首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gile GH  Patron NJ  Keeling PJ 《Protist》2006,157(4):435-444
EFL (EF-like protein) is a member of the GTPase superfamily that includes several translation factors. Because it has only been found in a few eukaryotic lineages and its presence correlates with the absence of the related core translation factor EF-1alpha, its distribution is hypothesized to be the result of lateral gene transfer and replacement of EF-1alpha. In one supergroup of eukaryotes, the chromalveolates, two major lineages were found to contain EFL (dinoflagellates and haptophytes), while the others encode EF-1alpha (apicomplexans, ciliates, heterokonts and cryptomonads). For each of these groups, this distribution was deduced from whole genome sequence or expressed sequence tag (EST) data from several species, with the exception of cryptomonads from which only a single EF-1alpha PCR product from one species was known. By sequencing ESTs from two cryptomonads, Guillardia theta and Rhodomonas salina, and searching for all GTPase translation factors, we revealed that EFL is present in both species, but, contrary to expectations, we found EF-1alpha in neither. On balance, we suggest the previously reported EF-1alpha from Rhodomonas salina is likely an artefact of contamination. We also identified EFL in EST data from two members of the dinoflagellate lineage, Karlodinium micrum and Oxyrrhis marina, and from an ongoing genomic sequence project from a third, Perkinsus marinus. Karlodinium micrum is a symbiotic pairing of two lineages that would have both had EFL (a dinoflagellate and a haptophyte), but only the dinoflagellate gene remains. Oxyrrhis marina and Perkinsus marinus are early diverging sister-groups to dinoflagellates, and together show that EFL originated early in this lineage. Phylogenetic analysis confirmed that these genes are all EFL homologues, and showed that cryptomonad genes are not detectably related to EFL from other chromalveolates, which collectively form several distinct groups. The known distribution of EFL now includes a third group of chromalveolates, cryptomonads. Of the six major subgroups of chromalveolates, EFL is found in half and EF-1alpha in the other half, and none as yet unambiguously possess both genes. Phylogenetic analysis indicates EFL likely arose early within each subgroup where it is found, but suggests it may have originated multiple times within chromalveolates as a whole.  相似文献   

2.
Elongation factor 1α (EF-1α) and elongation factor-like (EFL) proteins are considered to carry out equivalent functions in translation in eukaryotic cells. Elongation factor 1α and EFL genes are patchily distributed in the global eukaryotic tree, suggesting that the evolution of these elongation factors cannot be reconciled without multiple lateral gene transfer and/or ancestral co-occurrence followed by differential loss of either of the two factors. Our current understanding of the EF-1α/EFL evolution in the eukaryotic group Rhizaria, composed of Foraminifera, Radiolaria, Filosa, and Endomyxa, remains insufficient, as no information on EF-1α/EFL gene is available for any members of Radiolaria. In this study, EFL genes were experimentally isolated from four polycystine radiolarians (i.e. Dictyocoryne, Eucyrtidium, Collozoum, and Sphaerozoum), as well as retrieved from publicly accessible expressed sequence tag data of two acantharean radiolarians (i.e. Astrolonche and Phyllostaurus) and the endomyxan Gromia. The EFL homologs from radiolarians, foraminiferans, and Gromia formed a robust clade in both maximum-likelihood and Bayesian phylogenetic analyses, suggesting that EFL genes were vertically inherited from their common ancestor. We propose an updated model for EF-1α/EFL evolution in Rhizaria by incorporating new EFL data obtained in this study.  相似文献   

