4.
Asthma is regarded as a multifactorial inflammatory disorder arising as a result of inappropriate immune responses in genetically susceptible individuals to common environmental antigens. However, the precise molecular basis is unknown. To identify genes for susceptibility to three asthma-related traits, airway hyperresponsiveness (AHR), eosinophil infiltration, and allergen-specific serum IgE levels, we conducted a genetic analysis using SMXA recombinant inbred (RI) strains of mice. Quantitative trait locus analysis detected a significant locus for AHR on chromosome 17. For eosinophil infiltration, significant loci were detected on chromosomes 9 and 16. Although we could not detect any significant loci for allergen-specific serum IgE, analysis of consomic strains showed that chromosomes 17 and 19 carried genes that affected this trait. We detected genetic susceptibility loci that separately regulated the three asthma-related phenotypes. Our results suggested that different genetic mechanisms regulate these asthma-related phenotypes. Genetic analyses using murine RI and consomic strains enhance understanding of the molecular mechanisms of asthma in human.  相似文献   

5.
Seed dormancy and germination.   总被引:25,自引:0,他引:25  
  相似文献   

6.
The interest in performing gene-environment interaction studies has seen a significant increase with the increase of advanced molecular genetics techniques. Practically, it became possible to investigate the role of environmental factors in disease risk and hence to investigate their role as genetic effect modifiers. The understanding that genetics is important in the uptake and metabolism of toxic substances is an example of how genetic profiles can modify important environmental risk factors to disease. Several rationales exist to set up gene-environment interaction studies and the technical challenges related to these studies-when the number of environmental or genetic risk factors is relatively small-has been described before. In the post-genomic era, it is now possible to study thousands of genes and their interaction with the environment. This brings along a whole range of new challenges and opportunities. Despite a continuing effort in developing efficient methods and optimal bioinformatics infrastructures to deal with the available wealth of data, the challenge remains how to best present and analyze genome-wide environmental interaction (GWEI) studies involving multiple genetic and environmental factors. Since GWEIs are performed at the intersection of statistical genetics, bioinformatics and epidemiology, usually similar problems need to be dealt with as for genome-wide association gene-gene interaction studies. However, additional complexities need to be considered which are typical for large-scale epidemiological studies, but are also related to "joining" two heterogeneous types of data in explaining complex disease trait variation or for prediction purposes.  相似文献   

7.
Cancer susceptibility is a complex interaction of an individual's genetic composition and environmental exposures. Huge strides have been made in understanding cancer over the past 100 yr, from recognition of cancer as a genetic disease, to identification of specific carcinogens, isolation of oncogenes, and recognition of tumor suppressors. A tremendous amount of knowledge has accumulated about the etiology of cancer. Cancer genetics has played a significant role in these discoveries. Analysis of high-risk familial cancers has led to the discovery of new tumor suppressor genes and important cancer pathways. These families, however, represent only a small fraction of cancer in the general population. Most cancer is instead probably the result of an intricate interaction of polymorphic susceptibility genes with the sea of environmental exposures that humans experience. Although the central cadre of cancer genes is known, little is understood about the peripheral genes that likely comprise the polymorphic susceptibility loci. The challenge for cancer genetics is therefore to move forward from the mendelian genetics of the rare familial cancer syndromes into the field of quantitative trait loci, susceptibility factors, and modifier genes. By identifying the genes that modulate an individual's susceptibility to cancer after an environmental exposure, researchers will be able to gain important insights into human biology, cancer prevention, and cancer treatment. This article summarizes the current state of quantitative trait genetic analysis and the tools, both proven and theoretical, that may be used to unravel one of the great challenges in cancer genetics.  相似文献   

8.
9.
Genetic factors influence virtually every human disorder, determining disease susceptibility or resistance and interactions with environmental factors. Our recent successes in the genetic mapping and identification of the molecular basis of mendelian traits have been remarkable. Now, attention is rapidly shifting to more-complex, and more-prevalent, genetic disorders and traits that involve multiple genes and environmental effects, such as cardiovascular disease, diabetes, rheumatoid arthritis and schizophrenia. Rather than being due to specific and relatively rare mutations, complex diseases and traits result principally from genetic variation that is relatively common in the general population. Unfortunately, despite extensive efforts by many groups, only a few genetic regions and genes involved in complex diseases have been identified. Completion of the human genome sequence will be a seminal accomplishment, but it will not provide an immediate solution to the genetics of complex traits.  相似文献   

10.
Genetic factors influence virtually every human disorder, determining disease susceptibility or resistance and interactions with environmental factors. Our recent successes in the genetic mapping and identification of the molecular basis of mendelian traits have been remarkable. Now, attention is rapidly shifting to more-complex, and more-prevalent, genetic disorders and traits that involve multiple genes and environmental effects, such as cardiovascular disease, diabetes, rheumatoid arthritis and schizophrenia. Rather than being due to specific and relatively rare mutations, complex diseases and traits result principally from genetic variation that is relatively common in the general population. Unfortunately, despite extensive efforts by many groups, only a few genetic regions and genes involved in complex diseases have been identified. Completion of the human genome sequence will be a seminal accomplishment, but it will not provide an immediate solution to the genetics of complex traits.  相似文献   

