首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dendritic cells (DCs) are primary antigen-presenting cells involved in interactions with T cells leading to the proliferation of TH1 or TH2 cell types. In asthma, predominance of TH2 cells appears to be responsible for disease pathogenesis. Differentiation of TH2 cells is driven by a variety of factors such as the expression of high levels of costimulatory molecules, the cytokine profile, and the subset of DCs. Many inflammatory cells involved in the pathogenesis of asthma either directly or indirectly modulate DC function. Traditional treatments for asthma decrease the number of airway DCs in animals as well as in patients with asthma. Immunomodulators including interleukin (IL)-10, transforming growth factor (TGF)-beta, cytosine-phosphate-guanosine-containing oligodeoxynucleotides (CpG-ODN), 1alpha,25-dihydroxyvitamin D3, and fetal liver tyrosine kinase 3 ligand (Flt3L) are involved in the modulation of the function of DCs. Based on the critical review of the interaction between DCs and other inflammatory cells, we propose that activation of T cells by DCs and sensitization to inhaled allergen and resulting airway inflammation are dependent on plasmacytoid and myeloid subset of lung DCs to induce an immune response or tolerance and are tightly regulated by T-regulatory cells. Effects of various therapeutic agents to modulate the function of lung myeloid DCs have been discussed.  相似文献   

2.
Bronchial asthma is a chronic airway inflammatory condition with high morbidity, and effective treatments for asthma are limited. Allergen-specific immunotherapy can only induce peripheral immune tolerance and is not sustainable. Exploring new therapeutic strategies is of great clinical importance. Recombinant adenovirus (rAdV) was used as a vector to make cells expressing cytotoxic T lymphocyte-associated antigen-4-immunoglobulin (CTLA4Ig) a soluble CTLA4 immunoglobulin fusion protein. Dendritic cells (DCs) were modified using the rAdVs together with allergens. Then these modified DCs were transplanted to mice before allergen sensitization. The persistence and specificity of immune tolerance were evaluated in mice challenged with asthma allergens at 3 and 7 months. DCs modified by CTLA4Ig showed increased IL-10 secretion, decreased IL-12 secretion, and T cell stimulation in vitro. Mice treated with these DCs in the early neonatal period developed tolerance against the allergens that were used to induce asthma in the adult stage. Asthma symptoms, lung damage, airway reactivity, and inflammatory response all improved. Humoral immunity indices showed that this therapeutic strategy strongly suppressed mice immune responses and was maintained for as long as 7 months. Furthermore, allergen cross-sensitization and challenge experiments demonstrated that this immune tolerance was allergen-specific. Treatment with CTLA4Ig modified DCs in the early neonatal period, inducing persistent and allergen-specific immune tolerance to asthma in adult mice. Our results suggest that it may be possible to develop a vaccine for asthma.  相似文献   

3.
Previous studies have shown that histamine is able to modulate the function of dendritic cells (DCs). Histamine seems to be required for the normal differentiation of DCs. Moreover, it is capable of stimulating the chemotaxis of immature DCs and of promoting the differentiation of T CD4+ cells into a Th2 profile. In this study, we analyzed whether histamine was able to modulate endocytosis and cross-presentation mediated by immature DCs. Our results show that both functions are stimulated by histamine. Endocytosis of soluble HRP and FITC-OVA and cross-presentation of soluble OVA were markedly increased by histamine. Interestingly, stimulation of endocytosis and cross-presentation appeared to be mediated through different histamine receptors. In fact, the enhancement of endocytosis was prevented by the histamine2 receptor (H2R) antagonist cimetidine, whereas the stimulation of cross-presentation was prevented by the H3R/H4R antagonist thioperamide. Of note, contrasting with the observations made with soluble Ags, we found that histamine did not increase either the uptake of OVA-attached to latex beads, or the cross-presentation of OVA immobilized on latex beads. This suggests that the ability of histamine to increase endocytosis and cross-presentation is dependent on the Ag form and/or the mechanisms through which the Ag is internalized by DCs. Our results support that histamine may favor cross-presentation of soluble allergens by DCs enabling the activation of allergen-specific T CD8+ cells, which appears to play an important role in the development of allergic responses in the airway.  相似文献   