3.
The cryptomonads is a well-defined lineage of unicellular eukaryotes, composed of several marine and freshwater groups. However, the evolutionary relationships among these groups are unclear due to conflicting inferences between morphological and molecular phylogenies. Here, we have inferred the evolutionary relationships among marine and freshwater species in order to better understand the importance of the marine-freshwater boundary on the historical diversification patterns of cryptomonads. We have constructed improved molecular phylogenies by taking into account rate variation both across sites and across sequences (covarion substitutions), and by analysing the vast majority of publicly available cryptomonad 18S rRNA sequences and related environmental phylotypes. The resulting phylogenies included 55 sequences, and revealed two novel freshwater cryptomonad clades (CRY1 and CRY2) and a large hidden diversity of cryptomonads. CRY1 was placed deeply within the cryptomonad phylogeny together with all the major freshwater lineages (i.e. Goniomonas and Cryptomonas), while CRY2 was placed within a lineage of marine species identified as Plagioselmis-like with the aid of a new sequence generated from a cultured species. The inferred phylogenies suggest only few successful marine-freshwater transitions over the history of cryptomonads. Most of the transitions seem to have occurred from marine to fresh waters, but re-colonizations of marine habitats have also taken place. This implies that the differences in the biogeophysical conditions between marine and fresh waters constitute a substantial barrier for the cross-colonization of these environments by cryptomonads.  相似文献   

4.
Cryptomonads have acquired photosynthesis through secondary endosymbiosis: they have engulfed and retained a photosynthetic eukaryote. The remnants of this autotrophic symbiont are severely reduced, but a small volume of cytoplasm surrounding the plastid persists, along with a residual nucleus (the nucleomorph) that encodes only a few hundred genes. We characterized tubulin genes from the cryptomonad Guillardia theta. Despite the apparent absence of microtubules in the endosymbiont, we recovered genes encoding alpha-, beta-, and gamma-tubulins from the nucleomorph genome of G. theta. The presence of tubulin genes in the nucleomorph indicates that some component of the cytoskeleton is still present in the cryptomonad symbiont despite the fact that very little cytoplasm remains, no mitosis is known in the nucleomorph, and microtubules have never been observed anywhere in the symbiont. Phylogenetic analyses with nucleomorph alpha- and beta-tubulins support the origin of the cryptomonad nucleomorph from a red alga. We also characterized alpha and beta-tubulins from the host nucleus of G. theta and compared these with tubulins we isolated from two flagellates, Goniomonas truncata and Cyanophora paradoxa, previously proposed to be related to the cryptomonad host. Phylogenetic analyses support a relationship between the cryptomonad host and Goniomonas but do not support any relationship between cryptomonads and Cyanophora.  相似文献   

5.

Background  

EFL (or elongation factor-like) is a member of the translation superfamily of GTPase proteins. It is restricted to eukaryotes, where it is found in a punctate distribution that is almost mutually exclusive with elongation factor-1 alpha (EF-1α). EF-1α is a core translation factor previously thought to be essential in eukaryotes, so its relationship to EFL has prompted the suggestion that EFL has spread by horizontal or lateral gene transfer (HGT or LGT) and replaced EF-1α multiple times. Among green algae, trebouxiophyceans and chlorophyceans have EFL, but the ulvophycean Acetabularia and the sister group to green algae, land plants, have EF-1α. This distribution singles out green algae as a particularly promising group to understand the origin of EFL and the effects of its presence on EF-1α.  相似文献   

6.
Elongation factor 1α (EF-1α) and elongation factor-like protein (EFL) are considered to be functionally equivalent proteins involved in peptide synthesis. Eukaryotes can be fundamentally divided into ‘EF-1α-containing’ and ‘EFL-containing’ types. Recently, EF-1α and EFL genes have been surveyed across the diversity of eukaryotes to explore the origin and evolution of EFL genes. Although the phylum Cercozoa is a diverse group, gene data for either EFL or EF-1α are absent from all cercozoans except chlorarachniophytes which were previously defined as EFL-containing members. Our survey revealed that two members of the cercozoan subphylum Filosa (Thaumatomastix sp. and strain YPF610) are EFL-containing members. Importantly, we identified EF-1α genes from two members of Filosa (Paracercomonas marina and Paulinella chromatophora) and a member of the other subphylum Endomyxa (Filoreta japonica). All cercozoan EFL homologues could not be recovered as a monophyletic group in maximum-likelihood and Bayesian analyses, suggesting that lateral gene transfer was involved in the EFL evolution in this protist assemblage. In contrast, EF-1α analysis successfully recovered a monophyly of three homologues sampled from the two cercozoan subphyla. Based on the results, we postulate that cercozoan EF-1α genes have been vertically inherited, and the current EFL-containing species may have secondarily lost their EF-1α genes.  相似文献   

