首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 360 毫秒
1.

Background

The human apolipoprotein E (APOE) gene is polymorphic, with three primary alleles (E2, E3, E4) that differ at two key non-synonymous sites. These alleles are functionally different in how they bind to lipoproteins, and this genetic variation is associated with phenotypic variation for several medical traits, including cholesterol levels, cardiovascular health, Alzheimer’s disease risk, and longevity. The relative frequencies of these alleles vary across human populations, and the evolution and maintenance of this diversity is much debated. Previous studies comparing human and chimpanzee APOE sequences found that the chimpanzee sequence is most similar to the human E4 allele, although the resulting chimpanzee protein might function like the protein coded for by the human E3 allele. However, these studies have used sequence data from a single chimpanzee and do not consider whether chimpanzees, like humans, show intra-specific and subspecific variation at this locus.

Methodology and Principal Findings

To examine potential intraspecific variation, we sequenced the APOE gene of 32 chimpanzees. This sample included 20 captive individuals representing the western subspecies (P. troglodytes verus) and 12 wild individuals representing the eastern subspecies (P. t. schweinfurthii). Variation in our resulting sequences was limited to one non-coding, intronic SNP, which showed fixed differences between the two subspecies. We also compared APOE sequences for all available ape genera and fossil hominins. The bonobo APOE protein is identical to that of the chimpanzee, and the Denisovan APOE exhibits all four human-specific, non-synonymous changes and appears functionally similar to the human E4 allele.

Conclusions

We found no coding variation within and between chimpanzee populations, suggesting that the maintenance of functionally diverse APOE polymorphisms is a unique feature of human evolution.  相似文献   

2.

Background

Blood-sucking lice in the genera Pediculus and Pthirus are obligate ectoparasites of great apes. Unlike most bilateral animals, which have 37 mitochondrial (mt) genes on a single circular chromosome, the sucking lice of humans have extensively fragmented mt genomes. The head louse, Pediculus capitis, and the body louse, Pe. humanus, have their 37 mt genes on 20 minichromosomes. The pubic louse, Pthirus pubis, has its 34 mt genes known on 14 minichromosomes. To understand the process of mt genome fragmentation in the sucking lice of great apes, we sequenced the mt genome of the chimpanzee louse, Pe. schaeffi, and compared it with the three human lice.

Results

We identified all of the 37 mt genes typical of bilateral animals in the chimpanzee louse; these genes are on 18 types of minichromosomes. Seventeen of the 18 minichromosomes of the chimpanzee louse have the same gene content and gene arrangement as their counterparts in the human head louse and the human body louse. However, five genes, cob, trnS1, trnN, trnE and trnM, which are on three minichromosomes in the human head louse and the human body louse, are together on one minichromosome in the chimpanzee louse.

Conclusions

Using the human pubic louse, Pt. pubis, as an outgroup for comparison, we infer that a single minichromosome has fragmented into three in the lineage leading to the human head louse and the human body louse since this lineage diverged from the chimpanzee louse ~6 million years ago. Our results provide insights into the process of mt genome fragmentation in the sucking lice in a relatively fine evolutionary scale.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1843-3) contains supplementary material, which is available to authorized users.  相似文献   

3.
4.

Background

Little is known about the role of amino acids in cellular signaling pathways, especially as it pertains to pathways that regulate the rate of aging. However, it has been shown that methionine or tryptophan restriction extends lifespan in higher eukaryotes and increased proline or tryptophan levels increase longevity in C. elegans. In addition, leucine strongly activates the TOR signaling pathway, which when inhibited increases lifespan.

Results

Therefore each of the 20 proteogenic amino acids was individually supplemented to C. elegans and the effects on lifespan were determined. All amino acids except phenylalanine and aspartate extended lifespan at least to a small extent at one or more of the 3 concentrations tested with serine and proline showing the largest effects. 11 of the amino acids were less potent at higher doses, while 5 even decreased lifespan. Serine, proline, or histidine-mediated lifespan extension was greatly inhibited in eat-2 worms, a model of dietary restriction, in daf-16/FOXO, sir-2.1, rsks-1 (ribosomal S6 kinase), gcn-2, and aak-2 (AMPK) longevity pathway mutants, and in bec-1 autophagy-defective knockdown worms. 8 of 10 longevity-promoting amino acids tested activated a SKN-1/Nrf2 reporter strain, while serine and histidine were the only amino acids from those to activate a hypoxia-inducible factor (HIF-1) reporter strain. Thermotolerance was increased by proline or tryptophan supplementation, while tryptophan-mediated lifespan extension was independent of DAF-16/FOXO and SKN-1/Nrf2 signaling, but tryptophan and several related pyridine-containing compounds induced the mitochondrial unfolded protein response and an ER stress response. High glucose levels or mutations affecting electron transport chain (ETC) function inhibited amino acid-mediated lifespan extension suggesting that metabolism plays an important role. Providing many other cellular metabolites to C. elegans also increased longevity suggesting that anaplerosis of tricarboxylic acid (TCA) cycle substrates likely plays a role in lifespan extension.