4.
In rodents, airway dendritic cells (DCs) capture inhaled Ag, undergo maturation, and migrate to the draining mediastinal lymph nodes (MLN) to initiate the Ag-specific T cell response. However, the role of human DCs in the pathogenesis of the Th2 cell-mediated disease asthma remains to be clarified. Here, by using SCID mice engrafted with T cells from either house dust mite (HDM)-allergic patients or healthy donors, we show that DCs pulsed with Der p 1, one of the major allergens of HDM, and injected intratracheally into naive animals migrated into the MLN. In the MLN, Der p 1-pulsed DCs from allergic patients induced the proliferation of IL-4-producing CD4(+) T cells, whereas those from healthy donors induced IFN-gamma-secreting cells. In reconstituted human PBMC-reconstituted SCID mice primed with pulsed DCs from allergic patients, repeated exposure to aerosols of HDM induced 1) a strong pulmonary inflammatory reaction rich in T cells and eosinophils, 2) an increase in IL-4 and IL-5 production in the lung lavage fluid, and 3) increased IgE production compared with that in mice primed with unpulsed DCs. All these effects were reduced following in vivo neutralization of the CCR7 ligand secondary lymphoid tissue chemokine. These data in human PBMC-reconstituted SCID mice show that monocyte-derived DCs might play a key role in the pathogenesis of the pulmonary allergic response by inducing Th2 effector function following migration to the MLN.  相似文献   

5.
Asthma is characterized by a predominant T(H)2 type immune response to airborne allergens. Controlling T(H)2 cell function has been proposed as therapy for this disease. We show here that ligands for the nuclear receptor peroxisome proliferator activated receptor (PPAR)gamma significantly reduced the immunological symptoms of allergic asthma in a murine model of this disease. A PPARgamma ligand, 15-deoxy-delta(12,14)-prostaglandin J(2), significantly inhibited production of the T(H)2 type cytokine IL-5 from T cells activated in vitro. More importantly, in a murine model of allergic asthma, mice treated orally with ciglitazone, a potent synthetic PPARgamma ligand, had significantly reduced lung inflammation and mucous production following induction of allergic asthma. T cells from these ciglitazone treated mice also produced less IFNgamma, IL-4, and IL-2 upon rechallenge in vitro with the model allergen. Our results suggest that ligands for PPARgamma may be effective treatments for asthmatic patients.  相似文献   

6.
Formyl peptide receptors (FPRs) are chemoattractant receptors that mediate inflammatory cell responses to infection. Recent evidence indicates that noneosinophilic asthma phenotypes can be developed by both Th1 and Th17 cell responses when exposed to LPS-containing allergens. In this study, we evaluated the effects of airway activation of FPRs by their synthetic agonist, Trp-Lys-Tyr-Met-Val-D-Met (W-peptide), on the development of Th1 and Th17 cell responses in a noneosinophilic asthma mouse model. A noneosinophilic asthma mouse model was generated by intranasal sensitization with 10 μg of LPS plus 75 μg of OVA on days 0, 1, 2, and 7. Mice were then challenged with 50 μg of OVA alone on days 14, 15, 21, and 22. W-peptide was administered during the sensitization period, and immune and inflammatory responses were evaluated after OVA challenge. Lung inflammation after OVA challenge was partly abolished by airway activation of FPRs during sensitization. Maturation of dendritic cells (DCs) and migration of DCs from the lung to lung-draining lymph nodes were inhibited by FPR activation. In addition, airway activation of FPRs inhibited allergen-specific T cell proliferation in the lymph nodes. Production of IL-12 and IL-6 (Th1- and Th17-polarizing cytokines) from lung DCs was decreased by airway activation of FPRs. This effect resulted in the inhibition of allergen-specific Th1 and Th17 cell responses. Airway activation of FPRs during sensitization effectively prevents the development of Th1 and Th17 cell responses induced by LPS-containing allergens via multiple mechanisms, such as inhibition of DC maturation and migration and the production of Th1- and Th7-polarizing cytokines.  相似文献   

