首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high throughput screen for neutral, magnesium-dependent sphingomyelinase (SMase) was performed. One inhibitor discovered in the screen, GW4869, functioned as a noncompetitive inhibitor of the enzyme in vitro with an IC(50) of 1 microm. It did not inhibit acid SMase at up to at least 150 microm. The compound was then evaluated for its ability to inhibit tumor necrosis factor (TNF)-induced activation of neutral SMase (N-SMase) in MCF7 cells. GW4869 (10 microm) partially inhibited TNF-induced sphingomyelin (SM) hydrolysis, and 20 microm of the compound was protected completely from the loss of SM. The addition of 10-20 microm GW4869 completely inhibited the initial accumulation of ceramide, whereas this effect was partially lost at later time points (24 h). These data therefore support the inhibitory action of GW4869 on N-SMase not only in vitro but also in a cellular model. The addition of GW4869 at both 10 and 20 microm did not modify cellular glutathione levels in response to TNF, suggesting that the action of GW4869 occurred downstream of the drop in glutathione, which was shown previously to occur upstream of the activation of N-SMase. Further, whereas TNF treatment also caused a 75% increase of de novo synthesized ceramide after 20 h of incubation, GW4869, at either 10 or 20 microm, had no effect on this pathway of ceramide generation. In addition, GW4869 did not significantly impair TNF-induced NF-kappaB translocation to nuclei. Therefore, GW4869 does not interfere with other key TNF-mediated signaling effects. GW4869 was able, in a dose-dependent manner, to significantly protect from cell death as measured by nuclear condensation, caspase activation, PARP degradation, and trypan blue uptake. These protective effects were accompanied by significant inhibition of cytochrome c release from mitochondria and caspase 9 activation, therefore localizing N-SMase activation upstream of mitochondrial dysfunction. In conclusion, our results indicate that N-SMase activation is a necessary step for the full development of the cytotoxic program induced by TNF.  相似文献   

2.
Activation of sphingomyelinase (SMase) by extracellular stimuli is the major pathway for cellular production of ceramide, a bioactive lipid mediator acting through sphingomyelin (SM) hydrolysis. Previously, we reported the existence of six forms of neutral pH–optimum and Mg2+-dependent SMase (N-SMase) in the membrane fractions of bovine brain. Here, we focus on N-SMase ε from salt-extracted membranes. After extensive purification by 12,780-fold with a yield of 1.3%, this enzyme was eventually characterized as N-SMase2. The major single band of 60-kDa molecular mass in the active fractions of the final purification step was identified as heat shock protein 60 (Hsp60) by matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis. Proximity ligation assay and immunoprecipitation study showed that Hsp60 interacted with N-SMase2, prompting us to examine the effect of Hsp60 on N-SMase2 and ceramide production. Interestingly, Hsp60 siRNA treatment significantly increased the protein level of N-SMase2 in N-SMase2-overexpressed HEK293 cells. Furthermore, transfection of Hsp60 siRNA into PC12 cells effectively increased both N-SMase activity and ceramide production and increased dopamine re-uptake with paralleled increase. Taken together, these results show that Hsp60 may serve as a negative regulator in N-SMase2-induced dopamine re-uptake by decreasing the protein level of N-SMase2.  相似文献   

3.
The mechanism of crosstalk between signaling pathways coupled to the Trk A and p75(NTR) neurotrophin receptors in PC12 cells was examined. In response to nerve growth factor (NGF), Trk A activation inhibited p75(NTR)-dependent sphingomyelin (SM) hydrolysis. The phosphoinositide 3-kinase (PI 3-kinase) inhibitor, LY294002, reversed this inhibition suggesting that Trk A activation of PI 3-kinase is necessary to inhibit sphingolipid signaling by p75(NTR). In contrast, SM hydrolysis induced by neurotrophin-3 (NT-3), which did not activate PI-3 kinase, was uneffected by LY294002. However, transient expression of a constituitively active PI 3-kinase inhibited p75(NTR)-dependent SM hydrolysis by both NGF and NT-3. Intriguingly, NGF induced an association of activated PI 3-kinase with acid sphingomyelinase (SMase). This interaction localized to caveolae-related domains and correlated with a 50% decrease in immunoprecipitated acid SMase activity. NGF-stimulated PI 3-kinase activity was necessary for inhibition of acid SMase but was not required for ligand-induced association of the p85 subunit of PI 3-kinase with the phospholipase. Finally, this interaction was specific for NGF since EGF did not induce an association of PI 3-kinase with acid SMase. In summary, our data suggest that PI 3-kinase regulates the inhibitory crosstalk between Trk A tyrosine kinase and p75(NTR)-dependent sphingolipid signaling pathways and that this interaction localizes to caveolae-related domains.  相似文献   