Conclusions

Supplementation of C. elegans with 18 of the 20 individual amino acids extended lifespan, but lifespan often decreased with increasing concentration suggesting hormesis. Lifespan extension appears to be caused by altered mitochondrial TCA cycle metabolism and respiratory substrate utilization resulting in the activation of the DAF-16/FOXO and SKN-1/Nrf2 stress response pathways.

Electronic supplementary material

The online version of this article (doi:10.1186/s12863-015-0167-2) contains supplementary material, which is available to authorized users.  相似文献   

5.

Objectives

To determine the relation between height, FOXO3 genotype and age of death in humans.

Methods

Observational study of 8,003 American men of Japanese ancestry from the Honolulu Heart Program/Honolulu-Asia Aging Study (HHP/HAAS), a genetically and culturally homogeneous cohort followed for over 40 years. A Cox regression model with age as the time scale, stratified by year of birth, was used to estimate the effect of baseline height on mortality during follow-up. An analysis of height and longevity-associated variants of the key regulatory gene in the insulin/IGF-1 signaling (IIS) pathway, FOXO3, was performed in a HHP-HAAS subpopulation. A study of fasting insulin level and height was conducted in another HHP-HAAS subpopulation.

Results

A positive association was found between baseline height and all-cause mortality (RR = 1.007; 95% CI 1.003–1.011; P = 0.002) over the follow-up period. Adjustments for possible confounding variables reduced this association only slightly (RR = 1.006; 95% CI 1.002–1.010; P = 0.007). In addition, height was positively associated with all cancer mortality and mortality from cancer unrelated to smoking. A Cox regression model with time-dependent covariates showed that relative risk for baseline height on mortality increased as the population aged. Comparison of genotypes of a longevity-associated single nucleotide polymorphism in FOXO3 showed that the longevity allele was inversely associated with height. This finding was consistent with prior findings in model organisms of aging. Height was also positively associated with fasting blood insulin level, a risk factor for mortality. Regression analysis of fasting insulin level (mIU/L) on height (cm) adjusting for the age both data were collected yielded a regression coefficient of 0.26 (95% CI 0.10–0.42; P = 0.001).

Conclusion

Height in mid-life is positively associated with mortality, with shorter stature predicting longer lifespan. Height was, moreover, associated with fasting insulin level and the longevity genotype of FOXO3, consistent with a mechanistic role for the IIS pathway.  相似文献   

6.

Background and Aims

Leaf longevity is an important plant functional trait that often varies with soil nitrogen supply. Ethylene is a classical plant hormone involved in the control of senescence and abscission, but its role in nitrogen-dependent leaf longevity is largely unknown.

Methods

Pot and field experiments were performed to examine the effects of nitrogen addition on leaf longevity and ethylene production in two dominant plant species, Agropyron cristatum and Stipa krylovii, in a temperate steppe in northern China.

Key Results

Nitrogen addition increased leaf ethylene production and nitrogen concentration but shortened leaf longevity; the addition of cobalt chloride, an ethylene biosynthesis inhibitor, reduced leaf nitrogen concentration and increased leaf longevity. Path analysis indicated that nitrogen addition reduced leaf longevity mainly through altering leaf ethylene production.

Conclusions

These findings provide the first experimental evidence in support of the involvement of ethylene in nitrogen-induced decrease in leaf longevity.  相似文献   

7.
8.

Background

VNTR (Variable Number of Tandem Repeats) composite retrotransposons - SVA (SINE-R-VNTR-Alu), LAVA (LINE-1-Alu-VNTR-Alu), PVA (PTGR2-VNTR-Alu) and FVA (FRAM-VNTR-Alu) - are specific to hominoid primates. Their assembly, the evolution of their 5’ and 3’ domains, and the functional significance of the shared 5’ Alu-like region are well understood. The central VNTR domain, by contrast, has long been assumed to represent a more or less random collection of 30-50 bp GC-rich repeats. It is only recently that it attracted attention in the context of regulation of SVA expression.