7.
Ichthyosporea is a recently recognized group of morphologically simple eukaryotes, many of which cause disease in aquatic organisms. Ribosomal RNA sequence analyses place Ichthyosporea near the divergence of the animal and fungal lineages, but do not allow resolution of its exact phylogenetic position. Some of the best evidence for a specific grouping of animals and fungi (Opisthokonta) has come from elongation factor 1alpha, not only phylogenetic analysis of sequences but also the presence or absence of short insertions and deletions. We sequenced the EF-1alpha gene from the ichthyosporean parasite Ichthyophonus irregularis and determined its phylogenetic position using neighbor-joining, parsimony and Bayesian methods. We also sequenced EF-1alpha genes from four chytrids to provide broader representation within fungi. Sequence analyses and the presence of a characteristic 12 amino acid insertion strongly indicate that I. irregularis is a member of Opisthokonta, but do not resolve whether I. irregularis is a specific relative of animals or of fungi. However, the EF-1alpha of I. irregularis exhibits a two amino acid deletion heretofore reported only among fungi.  相似文献   

8.
Microsporidia branch at the base of eukaryotic phylogenies inferred from translation elongation factor 1alpha (EF-1alpha) sequences. Because these parasitic eukaryotes are fungi (or close relatives of fungi), it is widely accepted that fast-evolving microsporidian sequences are artifactually "attracted" to the long branch leading to the archaebacterial (outgroup) sequences ("long-branch attraction," or "LBA"). However, no previous studies have explicitly determined the reason(s) why the artifactual allegiance of microsporidia and archaebacteria ("M + A") is recovered by all phylogenetic methods, including maximum likelihood, a method that is supposed to be resistant to classical LBA. Here we show that the M + A affinity can be attributed to those alignment sites associated with large differences in evolutionary site rates between the eukaryotic and archaebacterial subtrees. Therefore, failure to model the significant evolutionary rate distribution differences (covarion shifts) between the ingroup and outgroup sequences is apparently responsible for the artifactual basal position of microsporidia in phylogenetic analyses of EF-1alpha sequences. Currently, no evolutionary model that accounts for discrete changes in the site rate distribution on particular branches is available for either protein or nucleotide level phylogenetic analysis, so the same artifacts may affect many other "deep" phylogenies. Furthermore, given the relative similarity of the site rate patterns of microsporidian and archaebacterial EF-1alpha proteins ("parallel site rate variation"), we suggest that the microsporidian orthologs may have lost some eukaryotic EF-1alpha-specific nontranslational functions, exemplifying the extreme degree of reduction in this parasitic lineage.  相似文献   

9.
The relationship between phylogeny and nucleomorph genome size was examined in 16 strains of cryptomonad algae using pulsed‐field gel electrophoresis, Southern hybridization and phylogenetic analyses. Our results suggest that all cryptomonads examined in this study contain three nucleomorph chromosomes and their total genome size ranges from 495 to 750 kb. In addition, we estimated the plastid genome size of the respective organisms. The plastid genomes of photosynthetic strains were approximately 120–160 kb in size, whereas the non‐photosynthetic Cryptomonas paramecium NIES715 possesses a genome of approximately 70 kb. Phylogenetic analysis of the nuclear small subunit ribosomal DNA (SSU rDNA) gene showed that nucleomorph genome size varies considerably within closely related strains. This result indicates that the reduction of nucleomorph genomes is a rapid phenomenon that occurred multiple times independently during cryptomonad evolution. The nucleomorph genome sizes of Cryptomonas rostratiformis NIES277 appeared to be approximately 495 kb. This is smaller than that of Guillardia theta CCMP327, which until now was thought to have the smallest known nucleomorph genome size among photosynthetic cryptomonads.  相似文献   