4.
Involvement of the acid sphingomyelinase pathway in uva-induced apoptosis   总被引:7,自引:0,他引:7  
The sphingomyelin-ceramide pathway is an evolutionarily conserved ubiquitous signal transduction system that regulates many cell functions including apoptosis. Sphingomyelin (SM) is hydrolyzed to ceramide by different sphingomyelinases. Ceramide serves as a second messenger in mediating cellular effects of cytokines and stress. In this study, we find that acid sphingomyelinase (SMase) activity was induced by UVA in normal JY lymphoblasts but was not detectable in MS1418 lymphoblasts from Niemann-Pick type D patients who have an inherited deficiency of acid SMase. We also provide evidence that UVA can induce apoptosis by activating acid SMase in normal JY cells. In contrast, UVA-induced apoptosis was inhibited in MS1418 cells. Exogenous SMase and its product, ceramide (10-40 micrometer), induced apoptosis in JY and MS1418 cells, but the substrate of SMase, SM (20-80 micrometer), induced apoptosis only in JY cells. These results suggest that UVA-induced apoptosis by SM is dependent on acid SMase activity. We also provide evidence that induction of apoptosis by UVA may occur through activation of JNKs via the acid SMase pathway.  相似文献   

5.
The cytoplasmic tail of the tumor necrosis factor receptor I (TNF-RI) contains several functionally distinct domains involved in apoptotic signaling. Mutants of TNF-RI carrying deletions of the death domain (DD), internalization domain (TRID), and neutral sphingomyelinase domain (NSD), respectively, retransfected in cells devoid of TNF-RI and TNF-RII, constituted distinct tools to evaluate the specific role of each domain in downstream apoptotic signaling events. Deletion of DD abolishes activation of caspase-3 and -9 and apoptosis following treatment with TNF because of blocked assembly of the DISC. Nevertheless, TNF-RI DeltaTRID, though lacking a DISC, still allows for residual activation of caspase-3 followed by cell death, although caspase-9 activation was not detected. This activity of caspase-3 is probably due to activation of neutral sphingomyelinase (N-SMase). Increased activity of this enzyme was detected in cells expressing TNF-RI DeltaTRID following treatment with TNF, but not in any other cell line investigated. N-SMase is activated by factor associated with N-SMase (FAN). Because TNF-RI DeltaTRID is retained at the cell surface, FAN may interact with the mutated receptor for a prolonged amount of time, thereby overactivating N-SMase. Double deletion of TRID and NSD abolished caspase-3 activation and apoptosis, confirming this hypothesis.  相似文献   

6.
7.
Endoplasmic reticulum (ER) stress and excessive nitric oxide production via the induction of inducible nitric oxide synthase (NOS2) have been implicated in the pathogenesis of ocular diseases characterized by retinal degeneration. Previous studies have revealed the sphingomyelinase/ceramide pathway in the regulation of NOS2 induction. Thus, the objective of this study was to determine the activity of the sphingomyelinase/ceramide pathway, assess nitric oxide production, and examine apoptosis in human retinal pigment epithelial (RPE) cells undergoing ER stress. Sphingomyelinase (SMase) activity; nuclear factor κB (NF-κB) activation; NOS2, nitrite/nitrate, and nitrotyrosine levels; and apoptosis were determined in cultured human RPE cell lines subjected to ER stress via exposure to tunicamycin. Induction of ER stress was confirmed by increased intracellular levels of ER stress markers including phosphorylated PKR-like ER kinase, C/EBP-homologous protein, and 78-kDa glucose-regulated protein. ER stress increased nuclear translocation of NF-κB, NOS2 expression, nitrite/nitrate levels, and nitrotyrosine formation and caused apoptosis in RPE cell lines. Inhibition of neutral SMase (N-SMase) activity via GW 4869 treatment caused a significant reduction in nuclear translocation of NF-κB, NOS2 expression, nitrite/nitrate levels, nitrotyrosine formation, and apoptosis in ER-stressed RPE cells. In conclusion, N-SMase inhibition reduced nitrative stress and apoptosis in RPE cells undergoing ER stress. Obtained data suggest that NOS2 can be regulated by N-SMase in RPE cells experiencing ER stress.  相似文献   