Results

Here we provide evidence that the organization of the VNTR is non-random, with conserved repeat unit (RU) arrays at both the 5’ and 3’ ends of the VNTRs of human, chimpanzee and orangutan SVA and gibbon LAVA. The younger SVA subfamilies harbour highly organized internal RU arrays. The composition of these arrays is specific to the human/chimpanzee and orangutan lineages, respectively. Tracing the development of the VNTR through evolution we show for the first time how tandem repeats evolve within the constraints set by a functional, non-autonomous non-LTR retrotransposon in two different families - LAVA and SVA - in different hominoid lineages. Our analysis revealed that a microhomology-driven mechanism mediates expansion/contraction of the VNTR domain at the DNA level.Elements of all four VNTR composite families have been shown to be mobilized by the autonomous LINE1 retrotransposon in trans. In case of SVA, key determinants of mobilization are found in the 5’ hexameric repeat/Alu-like region. We now demonstrate that in LAVA, by contrast, the VNTR domain determines mobilization efficiency in the context of domain swaps between active and inactive elements.

Conclusions

The central domain of VNTR composites evolves in a lineage-specific manner which gives rise to distinct structures in gibbon LAVA, orangutan SVA, and human/chimpanzee SVA. The differences observed between the families and lineages are likely to have an influence on the expression and mobilization of the elements.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1543-z) contains supplementary material, which is available to authorized users.  相似文献   

9.

Background

Humans detect faces with direct gazes among those with averted gazes more efficiently than they detect faces with averted gazes among those with direct gazes. We examined whether this “stare-in-the-crowd” effect occurs in chimpanzees (Pan troglodytes), whose eye morphology differs from that of humans (i.e., low-contrast eyes, dark sclera).

Methodology/Principal Findings

An adult female chimpanzee was trained to search for an odd-item target (front view of a human face) among distractors that differed from the target only with respect to the direction of the eye gaze. During visual-search testing, she performed more efficiently when the target was a direct-gaze face than when it was an averted-gaze face. This direct-gaze superiority was maintained when the faces were inverted and when parts of the face were scrambled. Subsequent tests revealed that gaze perception in the chimpanzee was controlled by the contrast between iris and sclera, as in humans, but that the chimpanzee attended only to the position of the iris in the eye, irrespective of head direction.

Conclusion/Significance

These results suggest that the chimpanzee can discriminate among human gaze directions and are more sensitive to direct gazes. However, limitations in the perception of human gaze by the chimpanzee are suggested by her inability to completely transfer her performance to faces showing a three-quarter view.  相似文献   

10.

Background

Zerumbone, a sesquiterpene compound isolated from subtropical ginger, Zingiber zerumbet Smith, has been documented to exert antitumoral and anti- inflammatory activities. In this study, we demonstrate that zerumbone induces apoptosis in human glioblastoma multiforme (GBM8401) cells and investigate the apoptotic mechanism.

Methods

We added a caspase inhibitor and transfected wild-type (WT) IKK and Akt into GBM 8401 cells, and measured cell viability and apoptosis by MTT assay and flow cytometry. By western blotting, we evaluated activation of caspase-3, dephosphorylation of IKK, Akt, FOXO1 with time, and change of IKK, Akt, and FOXO1 phosphorylation after transfection of WT IKK and Akt.

Results

Zerumbone (10∽50 μM) induced death of GBM8401 cells in a dose-dependent manner. Flow cytometry studies showed that zerumbone increased the percentage of apoptotic GBM cells. Zerumbone also caused caspase-3 activation and poly (ADP-ribose) polymerase (PARP) production. N-benzyloxycarbonyl -Val-Ala-Asp- fluoromethylketone (zVAD-fmk), a broad-spectrum caspase inhibitor, hindered zerumbone-induced cell death. Transfection of GBM 8401 cells with WT IKKα inhibited zerumbone-induced apoptosis, and zerumbone significantly decreased IKKα phosphorylation levels in a time-dependent manner. Similarly, transfection of GBM8401 cells with Akt suppressed zerumbone-induced apoptosis, and zerumbone also diminished Akt phosphorylation levels remarkably and time-dependently. Moreover, transfection of GBM8401 cells with WT IKKα reduced the zerumbone-induced decrease in Akt and FOXO1 phosphorylation. However, transfection with WT Akt decreased FOXO1, but not IKKα, phosphorylation.

Conclusion

The results suggest that inactivation of IKKα, followed by Akt and FOXO1 phosphorylation and caspase-3 activation, contributes to zerumbone-induced GBM cell apoptosis.  相似文献   

11.
12.
13.

Background and Aims

Although studies have shown that pollen addition and/or removal decreases floral longevity, less attention has been paid to the relationship between reproductive costs and floral longevity. In addition, the influence of reproductive costs on floral longevity responses to pollen addition and/or removal has not yet been evaluated. Here, the orchid Cohniella ascendens is used to answer the following questions. (a) Does experimental removal of flower buds in C. ascendens increase flower longevity? (b) Does pollen addition and/or removal decrease floral longevity, and does this response depend on plant reproductive resource status?