10.
Nucleomorph genomes: structure, function, origin and evolution   总被引:4,自引:0,他引:4  
The cryptomonads and chlorarachniophytes are two unicellular algal lineages with complex cellular structures and fascinating evolutionary histories. Both groups acquired their photosynthetic abilities through the assimilation of eukaryotic endosymbionts. As a result, they possess two distinct cytosolic compartments and four genomes--two nuclear genomes, an endosymbiont-derived plastid genome and a mitochondrial genome derived from the host cell. Like mitochondrial and plastid genomes, the genome of the endosymbiont nucleus, or 'nucleomorph', of cryptomonad and chlorarachniophyte cells has been greatly reduced through the combined effects of gene loss and intracellular gene transfer. This article focuses on the structure, function, origin and evolution of cryptomonad and chlorarachniophyte nucleomorph genomes in light of recent comparisons of genome sequence data from both groups. It is now possible to speculate on the reasons that nucleomorphs persist in cryptomonads and chlorarachniophytes but have been lost in all other algae with plastids of secondary endosymbiotic origin.  相似文献   

11.
The interaction between elongation factor 1alpha (EF-1alpha) and alpha/beta-tubulins has been analyzed in vivo and in vitro. An association of both alpha- and beta-tubulins with EF-1alpha in the lysate of Tetrahymena pyriformis was detected by co-immunoprecipitation analysis. In contrast, in vitro biomolecular interaction analysis with glutathione S-transferase (GST) fusion proteins revealed that GST-beta-tubulin, but not GST-alpha-tubulin, can bind to GST-EF-1alpha. Two beta-tubulin binding sites have been identified to reside in the domains I and III of EF-1alpha. In addition, beta-tubulin itself seems to have two distinct interaction sites for each of the domains. Since domain II of EF-1alpha did not interact with beta-tubulin, we have re-evaluated the phylogenetic status of ciliates using EF-1alpha sequences devoid of domain II. The phylogenetic tree thus obtained was significantly different from that inferred from the whole sequence of EF-1alpha, suggesting the presence of functional constraints on the molecular evolution of EF-1alpha.  相似文献   

12.

Background  

Two key genes of the translational apparatus, elongation factor-1 alpha (EF-1α) and elongation factor-like (EFL) have an almost mutually exclusive distribution in eukaryotes. In the green plant lineage, the Chlorophyta encode EFL except Acetabularia where EF-1α is found, and the Streptophyta possess EF-1α except Mesostigma, which has EFL. These results raise questions about evolutionary patterns of gain and loss of EF-1α and EFL. A previous study launched the hypothesis that EF-1α was the primitive state and that EFL was gained once in the ancestor of the green plants, followed by differential loss of EF-1α or EFL in the principal clades of the Viridiplantae. In order to gain more insight in the distribution of EF-1α and EFL in green plants and test this hypothesis we screened the presence of the genes in a large sample of green algae and analyzed their gain-loss dynamics in a maximum likelihood framework using continuous-time Markov models.  相似文献   

13.
The elongation factor 1 alpha (EF-1 alpha) has become widely employed as a phylogenetic marker for studying eukaryotic evolution. However, a disturbing problem, the artifactual polyphyly of ciliates, is always observed. It has been suggested that the addition of new sequences will help to circumvent this problem. Thus, we have determined 15 new ciliate EF-1 alpha sequences, providing for a more comprehensive taxonomic sampling of this phylum. These sequences have been analyzed together with a representation of eukaryotic sequences using distance-, parsimony-, and likelihood-based phylogenetic methods. Such analyses again failed to recover the monophyly of Ciliophora. A study of the substitution rate showed that ciliate EF-1 alpha genes exhibit a high evolutionary rate, produced in part by an increased number of variable positions. This acceleration could be related to alterations of the accessory functions acquired by this protein, likely to those involving interactions with the cytoskeleton, which is very modified in the Ciliophora. The high evolutionary rate of these sequences leads to an artificial basal emergence of some ciliates in the eukaryotic tree by effecting a long-branch attraction artifact that produces an asymmetric topology for the basal region of the tree. The use of a maximum-likelihood phylogenetic method (which is less sensitive to long-branch attraction) and the addition of sequences to break long branches allow retrieval of more symmetric topologies, which suggests that the asymmetric part of the tree is most likely artifactual. Therefore, the sole reliable part of the tree appears to correspond to the apical symmetric region. These kinds of observations suggest that the general eukaryotic evolution might have consisted of a massive radiation followed by an increase in the evolutionary rates of certain groups that emerge artificially as early branches in the asymmetric base of the tree. Ciliates in the case of the EF-1 alpha genes would offer clear evidence for this hypothesis.  相似文献   