7.
H2-O is a nonpolymorphic class II molecule whose biological role remains to be determined. H2-O modulates H2-M function, and it has been generally believed to be expressed only in B lymphocytes and thymic medullary epithelial cells, but not in dendritic cells (DCs). In this study, we report identification of H2-O expression in primary murine DCs. Similar to B cells, H2-O is associated with H2-M in DCs, and its expression is differentially regulated in DC subsets as well as during cell maturation and activation. Primary bone marrow DCs and plasmacytoid DCs in the spleen and lymph nodes express MHC class II and H2-M, but not the inhibitor H2-O. In contrast, myeloid DCs in secondary lymphoid organs express both H2-M and H2-O. In CD8alphaalpha(+) DCs, the ratio of H2-O to H2-M is higher than in CD8alphaalpha(-) DCs. In DCs generated from GM-CSF- and IL-4-conditioned bone marrow cultures, H2-O expression is not detected regardless of the maturation status of the cells. Administration of LPS induces in vivo activation of myeloid DCs, and this activation is associated with down-regulation of H2-O expression. Primary splenic DCs from H2-O(-/-) and H2-O(+/+) mice present exogenous protein Ags to T cell hybridomas similarly well, but H2-O(-/-) DCs induce stronger allogeneic CD4 T cell response than the H2-O(+/+) DCs in mixed leukocyte reactions. Our results suggest that H2-O has a broader role than previously appreciated in regulating Ag presentation.  相似文献   

8.
Dendritic cells (DCs) have been shown to play a key role in the initiation and maintenance of immune responses to microbial pathogens as well as to allergens, but the exact mechanisms of their involvement in allergic responses and Th2 cell differentiation have remained elusive. Using retagging, we identified DC-SIGN as a novel receptor involved in the initial recognition and uptake of the major house dust mite and dog allergens Der p 1 and Can f 1, respectively. To confirm this, we used gene silencing to specifically inhibit DC-SIGN expression by DCs followed by allergen uptake studies. Binding and uptake of Der p 1 and Can f 1 allergens was assessed by ELISA and flow cytometry. Intriguingly, our data showed that silencing DC-SIGN on DCs promotes a Th2 phenotype in DC/T cell co-cultures. These findings should lead to better understanding of the molecular basis of allergen-induced Th2 cell polarization and in doing so paves the way for the rational design of novel intervention strategies by targeting allergen receptors on innate immune cells or their carbohydrate counterstructures on allergens.  相似文献   

9.
10.
Our previous studies showed that an adenovirus (Ad) serotype 5 vector expressing Flt3 ligand (Ad-FL) as nasal adjuvant activates CD11c(+) dendritic cells (DCs) for the enhancement of antigen (Ag)-specific IgA antibody (Ab) responses. In this study, we examined the molecular mechanism for activation of CD11c(+) DCs and their roles in induction of Ag-specific Th1- and Th2-cell responses. Ad-FL activated CD11c(+) DCs expressed increased levels of the Notch ligand (L)-expression and specific mRNA. When CD11c(+) DCs from various mucosal and systemic lymphoid tissues of mice given nasal OVA plus Ad-FL were cultured with CD4(+) T cells isolated from non-immunized OVA TCR-transgenic (OT II) mice, significantly increased levels of T cell proliferative responses were noted. Furthermore, Ad-FL activated DCs induced IFN-γ, IL-2 and IL-4 producing CD4(+) T cells. Of importance, these APC functions by Ad-FL activated DCs were down-regulated by blocking Notch-Notch-L pathway. These results show that Ad-FL induces CD11c(+) DCs to the express Notch-ligands and these activated DCs regulate the induction of Ag-specific Th1- and Th2-type cytokine responses.  相似文献   