Methods

To study the effect of reproductive costs on floral longevity 21 plants were selected from which we removed 50 % of the developing flower buds on a marked inflorescence. Another 21 plants were not manipulated (controls). One month later, one of four flowers on each marked inflorescence received one of the following pollen manipulation treatments: control, pollinia removal, pollination without pollinia removal or pollination with pollinia removal. The response variable measured was the number of days each flower remained open (i.e. longevity).

Key Results

The results showed significant flower bud removal and pollen manipulation effects on floral longevity; the interaction between these two factors was not significant. Flowers on inflorescences with previously removed flower buds remained open significantly longer than flowers on control inflorescences. On the other hand, pollinated flowers closed much faster than control and removed-pollinia flowers, the latter not closing significantly faster than control flowers, although this result was marginal.

Conclusions

The results emphasize the strong relationship between floral longevity and pollination in orchids, as well as the influence of reproductive costs on the former.Key words: Cohniella ascendens, floral longevity, flower bud removal, pollination, pollinia removal, reproductive costs  相似文献   

14.

Introduction

Recent evidence suggests that tissue accumulation of senescent p16INK4a-positive cells during the life span would be deleterious for tissue functions and could be the consequence of inherent age-associated disorders. Osteoarthritis (OA) is characterized by the accumulation of chondrocytes expressing p16INK4a and markers of the senescence-associated secretory phenotype (SASP), including the matrix remodeling metalloproteases MMP1/MMP13 and pro-inflammatory cytokines interleukin-8 (IL-8) and IL-6. Here, we evaluated the role of p16INK4a in the OA-induced SASP and its regulation by microRNAs (miRs).

Methods

We used IL-1-beta-treated primary OA chondrocytes cultured in three-dimensional setting or mesenchymal stem cells differentiated into chondrocyte to follow p16INK4a expression. By transient transfection experiments and the use of knockout mice, we validate p16INK4a function in chondrocytes and its regulation by one miR identified by means of a genome-wide miR-array analysis.

Results

p16INK4a is induced upon IL-1-beta treatment and also during in vitro chondrogenesis. In the mouse model, Ink4a locus favors in vivo the proportion of terminally differentiated chondrocytes. When overexpressed in chondrocytes, p16INK4a is sufficient to induce the production of the two matrix remodeling enzymes, MMP1 and MMP13, thus linking senescence with OA pathogenesis and bone development. We identified miR-24 as a negative regulator of p16INK4a. Accordingly, p16INK4a expression increased while miR-24 level was repressed upon IL-1-beta addition, in OA cartilage and during in vitro terminal chondrogenesis.

Conclusions

We disclosed herein a new role of the senescence marker p16INK4a and its regulation by miR-24 during OA and terminal chondrogenesis.  相似文献   

15.

Background

Fibrillar collagens are well known for their links to human diseases, with which all have been associated except for the two most recently identified fibrillar collagens, type XXIV collagen and type XXVII collagen. To assess functions and potential disease phenotypes of type XXVII collagen, we examined its roles in zebrafish embryonic and post-embryonic development.

Methodology/Principal Findings

We identified two type XXVII collagen genes in zebrafish, col27a1a and col27a1b. Both col27a1a and col27a1b were expressed in notochord and cartilage in the embryo and early larva. To determine sites of type XXVII collagen function, col27a1a and col27a1b were knocked down using morpholino antisense oligonucleotides. Knockdown of col27a1a singly or in conjunction with col27a1b resulted in curvature of the notochord at early stages and formation of scoliotic curves as well as dysmorphic vertebrae at later stages. These defects were accompanied by abnormal distributions of cells and protein localization in the notochord, as visualized by transmission electron microscopy, as well as delayed vertebral mineralization as detected histologically.

Conclusions/Significance

Together, our findings indicate a key role for type XXVII collagen in notochord morphogenesis and axial skeletogenesis and suggest a possible human disease phenotype.  相似文献   

16.

Background

Although there is abundant evidence that human longevity is heritable, efforts to map loci responsible for variation in human lifespan have had limited success.