14.
Clay BL  Kugrens P 《Protist》1999,150(3):297-310
The morphology and ultrastructure of a new freshwater blue-green cryptomonad, Hemiselmis amylosa sp. nov., is described. In addition, a marine blue-green cryptomonad isolate was confirmed as Falcomonas daucoides by electron microscopy and phycobilin analysis so that it could be included in molecular sequence studies, since the original isolate is no longer available. Complete ssu rRNA gene sequences for H. amylosa and F. daucoides were obtained. Our freshwater isolate of Hemiselmis possesses the same general features described for blue-green marine species, but it differs in having an eyespot, and multiple, single thylakoids penetrating the pyrenoid; therefore, a new blue-green, freshwater species is described. Phylogenetic analyses of H. amylosa and F. daucoides, as well as 24 other cryptophyte algae, indicate a monophyletic origin for all blue-green cryptomonads. Falcomonas forms a sister clade to blue-green cryptomonads, indicating that it is the most primitive extant blue-green cryptomonad and probably diverged early from other blue-green genera. Furthermore, we suggest that the eocyte blue-green cryptomonad may have originated from a Proteomonas-like progenitor that underwent a pigment change, resulting in a Falcomonas-like cell. Based on comparative morphology, the Proteomonas haplomorph may be a likely candidate in the evolutionary transformation from red to blue-green in cryptomonads; however, phylogenetic analyses neither support nor refute this hypothesis. Finally, the current status of cryptomonad classification is addressed.  相似文献   

15.
alpha-Tubulin is one of the most widely used markers for estimating deep-level phylogenetic relationships amongst eukaryotes. We sequenced 6-7 nuclear protein-coding genes, including alpha-tubulin, from the two described species of the enigmatic jakobid(-like) excavate protist Andalucia. Concatenated protein phylogenies place Andalucia in a clade with other jakobids, Euglenozoa and Heterolobosea. Individual gene trees, except that of alpha-tubulin, do not conflict strongly with this position. In alpha-tubulin trees, Andalucia instead falls in a strongly supported clade with diplomonads, parabasalids and opisthokonts (including animals and fungi), and branches with diplomonads. This clade is robust to changes in taxon sampling, and is unlikely to represent long-branch attraction, compositional heterogeneity artefact, or segmental gene conversion. Phylogenies estimated without alpha-tubulin strongly support the original position for Andalucia, and also reinforce recent studies in placing diplomonads and parabasalids with Preaxostyla, not opisthokonts. alpha-Tubulin seems to have experienced two or more eukaryote-to-eukaryote lateral gene transfer (LGT) events, one perhaps from an ancestral opisthokont to an ancestor of diplomonads and parabasalids, or vice versa, and one probably from the diplomonad lineage to Andalucia. Like EF-1alpha/EFL, alpha-tubulin has a complex history that needs to be taken into account when using this marker for deep-level phylogenetic inference.  相似文献   