8.
Sodium nitroprusside (SNP), a NO donor, has been recognized as an inducer of apoptosis in various cell lines. Here, we demonstrated the intracellular formation of ceramide, a lipid signal mediator, in SNP-induced apoptosis in human leukemia HL-60 cells and investigated the mechanisms of ceramide generation. The levels of intracellular ceramide increased to, at most, 160% of the control level in a time- and dose-dependent manner when the cells were treated with 1 mM SNP. SNP also decreased the sphingomyelin level to approximately 70% of the control level and increased magnesium-dependent neutral sphingomyelinase (N-SMase) activity to 160% of the control activity 2 h after treatment. Neither acid SMase nor magnesium-independent N-SMase was affected by SNP. Caspases are thought to be key enzymes in apoptotic cell death. Acetyl-Asp-Glu-Val-Asp-aldehyde, a synthetic tetrapeptide inhibitor of caspases, inhibited magnesiumdependent N-SMase, ceramide generation, and apoptosis. Moreover, recombinant purified caspase-3 increased magnesium-dependent N-SMase in a cell-free system. These results suggest that the findings that SNP increased ceramide generation and magnesium-dependent N-SMase activity via caspase-3 are interesting to future study to determine the relation between caspases and sphingolipid metabolites in NO-mediated signaling.  相似文献   

9.
Okamoto Y  Obeid LM  Hannun YA 《FEBS letters》2002,530(1-3):104-108
Recent studies demonstrate a role for intracellular oxidation in the regulation of neutral sphingomyelinase (N-SMase). Glutathione (GSH) has been shown to regulate N-SMase in vitro and in cells. However, it has not been established whether the effects of GSH in cells are due to direct action on N-SMase. In this study, treatment of human mammary carcinoma MCF-7 cells with diamide, a thiol-depleting agent, caused a decrease in intracellular GSH and degradation of sphingomyelin (SM) to ceramide. The SM pool hydrolyzed in response to diamide belonged to the bacterial SMase-resistant pool of SM. Importantly, pretreatment of MCF-7 cells with GSH, N-acetylcysteine, an antioxidant, or GW69A, a specific N-SMase inhibitor, prevented diamide-induced degradation of SM to ceramide, suggesting that intracellular levels of GSH regulate the extent to which SM is degraded to ceramide and that this probably involves a GW69A-sensitive N-SMase. Unexpectedly, expression of Bcl-xL prevented tumor necrosis factor--induced SM hydrolysis and ceramide accumulation but not the decrease in intracellular GSH. Furthermore, Bcl-xL inhibited diamide-induced SM hydrolysis and ceramide accumulation but not the decrease in intracellular GSH. These results suggest that the site of action of Bcl-xL is downstream of GSH depletion and upstream of ceramide accumulation, and that GSH probably does not exert direct physiologic effects on N-SMase.  相似文献   

10.
Ceramide and other sphingolipids are now recognized as novel intracellular signal mediators. One of the important and regulated steps in the metabolism of sphingolipids is the hydrolysis of sphingomyelin into ceramide by sphingomyelinases. Whereas some studies suggest a role for acid sphingomyelinase in cell regulation, several lines of investigation suggest that neutral sphingomyelinase (N-SMase) plays a critical role in stress responses including apoptosis. Recently the advanced purification of neutral membrane-bound magnesium-dependent sphingomyelinase from rat brain was reported on. The specific activity of the purified N-SMase was increased by approximately 3000-fold over the rat brain homogenate, and it is specifically activated by phosphatidylserine. In cells, N-SMase may be coupled to either the redox state and/or glutathione metabolism. The significance of N-SMase and ceramide in stress responses is discussed.  相似文献   

