首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With the advent of larger genome databases detection of horizontal gene transfer events has been transformed into an increasingly important issue. Here we present a simple theoretical analysis based on the in silico artificial addition of known foreign genes from different prokaryotic groups into the genome of Escherichia coli K12 MG1655. Using this dataset as a control, we have tested the efficiency of four methodologies commonly employed to detect HTG (Horizontally transferred genes), which are based on (a) the codon adaptation index, codon usage, and GC percentage (CAI/GC); (b) a distributional profile (DP) approach made by a gene search in the closely related phylogenetic genomes; (c) a Bayesian model (BM); and (d) a first-order Markov model (MM). All methods exhibit limitations although, as shown here, the BM and the MM are better approximations. Moreover, the MM has demonstrated a more accurate rate of detections when genes from closely related organisms are evaluated. The application of the MM to detect recently transferred genes in the genomes of E. coli strains K12 MG1655, O157 EDL933, and Salmonella typhimurium, shows that these organisms have undergone a rather significant amount of HTG, most of which appear to be pseudogenes. Few of these sequences that have undergone HGT appear to have well defined functions and may be involved in the organism's adaptation.  相似文献   

2.
We present evidence supporting the notion that codon usage (CU) compatibility between foreign genes and recipient genomes is an important prerequisite to assess the selective advantage of imported functions, and therefore to increase the fixation probability of horizontal gene transfer (HGT) events. This contrasts with the current tendency in research to predict recent HGTs in prokaryotes by assuming that acquired genes generally display poor CU. By looking at the CU level (poor, typical, or rich) exhibited by putative xenologs still resembling their original CU, we found that most alien genes predominantly present typical CU immediately upon introgression, thereby suggesting that the role of CU amelioration in HGT has been overemphasized. In our strategy, we first scanned a representative set of 103 complete prokaryotic genomes for all pairs of candidate xenologs (exported/imported genes) displaying similar CU. We applied additional filtering criteria, including phylogenetic validations, to enhance the reliability of our predictions. Our approach makes no assumptions about the CU of foreign genes being typical or atypical within the recipient genome, thus providing a novel unbiased framework to study the evolutionary dynamics of HGT.  相似文献   

3.

Background

Horizontal gene transfer (HGT) has been widely identified in complete prokaryotic genomes. However, the roles of HGT among members of a microbial community and in evolution remain largely unknown. With the emergence of metagenomics, it is nontrivial to investigate such horizontal flow of genetic materials among members in a microbial community from the natural environment. Because of the lack of suitable methods for metagenomics gene transfer detection, microorganisms from a low-complexity community acid mine drainage (AMD) with near-complete genomes were used to detect possible gene transfer events and suggest the biological significance.

Results

Using the annotation of coding regions by the current tools, a phylogenetic approach, and an approximately unbiased test, we found that HGTs in AMD organisms are not rare, and we predicted 119 putative transferred genes. Among them, 14 HGT events were determined to be transfer events among the AMD members. Further analysis of the 14 transferred genes revealed that the HGT events affected the functional evolution of archaea or bacteria in AMD, and it probably shaped the community structure, such as the dominance of G-plasma in archaea in AMD through HGT.

Conclusions

Our study provides a novel insight into HGT events among microorganisms in natural communities. The interconnectedness between HGT and community evolution is essential to understand microbial community formation and development.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1720-0) contains supplementary material, which is available to authorized users.  相似文献   

4.
Horizontal gene transfer (HGT), a process through which genomes acquire sequences from distantly related organisms, is believed to be a major source of genetic diversity in bacteria. A central question concerning the impact of HGT on bacterial genome evolution is the proportion of horizontally transferred sequences within genomes. This issue, however, remains unresolved because the various methods developed to detect potential HGT events identify different sets of genes. The present-day consensus is that phylogenetic analysis of individual genes is still the most objective and accurate approach for determining the occurrence and directionality of HGT. Here we present a genome-scale phylogenetic analysis of protein-encoding genes from five closely related Chlamydia, identifying a reliable set of sequences that have arisen via HGT since the divergence of the Chlamydia lineage. According to our knowledge, this is the first systematic phylogenetic inference-based attempt to establish a reliable set of acquired genes in a bacterial genome. Although Chlamydia are obligate intracellular parasites of higher eukaryotes, and thus suspected to be isolated from HGT more than the free-living species, our results show that their diversification has involved the introduction of foreign sequences into their genome. Furthermore, we also identified a complete set of genes that have undergone deletion, duplication, or rearrangement during this evolutionary period leading to the radiation of Chlamydia species. Our analysis may provide a deeper insight into how these medically important pathogens emerged and evolved from a common ancestor.  相似文献   