16.
Accurate translation termination is essential for cell viability. In eukaryotes, this process is strictly maintained by two proteins, eukaryotic release factor 1 (eRF1), which recognizes all stop codons and hydrolyzes peptidyl-tRNA, and eukaryotic release factor 3 (eRF3), which is an elongation factor 1alpha (EF-1alpha) homolog stimulating eRF1 activity. To retrace the evolution of this core system, we cloned and sequenced the eRF3 genes from Trichomonas vaginalis (Parabasalia) and Giardia lamblia (Diplomonada), which are generally thought to be "early-diverging eukaryotes," as well as those from two ciliates (Oxytricha trifallax and Euplotes aediculatus). We also determined the sequence of the eRF1 gene for G. lamblia. Surprisingly, the G. lamblia eRF3 appears to have only one domain, corresponding to EF-1alpha, while other eRF3s (including the T. vaginalis protein) have an additional N-terminal domain, of 66-411 amino acids. Considering this novel eRF3 structure and our extensive phylogenetic analyses, we suggest that (1) the current translation termination system in eukaryotes evolved from the archaea-like version, (2) eRF3 was introduced into the system prior to the divergence of extant eukaryotes, including G. lamblia, and (3) G. lamblia might be the first eukaryotic branch among the organisms considered.  相似文献   

17.
Here we present evidence for a complex evolutionary history of actin genes in red algae and cryptomonads, a group that acquired photosynthesis secondarily through the engulfment of a red algal endosymbiont. Four actin genes were found in the nuclear genome of the cryptomonad, Guillardia theta, and in the genome of the red alga, Galdieria sulphuraria, a member of the Cyanidiophytina. Phylogenetic analyses reveal that the both organisms possess two distinct sequence types, designated “type-1” and “type-2.” A weak but consistent phylogenetic affinity between the cryptomonad type-2 sequences and the type-2 sequences of G. sulphuraria and red algae belonging to the Rhodophytina was observed. This is consistent with the possibility that the cryptomonad type-2 sequences are derived from the red algal endosymbiont that gave rise to the cryptomonad nucleomorph and plastid. Red algae as a whole possess two very different actin sequence types, with G. sulphuraria being the only organism thus far known to possess both. The common ancestor of Rhodophytina and Cyanidiophytina may have had two actin genes, with differential loss explaining the distribution of these genes in modern-day groups. Our study provides new insight into the evolution and divergence of actin genes in cryptomonads and red algae, and in doing so underscores the challenges associated with heterogeneity in actin sequence evolution and ortholog/paralog detection.  相似文献   

18.
Translation is carried out by the ribosome and several associated protein factors through three consecutive steps: initiation, elongation, and termination. Termination remains the least understood of them, partly because of the nonuniversality of the factors involved. To get some insights on the evolution of eukaryotic translation termination, we have compared the phylogeny of the release factors eRF1 and eRF3 to that of the elongation factors EF-1alpha and EF-2, with special focus on ciliates. Our results show that these four translation proteins have experienced different modes of evolution. This is especially evident for the EF-1alpha, EF-2, and eRF1 ciliate sequences. Ciliates appear as monophyletic in the EF-2 phylogenetic tree but not in the EF-1alpha and eRF1 phylogenetic trees. This seems to be mainly because of phylogeny reconstruction artifacts (the long-branch attraction) produced by the acceleration of evolutionary rate of ciliate EF-1alpha and eRF1 sequences. Interaction with the highly divergent actin found in ciliates, or on the contrary, loss of interaction, could explain the acceleration of the evolutionary rate of the EF-1alpha sequences. In the case of ciliate eRF1 sequences, their unusually high evolutionary rate may be related to the deviations in the genetic code usage found in diverse ciliates. These deviations involve a relaxation (or even abolition) of the recognition of one or two stop codons by eRF1. To achieve this, structural changes in eRF1 are needed, and this may affect its evolutionary rate. Eukaryotic translation seems to have followed a mosaic evolution, with its different elements governed by different selective pressures. However, a correlation analysis shows that, beneath the disagreement shown by the different translation proteins, their concerted evolution can still be made apparent when they are compared with other proteins that are not involved in translation.  相似文献   