11.
Sphingolipids play important roles in regulating cellular responses. Although mitochondria contain sphingolipids, direct regulation of their levels in mitochondria or mitochondria-associated membranes is mostly unclear. Neutral SMase (N-SMase) isoforms, which catalyze hydrolysis of sphingomyelin (SM) to ceramide and phosphocholine, have been found in the mitochondria of yeast and zebrafish, yet their existence in mammalian mitochondria remains unknown. Here, we have identified and cloned a cDNA based on nSMase homologous sequences. This cDNA encodes a novel protein of 483 amino acids that displays significant homology to nSMase2 and possesses the same catalytic core residues as members of the extended N-SMase family. A transiently expressed V5-tagged protein co-localized with both mitochondria and endoplasmic reticulum markers in MCF-7 and HEK293 cells; accordingly, the enzyme is referred to as mitochondria-associated nSMase (MA-nSMase). MA-nSMase was highly expressed in testis, pancreas, epididymis, and brain. MA-nSMase had an absolute requirement for cations such as Mg2+ and Mn2+ and activation by the anionic phospholipids, especially phosphatidylserine and the mitochondrial cardiolipin. Importantly, overexpression of MA-nSMase in HEK293 cells significantly increased in vitro N-SMase activity and also modulated the levels of SM and ceramide, indicating that the identified cDNA encodes a functional SMase. Thus, these studies identify and characterize, for the first time, a mammalian MA-nSMase. The characterization of MA-nSMase described here will contribute to our understanding of pathways regulated by sphingolipid metabolites, particularly with reference to the mitochondria and associated organelles.  相似文献   

12.
Abstract: We examined the ability of ceramide and sphingomyelinase (SMase) to prevent neuronal programmed cell death (PCD). We found that a cell-permeable ceramide analogue prevented neuronal PCD when applied to established sympathetic neuron primary cultures at the time of nerve growth factor (NGF) deprivation. Other amphiphilic lipids such as oleic acid failed to prevent cell death. Exogenous SMase also showed the same effect, probably by raising the intracellular ceramide level by sphingomyelin (SM) breakdown. Phosphocholine, another hydrolytic product of SM by SMase, did not prevent cell death. Other phospholipases, such as phospholipase C and phospholipase A2, could not prevent cell death. Given the recent findings that the SM cycle is activated to increase the intracellular ceramide level on NGF binding to the low-affinity NGF receptor (LNGFR) and that NGF binding to LNGFR suppresses apoptosis in neural cell lines, our results suggest the possibility of the SM cycle as a signaling mechanism transducing the PCD-preventing activity of NGF.  相似文献   

13.
The neutral sphingomyelinase (N-SMase) is considered a major candidate for mediating the stress-induced production of ceramide, and it plays an important role in cell-cycle arrest, apoptosis, inflammation, and eukaryotic stress responses. Recent studies have identified a small region at the very N-terminus of the 55 kDa tumour necrosis factor receptor (TNF-R55), designated the neutral sphingomyelinase activating domain (NSD) that is responsible for the TNF-induced activation of N-SMase. There is no direct association between TNF-R55 NSD and N-SMase; instead, a protein named factor associated with N-SMase activation (FAN) has been reported to couple the TNF-R55 NSD to N-SMase. Since the three-dimensional fold of N-SMase is still unknown, we have modeled the structure using the protein fold recognition and threading method. Moreover, we propose models for the TNF-R55 NSD as well as the FAN protein in order to study the structural basis of N-SMase activation and regulation. Protein-protein interaction studies suggest that FAN is crucially involved in mediating TNF-induced activation of the N-SMase pathway, which in turn regulates mitogenic and proinflammatory responses. Inhibition of N-SMase may lead to reduction of ceramide levels and hence may provide a novel therapeutic strategy for inflammation and autoimmune diseases. Molecular dynamics (MD) simulations were performed to check the stability of the predicted model and protein-protein complex; indeed, stable RMS deviations were obtained throughout the simulation. Furthermore, in silico docking of low molecular mass ligands into the active site of N-SMase suggests that His135, Glu48, Asp177, and Asn179 residues play crucial roles in this interaction. Based on our results, these ligands are proposed to be potent and selective N-SMase inhibitors, which may ultimately prove useful as lead compounds for drug development.  相似文献   