5.
The evolutionary events in organisms can be tracked to the transfer of genetic material. The inheritance of genetic material among closely related organisms is a slow evolutionary process. On the other hand, the movement of genes among distantly related species can account for rapid evolution. The later process has been quite evident in the appearance of antibiotic resistance genes among human and animal pathogens. Phylogenetic trees based on such genes and those involved in metabolic activities reflect the incongruencies in comparison to the 16S rDNA gene, generally used for taxonomic relationships. Such discrepancies in gene inheritance have been termed as horizontal gene transfer (HGT) events. In the post-genomic era, the explosion of known sequences through large-scale sequencing projects has unraveled the weakness of traditional 16S rDNA gene tree based evolutionary model. Various methods to scrutinize HGT events include atypical composition, abnormal sequence similarity, anomalous phylogenetic distribution, unusual phyletic patterns, etc. Since HGT generates greater genetic diversity, it is likely to increase resource use and ecosystem resilience.  相似文献   

6.

Background  

Horizontal gene transfer (HGT) is an important process, which contributes in bacterial pathogenesis and drug resistance. A number of methods have been proposed for detection of horizontal gene transfer. One successful approach to the detection of HGT events is due to Novichkov et al. (J. Bacteriology 186, 6575–85), who rely on comparing phylogenetic distances within a gene family with genomic distances of the source organisms. Building on their approach, we introduce outlier detection in the correlation between those two sets of distances. This approach is designed to detect horizontal transfers of core set of genes present in many bacteria. The principle behind method allows detection of xenologous gene displacements as well as acquisition of novel genes.  相似文献   

7.
Horizontal gene transfer (HGT) is a major force in microbial evolution. Previous studies have suggested that a variety of factors, including restricted recombination and toxicity of foreign gene products, may act as barriers to the successful integration of horizontally transferred genes. This study identifies an additional central barrier to HGT-the lack of co-adaptation between the codon usage of the transferred gene and the tRNA pool of the recipient organism. Analyzing the genomic sequences of more than 190 microorganisms and the HGT events that have occurred between them, we show that the number of genes that were horizontally transferred between organisms is positively correlated with the similarity between their tRNA pools. Those genes that are better adapted to the tRNA pools of the target genomes tend to undergo more frequent HGT. At the community (or environment) level, organisms that share a common ecological niche tend to have similar tRNA pools. These results remain significant after controlling for diverse ecological and evolutionary parameters. Our analysis demonstrates that there are bi-directional associations between the similarity in the tRNA pools of organisms and the number of HGT events occurring between them. Similar tRNA pools between a donor and a host tend to increase the probability that a horizontally acquired gene will become fixed in its new genome. Our results also suggest that frequent HGT may be a homogenizing force that increases the similarity in the tRNA pools of organisms within the same community.  相似文献   

8.

Background

Horizontal gene transfer (HGT) is the stable transmission of genetic material between organisms by means other than vertical inheritance. HGT has an important role in the evolution of prokaryotes but is relatively rare in eukaryotes. HGT has been shown to contribute to virulence in eukaryotic pathogens. We studied the importance of HGT in plant pathogenic fungi by identifying horizontally transferred genes in the genomes of three members of the genus Colletotrichum.

Results

We identified eleven HGT events from bacteria into members of the genus Colletotrichum or their ancestors. The HGT events include genes involved in amino acid, lipid and sugar metabolism as well as lytic enzymes. Additionally, the putative minimal dates of transference were calculated using a time calibrated phylogenetic tree. This analysis reveals a constant flux of genes from bacteria to fungi throughout the evolution of subphylum Pezizomycotina.