11.
Dendritic cells (DCs) are integral to the differentiation of T helper cells into T helper type 1 T(H)1, T(H)2 and T(H)17 subsets. Interleukin-6 (IL-6) plays an important part in regulating these three arms of the immune response by limiting the T(H)1 response and promoting the T(H)2 and T(H)17 responses. In this study, we investigated pathways in DCs that promote IL-6 production. We show that the allergen house dust mite (HDM) or the mucosal adjuvant cholera toxin promotes cell surface expression of c-Kit and its ligand, stem cell factor (SCF), on DCs. This dual upregulation of c-Kit and SCF results in sustained signaling downstream of c-Kit, promoting IL-6 secretion. Intranasal administration of antigen into c-Kit-mutant mice or neutralization of IL-6 in cultures established from the lung-draining lymph nodes of immunized wild-type mice blunted the T(H)2 and T(H)17 responses. DCs lacking functional c-Kit or those unable to express membrane-bound SCF secreted lower amounts of IL-6 in response to HDM or cholera toxin. DCs expressing nonfunctional c-Kit were unable to induce a robust T(H)2 or T(H)17 response and elicited diminished allergic airway inflammation when adoptively transferred into mice. Expression of the Notch ligand Jagged-2, which has been associated with T(H)2 differentiation, was blunted in DCs from c-Kit-mutant mice. c-Kit upregulation was specifically induced by T(H)2- and T(H)17-skewing stimuli, as the T(H)1-inducing adjuvant, CpG oligodeoxynucleotide, did not promote either c-Kit or Jagged-2 expression. DCs generated from mice expressing a catalytically inactive form of the p110delta subunit of phosphatidylinositol-3 (PI3) kinase (p110(D910A)) secreted lower amounts of IL-6 upon stimulation with cholera toxin. Collectively, these results highlight the importance of the c-Kit-PI3 kinase-IL-6 signaling axis in DCs in regulating T cell responses.  相似文献   

12.
Oral tolerance is a process that allows generation of systemic unresponsiveness to food antigens. Hence if the same antigen is introduced systemically even under immunogenic conditions it does not induce immune responsiveness. Dendritic cells (DCs) have been identified as essential players in this process. DCs in the gut are located in a strategic position as they can interact directly with luminal antigens or indirectly after their transcytosis across epithelial cells. DCs can then migrate to associated lymphoid tissues to induce tolerance. Antigen presenting cells in the gut are specialized in function and have divided their labour so that there are cells capable to migrate to the draining mesenteric lymph node for induction of T regulatory cells, while other subsets are resident and are required to enforce tolerance locally in the gut after food antigen exposure. In this review, I shall summarize the characteristics of antigen presenting cells in the gut and their involvement in oral tolerance induction. In addition, I will also emphasize that tolerance to food allergens may be contributed by plasmacytoid DCs in the liver that participate to the elimination or anergy of allergen-specific CD8 T cells. Hence specialized functions are associated to different subsets of antigen presenting cells and different organs.  相似文献   

13.
For cancer immunotherapy the loading of dendritic cells (DCs) with whole tumor cell lysate preparations represents a simple and promising approach for presentation of tumor-associated antigens (TAAs), avoiding the disadvantages of HLA-matching and definition of TAAs. The aim of this study was to investigate whether lysate-pulsed DCs efficiently cross-prime CD8+ T cells and induce a strong T(H)1 cell response, as compared to DCs pulsed with specific peptides (FLU M1 and Melan-A/Mart-1). As a model system breast carcinoma cell lysate from either MCF-7 or MDA-MB-231 cell lines (both HLA-A*0201+) expressing the TAA MUC1 were selected. Both cell lines expressed MUC1, the epithelial mucin, which is a large molecular weight O-glycosylated protein expressed in the majority of breast, ovarian, and other epithelial malignancies and is under evaluation as a target antigen in cancer immunotherapy. We developed a simple lysate preparation method to solubilize all cell proteins without degradation. For loading of monocyte-derived dendritic cells, 100 microgmL(-1) of breast carcinoma cell lysate was used, accompanied by an adjuvant consisting of tumor necrosis factor-alpha (TNF-alpha) and prostaglandin-E2. T cells were co-cultivated with lysate or peptide pulsed DCs and were restimulated weekly. Before cultivation, and after the 3rd stimulation, tetramer frequencies for the MUC1 epitopes M1.2 and F7 as well as for the FLU M1 and Melan-A/Mart-1 epitopes were determined. After stimulation with lysate, higher frequencies for M1.2-specific T cells were observed compared with the F7 epitope. Furthermore, we found expansion factors for M1.2-specific T cells that had been stimulated with MCF-7 lysate-pulsed DCs of up to 43-fold. The analysis of typical T(H)1/T(H)2 cytokines (IFN-gamma, TNF-alpha, IL-12p70, IL-2, IL-4, IL-5, and IL-10) revealed a strong T(H)1 response. These results provide evidence for a strong T(H)1 polarization and cross-priming of MUC1-specific CD8+ T cells and demonstrate the feasibility of using lysate-pulsed dendritic cells in breast cancer immunotherapy.  相似文献   