11.
Genetic factors influence virtually every human disorder, determining disease susceptibility or resistance and interactions with environmental factors. Our recent successes in the genetic mapping and identification of the molecular basis of mendelian traits have been remarkable. Now, attention is rapidly shifting to more-complex, and more-prevalent, genetic disorders and traits that involve multiple genes and environmental effects, such as cardiovascular disease, diabetes, rheumatoid arthritis and schizophrenia. Rather than being due to specific and relatively rare mutations, complex diseases and traits result principally from genetic variation that is relatively common in the general population. Unfortunately, despite extensive efforts by many groups, only a few genetic regions and genes involved in complex diseases have been identified. Completion of the human genome sequence will be a seminal accomplishment, but it will not provide an immediate solution to the genetics of complex traits.  相似文献   

12.
Beta2-adrenergic receptor (beta2AR) gene polymorphisms have been reported to be associated with various asthma-related traits in different racial/ethnic populations. However, it is unknown whether beta2AR genetic variants are associated with asthma in African Americans. In this study, we have examined whether there is association between beta2AR genetic variants and asthma in African Americans. We have recruited 264 African American asthmatic subjects and 176 matched healthy controls participating in the Study of African Americans, Asthma, Genes and Environments (SAGE). We genotyped seven known and recently identified beta2AR SNP variants, then tested genotype and haplotype association of asthma-related traits with the beta2AR SNPs in our African American cohort with adjustment of confounding effect due to admixture background and environmental risk factors. We found a significant association of the SNP -47 (Arg-19Cys) polymorphism with DeltaFEF(25-75), a measure of bronchodilator drug responsiveness, in African American asthmatics after correction for multiple testing (P = 0.001). We did not observe association of the SNP +46 (Arg16Gly) variant with asthma disease diagnosis and asthma-related phenotypes. In contrast to previous results between the Arg16Gly variant and traits related to bronchodilator responsiveness, our results indicate that the Arg-19Cys polymorphism in beta upstream peptide may play an important role in bronchodilator drug responsiveness in African American subjects. Our findings highlight the importance of investigating genetic risk factors for asthma in different populations.  相似文献   

13.
Genetic markers provide potentially sensitive indicators of changes in environmental conditions because the genetic constitution of populations is normally altered well before populations become extinct. Genetic indicators in populations include overall genetic diversity, genetic changes in traits measured at the phenotypic level, and evolution at specific loci under selection. While overall genetic diversity has rarely been successfully related to environmental conditions, genetically based changes in traits have now been linked to the presence of toxins and both local and global temperature shifts. Candidate loci for monitoring stressors are emerging from information on how specific genes influence traits, and from screens of random loci across environmental gradients. Drosophila research suggests that chromosomal regions under recent intense selection can be identified from patterns of molecular variation and a high frequency of transposable element insertions. Allele frequency changes at candidate loci have been linked to pesticides, pollutants and climate change. Nevertheless, there are challenges in interpreting allele frequencies in populations, particularly when a large number of loci control a trait and when interactions between alleles influence trait expression. To meet these challenges, population samples should be collected for longitudinal studies, and experimental programmes should be undertaken to link variation at candidate genes to ecological processes.  相似文献   

14.
The common forms of abnormal glucose regulation including type 2 diabetes and impaired glucose tolerance with pathological implications on vascular biology have a complex aetiology involving multiple cross-talks between genetic influences and important environmental modifying factors. Due to complexity of the genetics and the clinical heterogeneity of these disorders it has proven difficult to apply the same methodological approaches that have recently given insights into the molecular genetics of several single-gene disorders of glucose metabolism. This review gives some reflections on the challenges posed by the current hypotheses about the genetics of the widespread forms of abnormal glucose regulation as well as on the strengths and limitations of the methodological approaches applied to unravel the genetic components of common disorders. Also, we review recent progress in relation to a model for the pathogenesis of the various stages of abnormal glucose regulation based on the concepts of thrifty genes of metabolism and pro-inflammation and genes responsible for the appearance of impaired pancreatic beta-cell function and insulin signalling under the pressure of a westernized environment.  相似文献   

15.
Quantitative genetics, or the genetics of complex traits, is the study of those characters which are not affected by the action of just a few major genes. Its basis is in statistical models and methodology, albeit based on many strong assumptions. While these are formally unrealistic, methods work. Analyses using dense molecular markers are greatly increasing information about the architecture of these traits, but while some genes of large effect are found, even many dozens of genes do not explain all the variation. Hence, new methods of prediction of merit in breeding programmes are again based on essentially numerical methods, but incorporating genomic information. Long-term selection responses are revealed in laboratory selection experiments, and prospects for continued genetic improvement are high. There is extensive genetic variation in natural populations, but better estimates of covariances among multiple traits and their relation to fitness are needed. Methods based on summary statistics and predictions rather than at the individual gene level seem likely to prevail for some time yet.  相似文献   