Conclusions

Genes that are typically transferred by HGT are those that are constantly subject to gene duplication and gene loss. The functions of some of these genes suggest roles in niche adaptation and virulence. We found no evidence of a burst of HGT events coinciding with major geological events. In contrast, HGT appears to be a constant, albeit rare phenomenon in the Pezizomycotina, occurring at a steady rate during their evolution.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-16-2) contains supplementary material, which is available to authorized users.  相似文献   

9.
Horizontal gene transfer has been occasionally mentioned in eukaryotic genomes, but such events appear much less numerous than in prokaryotes, where they play important functional and evolutionary roles. In yeasts, few independent cases have been described, some of which corresponding to major metabolic functions, but no systematic screening of horizontally transferred genes has been attempted so far. Taking advantage of the synteny conservation among five newly sequenced and annotated genomes of Saccharomycetaceae, we carried out a systematic search for HGT candidates amidst genes present in only one species within conserved synteny blocks. Out of 255 species-specific genes, we discovered 11 candidates for HGT, based on their similarity with bacterial proteins and on reconstructed phylogenies. This corresponds to a minimum of six transfer events because some horizontally acquired genes appear to rapidly duplicate in yeast genomes (e.g. YwqG genes in Kluyveromyces thermotolerans and serine recombinase genes of the IS607 family in Saccharomyces kluyveri). We show that the resulting copies are submitted to a strong functional selective pressure. The mechanisms of DNA transfer and integration are discussed, in relation with the generally small size of HGT candidates. Our results on a limited set of species expand by 50% the number of previously published HGT cases in hemiascomycetous yeasts, suggesting that this type of event is more frequent than usually thought. Our restrictive method does not exclude the possibility that additional HGT events exist. Actually, ancestral events common to several yeast species must have been overlooked, and the absence of homologs in present databases leaves open the question of the origin of the 244 remaining species-specific genes inserted within conserved synteny blocks.  相似文献   

10.
Ge F  Wang LS  Kim J 《PLoS biology》2005,3(10):e316
With the availability of increasing amounts of genomic sequences, it is becoming clear that genomes experience horizontal transfer and incorporation of genetic information. However, to what extent such horizontal gene transfer (HGT) affects the core genealogical history of organisms remains controversial. Based on initial analyses of complete genomic sequences, HGT has been suggested to be so widespread that it might be the “essence of phylogeny” and might leave the treelike form of genealogy in doubt. On the other hand, possible biased estimation of HGT extent and the findings of coherent phylogenetic patterns indicate that phylogeny of life is well represented by tree graphs. Here, we reexamine this question by assessing the extent of HGT among core orthologous genes using a novel statistical method based on statistical comparisons of tree topology. We apply the method to 40 microbial genomes in the Clusters of Orthologous Groups database over a curated set of 297 orthologous gene clusters, and we detect significant HGT events in 33 out of 297 clusters over a wide range of functional categories. Estimates of positions of HGT events suggest a low mean genome-specific rate of HGT (2.0%) among the orthologous genes, which is in general agreement with other quantitative of HGT. We propose that HGT events, even when relatively common, still leave the treelike history of phylogenies intact, much like cobwebs hanging from tree branches.  相似文献   

11.
Horizontal gene transfer (HGT) is thought to have been involved in both prokaryotic and eukaryotic evolution. However, the extent to which it shapes eukaryotic genomes is still questionable. The ability to detect and study horizontal gene transfer events is of significant importance to our understanding of its effect on the evolution of eukaryotic genes and genomes. We performed phylogenetic analysis of a published anti-bacterial protein AP1 from potato (Solanum tuberosum). One domain encodes a phosphoesterase with high similarity to an acid phosphatase of Ralstonia solanacearum and closely related Betaproteobacteria. The second domain encodes an UspA-like domain similar to those present in plants. Our phylogenetic analyses suggest that both domains evolved along different evolutionary pathways until they merged into a single gene. We propose that the phosphoesterase domain was acquired by HGT. Our results support claims in favor of HGT detection at the protein domain level. The case of anti-bacterial protein AP1 in potato highlights the significance of gene fusion/protein domain fusion as an important feature of horizontal gene transfer which may contribute substantially to the adaptive abilities of eukaryotic organisms.  相似文献   