14.
Allergens are capable of polarizing the T cell immune response toward a Th2 cytokine profile in a process that is mediated by dendritic cells (DCs). Proteases derived from Aspergillus species (Aspergillus proteases; AP) have been shown to induce a Th2-like immune response when administered directly to the airway and without adjuvant or prior priming immunizations at sites remote from the lung in models of allergic airway disease. To explore mechanisms that underlie the Th2 immune response, we have investigated the effect of AP on DC function. We found that human DCs derived from CD14(+) monocytes from healthy donors underwent partial maturation when incubated with AP. Naive allogeneic T cells primed with AP-activated DCs proliferated and displayed enhanced production of IL-4 and reduced expression of IFN-gamma as compared with naive T cells primed with LPS-activated DCs. Global gene expression analysis of DCs revealed relatively low expression of IL-12p40 in AP-activated DCs as compared with those activated by LPS, and this was confirmed at the protein level by ELISA. Exogenous IL-12p70 added to cocultures of DCs and T cells resulted in reduced IL-4 and increased IFN-gamma expression when DCs were activated with AP. When the proteolytic activity of AP was neutralized by chemical inactivation it failed to up-regulate costimulatory molecules on DCs, and these DCs did not prime a Th2 response in naive T cells. These findings provide a mechanism for explaining how proteolytically active allergens could preferentially induce Th2 responses through limited maturation of DCs with reduced production of IL-12.  相似文献   

15.
Steroid-resistant asthma comprises an important source of morbidity in patient populations. T(H)17 cells represent a distinct population of CD4(+) Th cells that mediate neutrophilic inflammation and are characterized by the production of IL-17, IL-22, and IL-6. To investigate the function of T(H)17 cells in the context of Ag-induced airway inflammation, we polarized naive CD4(+) T cells from DO11.10 OVA-specific TCR-transgenic mice to a T(H)2 or T(H)17 phenotype by culturing in conditioned medium. In addition, we also tested the steroid responsiveness of T(H)2 and T(H)17 cells. In vitro, T(H)17 cytokine responses were not sensitive to dexamethasone (DEX) treatment despite immunocytochemistry confirming glucocorticoid receptor translocation to the nucleus following treatment. Transfer of T(H)2 cells to mice challenged with OVA protein resulted in lymphocyte and eosinophil emigration into the lung that was markedly reduced by DEX treatment, whereas T(H)17 transfer resulted in increased CXC chemokine secretion and neutrophil influx that was not attenuated by DEX. Transfer of T(H)17 or T(H)2 cells was sufficient to induce airway hyperresponsiveness (AHR) to methacholine. Interestingly, AHR was not attenuated by DEX in the T(H)17 group. These data demonstrate that polarized Ag-specific T cells result in specific lung pathologies. Both T(H)2 and T(H)17 cells are able to induce AHR, whereas T(H)17 cell-mediated airway inflammation and AHR are steroid resistant, indicating a potential role for T(H)17 cells in steroid-resistant asthma.  相似文献   

16.
Asthma has been considered a T helper 2 (T(H)2) cell-associated inflammatory disease, and T(H)2-type cytokines, such as interleukin-4 (IL-4), IL-5 and IL-13, are thought to drive the disease pathology in patients. Although atopic asthma has a substantial T(H)2 cell component, the disease is notoriously heterogeneous, and recent evidence has suggested that other T cells also contribute to the development of asthma. Here, we discuss the roles of different T cell subsets in the allergic lung, consider how each subset can contribute to the development of allergic pathology and evaluate how we might manipulate these cells for new asthma therapies.  相似文献   