14.
Both glutathione (GSH) depletion and arachidonic acid (AA) generation have been shown to regulate sphingomyelin (SM) hydrolysis and are known components in tumor necrosis factor alpha (TNFalpha)-induced cell death. In addition, both have hypothesized direct roles in activation of N-sphingomyelinase (SMase); however, it is not known whether these are independent pathways of N-SMase regulation or linked components of a single ordered pathway. This study was aimed at differentiating these possibilities using L929 cells. Depletion of GSH with L-buthionin-(S,R)-sulfoximine (BSO) induced 50% hydrolysis of SM at 12 h. In addition, TNF induced a depletion of GSH, and exogenous addition of GSH blocked TNF-induced SM hydrolysis as well as TNF-induced cell death. Together, these results establish GSH upstream of SM hydrolysis and ceramide generation in L929 cells. We next analyzed the L929 variant, C12, which lacks both cytosolic phospholipase A(2) (cPLA(2)) mRNA and protein, in order to determine the relationship of cPLA(2) and GSH. TNF did not induce a significant drop in GSH levels in the C12 line. On the other hand, AA alone was capable of inducing a 60% depletion of GSH in C12 cells, suggesting that these cells remain responsive to AA distal to the site of cPLA(2). Furthermore, depleting GSH with BSO failed to effect AA release, but caused a drop in SM levels, showing that the defect in these cells was upstream of the GSH drop and SMase activation. When cPLA(2) was restored to the C12 line by expression of the cDNA, the resulting CPL4 cells regained sensitivity to TNF. Treatment of the CPL4 cells with TNF resulted in GSH levels dropping to levels near those of the wild-type L929 cells. These results demonstrate that GSH depletion following TNF treatment in L929 cells is dependent on intact cPLA(2) activity, and suggest a pathway in which activation of cPLA(2) is required for the oxidation and reduction of GSH levels followed by activation of SMases.  相似文献   

15.
Neutral sphingomyelinase (N-SMase) is one of the key enzymes involved in the generation of ceramide; however, the gene(s) encoding for the mammalian N-SMase is still not well defined. Previous studies on the cloned nSMase1 had shown that the protein acts primarily as lyso-platelet-activating factor-phospholipase C. Recently the cloning of another putative N-SMase, nSMase2, was reported. In this study, biochemical characterization of the mouse nSMase2 was carried out using the overexpressed protein in yeast cells in which the inositol phosphosphingolipid phospholipase C (Isc1p) was deleted. N-SMase activity was dependent on Mg(2+) and was activated by phosphatidylserine and inhibited by GW4869. The ability of nSMase2 to recognize endogenous sphingomyelin (SM) as substrate was investigated by overexpressing nSMase2 in MCF7 cells. Mass measurements showed a 40% decrease in the SM levels in the overexpressor cells, and labeling studies demonstrated that nSMase2 accelerated SM catabolism. Accordingly, ceramide measurement showed a 60 +/- 15% increase in nSMase2-overexpressing cells compared with the vector-transfected MCF7. The role of nSMase2 in cell growth was next investigated. Stable overexpression of nSMase2 resulted in a 30-40% decrease in the rate of growth at the late exponential phase. Moreover, tumor necrosis factor induced approximately 50% activation of nSMase2 in MCF7 cells overexpressing the enzyme, demonstrating that nSMase2 is a tumor necrosis factor-responsive enzyme. In conclusion, these results 1) show that nSMase2 is a structural gene for nSMase, 2) suggest that nSMase2 acts as a bona fide N-SMase in cells, and 3) implicate nSMase2 in the regulation of cell growth and cell signaling.  相似文献   

16.