12.
Horizontal gene transfer is now recognized as an important mechanism of evolution. Several methods to detect horizontally transferred genes have been suggested. These methods are based on either nucleotide composition or the failure to find a similar gene in closely related species. Genes that evolve vertically between closely related species can be divided into those that retain homologous chromosomal positions (positional orthologs) and those that do not. By comparing open reading frames in the Escherichia coli and Salmonella typhi genomes, we identified 2,728 positional orthologs since these species split 100 MYA. A group of 1,144 novel E. coli genes were unusually diverged from their S. typhi counterparts. These novel genes included those that had been horizontally transferred into E. coli, as well as members of gene pairs that had been rearranged or deleted. Positional orthologs were used to investigate compositional methods of identifying horizontally transferred genes. A large number of E. coli genes with normal nucleotide composition have no apparent ortholog in S. typhi, and many genes of atypical composition do, in fact, have positional orthologs. A phylogenetic approach was employed to confirm selected examples of horizontal transmission among the novel groups of genes. Our analysis of 80 E. coli genes determined that a number of genes previously classified as horizontally transferred based on base composition and codon bias were native, and genes previously classified as native appeared to be horizontally transferred. Hence, atypical nucleotide composition alone is not a reliable indicator of horizontal transmission.  相似文献   

13.
Horizontal gene transfer (HGT) is central to prokaryotic evolution. However, little is known about the “scale” of individual HGT events. In this work, we introduce the first computational framework to help answer the following fundamental question: How often does more than one gene get horizontally transferred in a single HGT event? Our method, called HoMer, uses phylogenetic reconciliation to infer single-gene HGT events across a given set of species/strains, employs several techniques to account for inference error and uncertainty, combines that information with gene order information from extant genomes, and uses statistical analysis to identify candidate horizontal multigene transfers (HMGTs) in both extant and ancestral species/strains. HoMer is highly scalable and can be easily used to infer HMGTs across hundreds of genomes. We apply HoMer to a genome-scale data set of over 22,000 gene families from 103 Aeromonas genomes and identify a large number of plausible HMGTs of various scales at both small and large phylogenetic distances. Analysis of these HMGTs reveals interesting relationships between gene function, phylogenetic distance, and frequency of multigene transfer. Among other insights, we find that 1) the observed relative frequency of HMGT increases as divergence between genomes increases, 2) HMGTs often have conserved gene functions, and 3) rare genes are frequently acquired through HMGT. We also analyze in detail HMGTs involving the zonula occludens toxin and type III secretion systems. By enabling the systematic inference of HMGTs on a large scale, HoMer will facilitate a more accurate and more complete understanding of HGT and microbial evolution.  相似文献   

14.
The Horizontal Gene Transfer DataBase (HGT-DB) is a genomic database that includes statistical parameters such as G+C content, codon and amino-acid usage, as well as information about which genes deviate in these parameters for prokaryotic complete genomes. Under the hypothesis that genes from distantly related species have different nucleotide compositions, these deviated genes may have been acquired by horizontal gene transfer. The current version of the database contains 88 bacterial and archaeal complete genomes, including multiple chromosomes and strains. For each genome, the database provides statistical parameters for all the genes, as well as averages and standard deviations of G+C content, codon usage, relative synonymous codon usage and amino-acid content. It also provides information about correspondence analyses of the codon usage, plus lists of extraneous group of genes in terms of G+C content and lists of putatively acquired genes. With this information, researchers can explore the G+C content and codon usage of a gene when they find incongruities in sequence-based phylogenetic trees. A search engine that allows searches for gene names or keywords for a specific organism is also available. HGT-DB is freely accessible at http://www.fut.es/~debb/HGT.  相似文献   

15.
We discuss the impact of horizontal gene transfer (HGT) on phylogenetic reconstruction and taxonomy. We review the power of HGT as a creative force in assembling new metabolic pathways, and we discuss the impact that HGT has on phylogenetic reconstruction. On one hand, shared derived characters are created through transferred genes that persist in the recipient lineage, either because they were adaptive in the recipient lineage or because they resulted in a functional replacement. On the other hand, taxonomic patterns in microbial phylogenies might also be created through biased gene transfer. The agreement between different molecular phylogenies has encouraged interpretation of the consensus signal as reflecting organismal history or as the tree of cell divisions; however, to date the extent to which the consensus reflects shared organismal ancestry and to which it reflects highways of gene sharing and biased gene transfer remains an open question. Preferential patterns of gene exchange act as a homogenizing force in creating and maintaining microbial groups, generating taxonomic patterns that are indistinguishable to those created by shared ancestry. To understand the evolution of higher bacterial taxonomic units, concepts usually applied in population genetics need to be applied.  相似文献   