17.
Allergic asthma is a chronic airway inflammatory disease in which exposure to allergens causes intermittent attacks of breathlessness, airway hyper-reactivity, wheezing, and coughing. Allergic asthma has been called a "syndrome" resulting from a complex interplay between genetic and environmental factors. Worldwide, >300 million individuals are affected by this disease, and in the United States alone, it is estimated that >35 million people, mostly children, suffer from asthma. Although animal models, linkage analyses, and genome-wide association studies have identified numerous candidate genes, a solid definition of allergic asthma has not yet emerged; however, such studies have contributed to our understanding of the multiple pathways to this syndrome. In contrast with animal models, in which T-helper 2 (T(H)2) cell response is the dominant feature, in human asthma, an initial exposure to allergen results in T(H)2 cell-dependent stimulation of the immune response that mediates the production of IgE and cytokines. Re-exposure to allergen then activates mast cells, which release mediators such as histamines and leukotrienes that recruit other cells, including T(H)2 cells, which mediate the inflammatory response in the lungs. In this minireview, we discuss the current understanding of how associated genetic and environmental factors increase the complexity of allergic asthma and the challenges allergic asthma poses for the development of novel approaches to effective treatment and prevention.  相似文献   

18.
Helicobacter pylori infection leads to chronic gastric inflammation. The current study determined the response of human APCs, NK cells, and T cells toward the bacteria in vitro. Human monocyte-derived dendritic cells (DC) were incubated with bacteria for 48 h. Intact H. pylori at a multitude of infection 5 stimulated the expression of MHC class II (4- to 7-fold), CD80, and CD86 B7 molecules (10- to 12-fold) and the CD83 costimulatory molecule (>30-fold) as well as IL-12 secretion (>50-fold) in DCs, and thereby, strongly induced their maturation and activation. CD56(+)/CD4(-) NK cells, as well as CD4(+)/CD45RA(+) naive T cells, were isolated and incubated with DCs pulsed with intact bacteria or different cellular fractions. Coculture of H. pylori-pulsed DCs with NK cells strongly potentiated the secretion of TNF-alpha and IFN-gamma. Coculture of naive T cells with H. pylori-pulsed DCs significantly enhanced TNF-alpha, IFN-gamma, and IL-2 secretion as well as T-bet mRNA levels, while GATA-3 mRNA was lowered. However, the effect appeared attenuated compared with coculture with Escherichia coli. A greater stimulation was seen with naive T cells and DCs pulsed with H. pylori membrane preparations. Intact H. pylori potently induced the maturation and activation of human monocyte-derived DC and thereby promote NK and Th1 effector responses. The strong activation of NK cells may be important for the innate immune response. Th1-polarized T cells were induced especially by incubation with membrane preparations of H. pylori, suggesting that membrane proteins may account for the specific adaptive immune response.  相似文献   

19.
The incidence of allergic asthma has almost doubled in the past two decades. Numerous epidemiological studies have linked the recent surge in atopic disease with decreased exposure to infections in early childhood as a result of a more westernized lifestyle. However, a clear mechanistic explanation for how this might occur is still lacking. An answer might lie in the presently unfolding story of various regulatory T-cell populations that can limit adaptive immune responses, including T helper 2 (T(H)2)-cell-mediated allergic airway disease.  相似文献   

20.
CD8alpha+ and CD8alpha- dendritic cells (DCs) arise from committed bone marrow progenitors and can induce or regulate immune reactivity. Previously, the maturational status of CD8alpha-(myeloid) DCs has been shown to influence allogeneic T cell responses and allograft survival. Although CD8alpha+ DCs have been implicated in central tolerance and found to modulate peripheral T cell function, their influence on the outcome of organ transplantation has not been examined. Consistent with their equivalent high surface expression of MHC and costimulatory molecules, sorted mature C57BL/10J (B10; H2(b)) DCs of either subset primed naive, allogeneic C3H/HeJ (C3H; H2(k)) recipients for Th1 responses. Paradoxically and in contrast to their CD8alpha- counterparts, mature CD8alpha+ B10 DCs given systemically 7 days before transplant markedly prolonged B10 heart graft survival in C3H recipients. This effect was associated with specific impairment of ex vivo antidonor T cell proliferative responses, which was not reversed by exogenous IL-2. Further analyses of possible underlying mechanisms indicated that neither immune deviation nor induction of regulatory cells was a significant contributory factor. In contrast to the differential capacity of the mature DC subsets to affect graft outcome, immature CD8alpha+ and CD8alpha- DCs administered under the same experimental conditions significantly prolonged transplant survival. These observations demonstrate for the first time the innate capacity of CD8alpha+ DCs to regulate alloimmune reactivity and transplant survival, independent of their maturation status. Mobilization of such a donor DC subset with capacity to modulate antidonor immunity may have significant implications for the therapy of allograft rejection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号