Background

Caffeic acid phenethyl ester (CAPE), a component of propolis, is reported to possess anti-inflammatory, anti-bacterial, anti-viral, and anti-tumor activities. Previously, our laboratory demonstrated the in vitro and in vivo bioactivity of CAPE and addressed the role of p53 and the p38 mitogen-activated protein kinase (MAPK) pathway in regulating CAPE-induced apoptosis in C6 glioma cells.

Results

C6 cancer cell lines were exposed to doses of CAPE; DNA fragmentation and MAPKs and NGF/P75NTR levels were then determined. SMase activity and ceramide content measurement as well as western blotting analyses were performed to clarify molecular changes. The present study showed that CAPE activated neutral sphingomyelinase (N-SMase), which led to the ceramide-mediated activation of MAPKs, including extracellular signal-regulated kinase (ERK), Jun N-terminus kinase (JNK), and p38 MAPK. In addition, CAPE increased the expression of nerve growth factor (NGF) and p75 neurotrophin receptor (p75NTR). The addition of an N-SMase inhibitor, GW4869, established that NGF/p75NTR was the downstream target of N-SMase/ceramide. Pretreatment with MAPK inhibitors demonstrated that MEK/ERK and JNK acted upstream and downstream, respectively, of NGF/p75NTR. Additionally, CAPE-induced caspase 3 activation and poly [ADP-ribose] polymerase cleavage were reduced by pretreatment with MAPK inhibitors, a p75NTR peptide antagonist, or GW4869.

Conclusions

Taken together, N-SMase activation played a pivotal role in CAPE-induced apoptosis by activation of the p38 MAPK pathway and NGF/p75NTR may explain a new role of CAPE induced apoptosis in C6 glioma.  相似文献   

17.
Sphingomyelin (SM) and free cholesterol (FC) are concentrated in the plasma membranes of eukaryotes; however, the physiological significance of their association is unclear. A common tool for studying the role of membrane SM is digestion with bacterial sphingomyelinase (SMase) C, which hydrolyzes SM to ceramide. However, it is not known whether the observed effects of SMase C treatment are due to the loss of SM per se or to the signaling effects of ceramide. In this study, we tested SMase D from Corynebacterium pseudotuberculosis, which hydrolyzes SM to ceramide phosphate, as an alternative probe. This enzyme specifically hydrolyzed SM in fibroblasts without causing accumulation of ceramide. Treatment of fibroblasts with SMase D stimulated translocation of PM FC to intracellular sites by <20% of the rate observed after SMase C digestion. The cells regenerated SM nearly completely within 5 h after SMase C treatment. However, even after 20 h, no regeneration occurred following SMase D digestion. These findings suggest that the translocation of PM FC caused by SMase C digestion is due to the cellular effects of ceramide rather than the loss of SM. Since ceramide phosphate does not appear to have such effects, we suggest that SMase D is a useful probe of membrane SM.  相似文献   

18.
Lipopolysaccharide (LPS) and inflammatory cytokines cause activation of sphingomyelinases (SMases) and subsequent hydrolysis of sphingomyelin (SM) to produce a lipid messenger ceramide. The use of SMase inhibitors may offer new therapies for the treatment of the LPS- and cytokines-related inflammatory bowel disease (IBD). We synthesized a series of difluoromethylene analogues of SM (SMAs). Here, we show that LPS efficiently increases the release of IL-8 from HT-29 intestinal epithelial cells by activating both neutral SMase and nuclear factor (NF)-kappaB in the cells. The addition of SMA-7 suppressed neutral SMase-catalyzed ceramide production, NF-kappaB activation, and IL-8 release from HT-29 cells caused by LPS. The results suggest that activation of neutral SMase is an underlying mechanism of LPS-induced release of IL-8 from the intestinal epithelial cells. Ceramide production following LPS-induced SM hydrolysis may trigger the activation of NF-kappaB in nuclei. Oral administration of SMA-7 (60 mg/kg) to mice with 2% dextran sulfate sodium (DSS) in their drinking water, for 21 consecutive days, reduced significantly the severity of colonic injury. This finding suggests a central role for SMase/ceramide signaling in the pathology of DSS-induced colitis in mice. The therapeutic effect of SMA-7 observed in mice may involve the suppression of IL-8 production from intestinal epithelial cells by LPS or other inflammatory cytokines.  相似文献   