16.
This paper discusses how a genetical approach to plant physiology can contribute to research underpinning the production of new crop varieties. It highlights the interactions between genetics and plant breeding and how the current advances in genetics and the new science of genomics can contribute to our understanding of the genetical control of key agronomic traits ‐ the process of ‘translating’ traits to identified and mapped genes. Advances in genomics, such as the sequencing of whole genomes and expressed sequence tags, are producing information on genes and gene structures, but without knowing their function. A great deal more biology will be necessary to translate gene structure to function ‐ the process of translating genes to traits. Combining these ‘forward’ and ‘reverse’ genetic approaches will allow us to get comprehensive knowledge of the biology of agronomic traits at the physiological, biochemical and molecular levels, so that the ‘circuitry’ of our crop plants can be elucidated. This will enable plant breeders to manipulate crop phenotype using marker‐assisted breeding or genetic engineering approaches with a precision not previously possible.  相似文献   

17.
Monitoring and predicting evolutionary changes underlying current environmental modifications are complex challenges. Recent approaches to achieve these objectives include assessing the genetic variation and effects of candidate genes on traits indicating adaptive potential. In birds, for example, short tandem repeat polymorphism at four candidate genes (CLOCK, NPAS2, ADCYAP1, and CREB1) has been linked to variation in phenological traits such as laying date and timing of migration. However, our understanding of their importance as evolutionary predictors is still limited, mainly because the extent of genotype–environment interactions (GxE) related to these genes has yet to be assessed. Here, we studied a population of Tree swallow (Tachycineta bicolor) over 4 years in southern Québec (Canada) to assess the relationships between those four candidate genes and two phenological traits related to reproduction (laying date and incubation duration) and also determine the importance of GxE in this system. Our results showed that NPAS2 female genotypes were nonrandomly distributed across the study system and formed a longitudinal cline with longer genotypes located to the east. We observed relationships between length polymorphism at all candidate genes and laying date and/or incubation duration, and most of these relationships were affected by environmental variables (breeding density, latitude, or temperature). In particular, the positive relationships detected between laying date and both CLOCK and NPAS2 female genotypes were variable depending on breeding density. Our results suggest that all four candidate genes potentially affect timing of breeding in birds and that GxE are more prevalent and important than previously reported in this context.  相似文献   

18.
The potential role of epigenomic dysregulation in complex human disease   总被引:3,自引:1,他引:2  
One of the major challenges in genetics today is to understand the causes of complex genetic diseases. The genes involved in these disorders are thought to interact with poorly-defined environmental factors to exert their phenotypic effects. An emerging view is that epigenetics also plays a role in complex diseases. Here we review the evidence that epigenetic regulatory mediators can be influenced by several environmental factors, that variability of the epigenome can cause variation in phenotypes, and that epigenetic dysregulation can be heritable across generations. Assays that map epigenetic regulatory patterns across the whole genome have recently become available, which enable us to explore the epigenomic influences on complex diseases, thus offering new avenues for diagnostic biomarker development and therapeutic strategies.  相似文献   

19.
During the initial stages of the genome revolution human genetics was hugely successful in discovering the underlying genes for monogenic diseases. Over 3,000 monogenic diseases have been discovered with simple patterns of inheritance. The unravelling and identification of the genetic variants underlying complex or multifactorial traits, however, is proving much more elusive. There have been over 1,000 significant variants found for many quantitative and binary traits yet they explain very little of the estimated genetic variance or heritability evident from family analysis. There are many hypotheses as to why this might be the case. This apparent lack of information is holding back the clinical application of genetics and shedding doubt on whether more of the same will reveal where the remainder of the variation lies. Here we explore the current state of play, the types of variants we can detect and how they are currently exploited. Finally we look at the future challenges we must face to persuade the human genome to yield its secrets.  相似文献   

20.
Despite recent advances in conservation genetics and related disciplines and the growing impact that conservation genetics is having in conservation biology, our knowledge on several key issues in the field is still insufficient. Here we identify some of these issues together with addressing several paradoxes which have to be solved before conservation genetics can face new challenges that are appearing in the transitory phase from the population genetics into the population genomics era. Most of these issues, paradoxes and challenges, like the central dogma of conservation genetics, the computational, theoretical and laboratory experiment achievements and limitations in the conservation genetics field have been discussed. Further knowledge on the consequences of inbreeding and outbreeding depression in wild populations as well as the capacity of small populations to adapt to local environmental conditions is also urgently needed. The integration of experimental, theoretical and applied conservation genetics will contribute to improve our understanding of methodological and applied aspects of conservation genetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号