16.
Horizontal gene transfer (HGT) describes the transmission of genetic material across species boundaries and is an important evolutionary phenomenon in the ancestry of many microbes. The role of HGT in plant evolutionary history is, however, largely unexplored. Here, we compare the genomes of six plant species with those of 159 prokaryotic and eukaryotic species and identify 1689 genes that show the highest similarity to corresponding genes from fungi. We constructed a phylogeny for all 1689 genes identified and all homolog groups available from the rice (Oryza sativa) genome (3177 gene families) and used these to define 14 candidate plant-fungi HGT events. Comprehensive phylogenetic analyses of these 14 data sets, using methods that account for site rate heterogeneity, demonstrated support for nine HGT events, demonstrating an infrequent pattern of HGT between plants and fungi. Five HGTs were fungi-to-plant transfers and four were plant-to-fungi HGTs. None of the fungal-to-plant HGTs involved angiosperm recipients. These results alter the current view of organismal barriers to HGT, suggesting that phagotrophy, the consumption of a whole cell by another, is not necessarily a prerequisite for HGT between eukaryotes. Putative functional annotation of the HGT candidate genes suggests that two fungi-to-plant transfers have added phenotypes important for life in a soil environment. Our study suggests that genetic exchange between plants and fungi is exceedingly rare, particularly among the angiosperms, but has occurred during their evolutionary history and added important metabolic traits to plant lineages.  相似文献   

17.
Fundamental questions in evolution concern deep divisions in the living world and vertical versus horizontal information transfer. Two contrasting views are: (i) three superkingdoms Archaea, Eubacteria, and Eukarya based on vertical inheritance of genes encoding ribosomes; versus (ii) a prokaryotic/eukaryotic dichotomy with unconstrained horizontal gene transfer (HGT) among prokaryotes. Vertical inheritance implies continuity of cytoplasmic and structural information whereas HGT transfers only DNA. By hypothesis, HGT of the translation machinery is constrained by interaction between new ribosomal gene products and vertically inherited cytoplasmic structure made largely of preexisting ribosomes. Ribosomes differentially enhance the assembly of new ribosomes made from closely related genes and inhibit the assembly of products from more distal genes. This hypothesis suggests experiments for synthetic biology: the ability of synthetic genomes to “boot,” i.e., establish hereditary continuity, will be constrained by the phylogenetic closeness of the cell “body” into which genomes are placed.  相似文献   

18.
Glycosyl hydrolase (GH) genes from Escherichia coli and Bacillus subtilis were used to search for cases of horizontal gene transfer. Such an event was inferred by G + C content, codon usage analysis, and a phylogenetic congruency test. The codon usage analysis used is a procedure based on a distance derived from a Pearson linear correlation coefficient determined from a pairwise codon usage comparison. The distances are then used to generate a distance-based tree with which we can define clusters and rapidly compare codon usage. Three genes (yagH from E. coli and xynA and xynB from B. subtilis) were determined to have arrived by horizontal gene transfer and were located in E. coli CP4-6 prophage, and B. subtilis prophages 6 and 5, respectively. In this study, we demonstrate that with codon usage analysis, the proposed horizontally transferred genes can be distinguished from highly expressed genes.  相似文献   

19.
20.
Synonymous codon usage varies both between organisms and among genes within a genome, and arises due to differences in G + C content, replication strand skew, or gene expression levels. Correspondence analysis (CA) is widely used to identify major sources of variation in synonymous codon usage among genes and provides a way to identify horizontally transferred or highly expressed genes. Four methods of CA have been developed based on three kinds of input data: absolute codon frequency, relative codon frequency, and relative synonymous codon usage (RSCU) as well as within-group CA (WCA). Although different CA methods have been used in the past, no comprehensive comparative study has been performed to evaluate their effectiveness. Here, the four CA methods were evaluated by applying them to 241 bacterial genome sequences. The results indicate that WCA is more effective than the other three methods in generating axes that reflect variations in synonymous codon usage. Furthermore, WCA reveals sources that were previously unnoticed in some genomes; e.g. synonymous codon usage related to replication strand skew was detected in Rickettsia prowazekii. Though CA based on RSCU is widely used, our evaluation indicates that this method does not perform as well as WCA.Key words: correspondence analysis, synonymous codon usage, horizontal gene transfer, strand-specific mutational bias, translational selection  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号