Methodology/Principal Findings

We identified individuals from a large multigenerational population database (the Utah Population Database) who exhibited high levels of both familial longevity and individual longevity. This selection identified 325 related “affected individuals”, defined as those in the top quartile for both excess longevity (EL = observed lifespan – expected lifespan) and familial excess longevity (FEL = weighted average EL across all relatives). A whole-genome scan for genetic linkage was performed on this sample using a panel of 1100 microsatellite markers. A strongly suggestive peak (Z = 4.2, Monte Carlo-adjusted p-value 0.09) was observed in the vicinity of D3S3547 on chromosome 3p24.1, at a point nearly identical to that reported recently by an independent team of researchers from Harvard Medical School (HMS) [1]. Meta-analysis of linkage scores on 3p from the two studies produced a minimum nominal p-value of 1.005×10−9 at 55 cM. Other potentially noteworthy peaks in our data occur on 18q23-24, 8q23, and 17q21. Meta-analysis results from combined UPDB and HMS data yielded additional support, but not formal replication, for linkage on 8q, 9q, and 17q.

Conclusions/Significance

Corroboration of the linkage of exceptional longevity to 3p22-24 greatly strengthens the case that genes in this region affect variation in longevity and suggest, therefore, an important role in the regulation of human lifespan. Future efforts should include intensive study of the 3p22-24 region.  相似文献   

17.

[Purpose]

This study investigated the effect of endurance exercise on neointimal formation, endothelial-dependant relaxation and FOXO expression in balloon-induced carotid arteries of rats.

[Methods]

Male SD(Sprague-Dawley) rats of 8 weeks ages were randomly divided into 3 groups; Sham-operated control (SO, n=10), Balloon-induced control (BIC, n=10), and Balloon-induced exercise (BIE, n=10). Endurance exercise training was performed on treadmill (18 m/min, 0% grade, 60 min/day, 5 days/week, 4 weeks).

[Results]

Body weight is significantly reduced in BIE compared with BIC. Neointiaml formation in BIC was significantly higher than SO, but it was significantly recovered in BIE compared with BIC. Endothelial-dependent relaxation in BIC was significantly lower than SO, but it was significantly recovered in BIE compared with BIC and expression of FOXO1 and FOXO3a also were significantly increased BIE compared with BIC.

[Conclusion]

These data suggest that endurance exercise inhibits neointimal formation and endothelial-dependent relaxation via FOXO expression in balloon-induce atherosclerosis rat model.  相似文献   

18.
Nitrogen and water addition reduce leaf longevity of steppe species   总被引:1,自引:0,他引:1  
Ren H  Xu Z  Huang J  Clark C  Chen S  Han X 《Annals of botany》2011,107(1):145-155

Background and aims

Changes in supplies of resources will modify plant functional traits. However, few experimental studies have addressed the effects of nitrogen and water variations, either singly or in combination, on functional traits.

Methods

A 2-year field experiment was conducted to test the effects of nitrogen and water addition on leaf longevity and other functional traits of the two dominant (Agropyron cristatum and Stipa krylovii) and three most common species (Cleistogenes squarrosa, Melilotoides ruthenica and Potentilla tanacetifolia) in a temperate steppe in northern China.

Key Results

Additional nitrogen and water increased leaf nitrogen content and net photosynthetic rate, and changed other measured functional traits. Leaf longevity decreased significantly with both nitrogen addition (–6 days in 2007 and –5·4 days in 2008; both P < 0·001) and watering (–13 days in 2007 and –9·9 days in 2008; both P < 0·001), and significant differences in leaf longevity were also found among species. Nitrogen and water interacted to affect leaf longevity and other functional traits. Soil water content explained approx. 70 % of the shifts in leaf longevity. Biomass at both species and community level increased under water and nitrogen addition because of the increase in leaf biomass production per individual plant.

Conclusions

The results suggest that additional nitrogen and water supplies reduce plant leaf longevity. Soil water availability might play a fundamental role in determining leaf longevity and other leaf functional traits, and its effects can be modified by soil nitrogen availability in semi-arid areas. The different responses of species to resource alterations may cause different global change ramifications under future climate change scenarios.  相似文献   

19.
20.

Purpose

This study investigated the effects of resistance exercise on the Akt-eNOS, the activation of antioxidant protein and FOXO1 in the aorta of F344 rats.

Methods

Male 7 week-old F344 rats were randomly divided into 2 groups: a climbing group (n = 6) and a sedentary group (n = 6). H&E staining and western blotting were used to analyze the rat aortas and target proteins.

Results

Resistance exercise training did not significantly affect aortic structure. Phosphorylation of AKT and eNOS and expression of MnSOD and Ref-1 were significantly increased while FOXO1 phosphorylation was significantly decreased in the resistance exercise group compared with the sedentary group.

Conclusion

We demonstrate that resistance exercise activates the Akt-eNOS and Ref-1 protein without changes to aortic thickness via FOXO-1 activation in the aorta of F344 rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号