19.
We propose that accumulated membrane bending energy elicits a neutral sphingomyelinase (SMase) activity in human erythrocytes. Membrane bending was achieved by osmotic or chemical processes, and SMase activity was assessed by quantitative thin-layer chromatography, high-performance liquid chromatography, and electrospray ionization-mass spectrometry. The activity induced by hypotonic stress in erythrocyte membranes had the pH dependence, ion dependence, and inhibitor sensitivity of mammalian neutral SMases. The activity caused a decrease in SM contents, with a minimum at 6 min after onset of the hypotonic conditions, and then the SM contents were recovered. We also elicited SMase activity by adding lysophosphatidylcholine externally or by generating it with phospholipase A(2). The same effect was observed upon addition of chlorpromazine or sodium deoxycholate at concentrations below the critical micellar concentration, and even under hypertonic conditions. A unifying factor of the various agents that elicit this SMase activity is the accumulated membrane bending energy. Both hypo-and hypertonic conditions impose an increased curvature, whereas the addition of surfactants or phospholipase A(2) activation increases the outer monolayer area, thus leading to an increased bending energy. The fact that this latent SMase activity is tightly coupled to the membrane bending properties suggests that it may be related to the general phenomenon of stress-induced ceramide synthesis and apoptosis.  相似文献   

20.
Neutral sphingomyelinase: past, present and future   总被引:2,自引:0,他引:2  
Sphingomyelin and its metabolic products are now known to have second messenger functions in a variety of cellular signaling pathways. At the epicenter of the sphingomyelin--cell signaling pathway is a family of phospholipases called sphingomyelinases. These enzymes cleave sphingomyelin to produce ceramide and phosphocholine. Ceramide in turn serves as a lipid second messenger that induces a variety of cell regulatory phenomenon such as programmed cell death (apoptosis), cell differentiation, cell proliferation, and sterol homeostasis. Neutral sphingomyelinase (N-SMase) is a Mg2+ sensitive enzyme that can be activated by a host of physiologically relevant and structurally diverse molecules like tumor necrosis factor-alpha (TNF-alpha), oxidized human low density lipoproteins (Ox-LDL), and several growth factors. Large amounts of ceramide accumulate in human fatty streaks and plaques along with Ox-LDL, growth factors, and proinflammatory cytokines in human atherosclerosis. A further role of ceramide and N-SMase in atherosclerosis was uncovered by the finding that Ox-LDL and TNF-alpha stimulated N-SMase activity. In turn, ceramide and/or a homolog serves as an important stress signaling molecule in signal transduction, which leads to apoptosis. Interestingly, an antibody against N-SMase can abrogate Ox-LDL and TNF-alpha induced apoptosis, and therefore may be useful for additional studies of apoptosis in experimental animals. Overexpression of recombinant human N-SMase in human aortic smooth muscle cells markedly stimulate apoptosis, presumably via the multioligomerization of the 'death domain'. Since plaque stability is an integral aspect of atherosclerosis management, activation of N-SMase and subsequent apoptosis may be vital events in the onset of plaque rupture, stroke and heart failure. In contrast to these observations in human hepatocytes, TNF-alpha mediated N-SMase activation did not induce apoptosis. Rather it stimulated the maturation of sterol regulatory element (SRE) binding protein (SREBP-1). Moreover, a cell permeable ceramide was found to reconstitute the phenomenon above in a sterol-independent fashion. These findings provide alternate avenues for therapy of patients with hypercholesterolemia and atherosclerosis. The findings reported here suggests that N-SMase plays important cell regulatory roles and provide an exciting opportunity to further these findings to understand the pathophysiology of human disease states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号