19.
Although the endosymbiotic evolution of chloroplasts through primary and secondary associations is well established, the evolutionary timing and stability of the secondary endosymbiotic events is less well resolved. Heterokonts include both photosynthetic and nonphotosynthetic members and the nonphotosynthetic lineages branch basally in phylogenetic reconstructions. Molecular and morphological data indicate that heterokont chloroplasts evolved via a secondary endosymbiosis, involving a heterotrophic host cell and a photosynthetic ancestor of the red algae and this endosymbiotic event may have preceded the divergence of heterokonts and alveolates. If photosynthesis evolved early in this lineage, nuclear genomes of the nonphotosynthetic groups may contain genes that are not essential to photosynthesis but were derived from the endosymbiont genome through gene transfer. These genes offer the potential to trace the evolutionary history of chloroplast gains and losses within these lineages. Glutamine synthetase (GS) is essential for ammonium assimilation and glutamine biosynthesis in all organisms. Three paralogous gene families (GSI, GSII, and GSIII) have been identified and are broadly distributed among prokaryotic and eukaryotic lineages. In diatoms (Heterokonta), the nuclear-encoded chloroplast and cytosolic-localized GS isoforms are encoded by members of the GSII and GSIII family, respectively. Here, we explore the evolutionary history of GSII in both photosynthetic and nonphotosynthetic heterokonts, red algae, and other eukaryotes. GSII cDNA sequences were obtained from two species of oomycetes by polymerase chain reaction amplification. Additional GSII sequences from eukaryotes and bacteria were obtained from publicly available databases and genome projects. Bayesian inference and maximum likelihood phylogenetic analyses of GSII provided strong support for the monophyly of heterokonts, rhodophytes, chlorophytes, and plants and strong to moderate support for the Opisthokonts. Although the phylogeny is reflective of the unikont/bikont division of eukaryotes, we propose based on the robustness of the phylogenetic analyses that the heterokont GSII gene evolved via endosymbiotic gene transfer from the nucleus of the red-algal endosymbiont to the nucleus of the host. The lack of GSIII sequences in the oomycetes examined here further suggests that the GSIII gene that functions in the cytosol of photosynthetic heterokonts was replaced by the endosymbiont-derived GSII gene.  相似文献   

20.
Here we use phylogenomics with expressed sequence tag (EST) data from the ecologically important coccolithophore-forming alga Emiliania huxleyi and the plastid-lacking cryptophyte Goniomonas cf. pacifica to establish their phylogenetic positions in the eukaryotic tree. Haptophytes and cryptophytes are members of the putative eukaryotic supergroup Chromalveolata (chromists [cryptophytes, haptophytes, stramenopiles] and alveolates [apicomplexans, ciliates, and dinoflagellates]). The chromalveolates are postulated to be monophyletic on the basis of plastid pigmentation in photosynthetic members, plastid gene and genome relationships, nuclear "host" phylogenies of some chromalveolate lineages, unique gene duplication and replacements shared by these taxa, and the evolutionary history of components of the plastid import and translocation systems. However the phylogenetic position of cryptophytes and haptophytes and the monophyly of chromalveolates as a whole remain to be substantiated. Here we assess chromalveolate monophyly using a multigene dataset of nuclear genes that includes members of all 6 eukaryotic supergroups. An automated phylogenomics pipeline followed by targeted database searches was used to assemble a 16-protein dataset (6,735 aa) from 46 taxa for tree inference. Maximum likelihood and Bayesian analyses of these data support the monophyly of haptophytes and cryptophytes. This relationship is consistent with a gene replacement via horizontal gene transfer of plastid-encoded rpl36 that is uniquely shared by these taxa. The haptophytes + cryptophytes are sister to a clade that includes all other chromalveolates and, surprisingly, two members of the Rhizaria, Reticulomyxa filosa and Bigelowiella natans. The association of the two Rhizaria with chromalveolates is supported by the approximately unbiased (AU)-test and when the fastest evolving amino acid sites are removed from the 16-protein alignment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号