首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
松嫩平原不同株型玉米品种根系分布特征比较研究   总被引:3,自引:1,他引:2  
采用土柱模拟栽培法与大田试验相结合的方法,对松嫩平原不同株型玉米的根系分布特征进行了比较。结果表明,平展型玉米和紧凑型玉米根干重最大值出现的时期不同,二者根干重分别在抽丝后15d和抽丝后30d时达到最大值,成熟时紧凑型玉米根干重比平展型高12.2%,二者根系垂直分布有明显的差异,在20cm以下的根干重比率,平展型玉米在19%以下,而紧凑型玉米高于23%,紧凑型玉米的深层根量较多,在深40~100cm土层内根干重比率比平展型高42.3%,二者的根系水平分布也不同,紧凑型玉米根系水平分布较集中,在距植株0~10cm水平范围内,根系分布比率比平展型玉米高9.6%,紧凑型玉米深层根量较多,水平分布集中,耐密植,是易获得高产的重要原因之一。  相似文献   

2.
As the depth of soil petroleum contamination can vary substantially under field conditions, a rhizotron experiment was performed to investigate the influence of endophyte, P. indica, on maize growth and degradation of petroleum components in a shallow and a deep-reaching subsurface layer of a soil. For control, a treatment without soil contamination was also included. The degree in contamination and the depth to which it extended had a strong effect on the growth of the plant roots. Contaminated soil layers severely inhibited root growth thus many roots preferred to bypass the shallow contaminated layer and grow in the uncontaminated soil. While the length and branching pattern of these roots were similar to those of uncontaminated treatment. Inoculation of maize with P. indica could improve root distribution and root and shoot growth in all three contamination treatments. This inoculation also enhanced petroleum degradation in soil, especially in the treatment with deep-reaching contamination, consequently the accumulation of petroleum hydrocarbons (PAHs) in the plant tissues were increased.  相似文献   

3.
Duplex soils, consisting of a sandy surface soil (A-horizon) and silty-clay subsoil (B-horizon), occur in a boundary area between oasis and desert in northwestern China and create a challenging habitat for restoration of plant growth. We conducted an experiment in a 10-year-old H. ammodendron plantation forest to determine the influence of physical properties of duplex soil on water infiltration and plant root growth. We used a trenching method to assess root biomass, and classified roots into two diameter classes: fine (<2 mm) and coarse (>2 mm). Following a 26.7 mm rain event, water infiltrated to the B- horizon; further deep percolation was hindered by low hydraulic conductivity, so that B horizon remained at high available soil moisture for an extended period of time. Root biomass increased rapidly in, or very close to the B horizon, especially for coarse roots. The subsoil formed a barrier to root penetration, but may also reflect the accumulation of water resources at the boundary between the A- and B-horizon. Shoot growth and root distribution, shrub height and canopy area, and total root biomass were negatively correlation with depth to the B horizon, and that was reflected by quadratic functions. We conclude that the texture and structure of duplex soils influenced the soil environment for water infiltration and storage, indicating that the B-horizon underlying sand in duplex soils is advantageous for the growth, and development of planted sand-stabilizing vegetation. These results have important implications for sustainable development of sand-fixing plantations in desert ecosystems.  相似文献   

4.
为了阐明根区交替控制灌溉(CRDAI)条件下玉米根系吸水规律,通过田间试验,在沟灌垄植模式下采用根区交替控制灌溉研究玉米根区不同点位(沟位、坡位和垄位)的根长密度(RLD)及根系吸水动态。研究表明,根区土壤水分的干湿交替引起玉米RLD的空间动态变化,在垄位两侧不对称分布,并存在层间差异;土壤水分和RLD是根区交替控制灌溉下根系吸水速率的主要限制因素。在同一土层,根系吸水贡献率以垄位最大,沟位最低;玉米营养生长阶段,10—30 cm土层的根系吸水速率最大;玉米生殖生长阶段,20—70 cm为根系吸水速率最大的土层,根系吸水贡献率为43.21%—55.48%。研究阐明了交替控制灌溉下根系吸水与土壤水分、RLD间相互作用的动态规律,对控制灌溉下水分调控机理研究具有理论意义。  相似文献   

5.
我国玉米品种更替过程中根系时空分布特性的演变   总被引:15,自引:0,他引:15       下载免费PDF全文
采用土柱栽培与大田试验相结合的方法,研究了我国20世纪50年代以来生产中大面积推广应用的玉米品种根系时空分布特性。研究指出:玉米根系的生长动态符合水蒸汽压力模型(Vapor Pressure Model),1990s品种根系干物质积累量随生育进程的推进增加迅速,直到成熟期仍维持较高水平,开花后根重持续时间长,且在深层土壤中的优势明显。在深40~100cm土层内根系重量1990s品种分别比1970s品种和1950s品种高出75%和1060%,当代品种根系在深层土壤中所占比率也明显增加;在距离植株0~10cm的水平范围内,当代玉米品种根系分布数量多、比率大。随玉米品种更替根系的空间分布呈“横向紧缩,纵向延伸”的特点。  相似文献   

6.
我国玉米品种更替过程中根系时空分布特征的演变   总被引:11,自引:0,他引:11       下载免费PDF全文
采用土柱栽培与大田试验相结合的方法,研究了我国20世纪50年代以来生产中大面积推广应用的玉米品种根系时空分布特性。研究指出:玉根系的生长动态符合水蒸汽压力模型(Vppor Pressure Model),1990s品种根系干物质积累量随生育进程的推进增加迅速,直到成熟期仍维持较高水平,开花后根重持续时间长,且在深层土壤中的优势明显。在深40-100cm土层内根系重量1990s品种分别比1970s品种和1950s品种高出75%和1060%,当代品种根系在深层土壤中所占比率也明显增加;在距离植株0-10cm的水平范围内,当代玉米品种根系分布数量多、比率大。随玉米品种更替根系的空间分布呈“横向紧缩,纵向延伸”的特点。  相似文献   

7.
Summary Soil characteristics in the crop root zone are critical to soil water and nutrient availability to rainfed crops and determine crop production in coarse textured soils. A four-year field study was conducted in the foot-hills of North Himalayas near Chandigarh (India) on a coarse textured soil (Gravelly udic ustocrepts) to evaluate the effect of varying soil profile gravel concentration on the yield of rainfed crops of Taramira (Eruca sativa Mill.) in winter followed by maize (Zea mays L.), sorghum (Sorghum vulgare Pers.), cowpea (Vigna unguiculata L.) and sesamum (Sesamum indicum L.) in summer. Taramira gave a mean grain yield of 683, 410 and 275 kg ha–1 at gravel concentration (GC) of 18, 28 and 40 percent by volume in the surface one metre soil depth. The grain and forage yield of summer crops decreased with the increasing GC. The gross monetary returns decreased in the order: Sorghum fodder, cowpea, sesamum and maize. The dilution of soil mass with increasing GC and corresponding decrease in nutrient and water holding capacity of the soil appears to have depressed the crop yields. The results indicated that the legume which can also conserve rainwater with dense canopy like cowpea or crops having vigorous fibrous root system and are relatively drought tolerant like sorghum may provide better economic returns in light textured soil containing gravel upto 40 percent.  相似文献   

8.
李玉英 《生态学报》2011,31(6):1617-1630
为河西走廊绿洲灌区豆科/禾本科间作体系的养分管理提供科学依据,于2007年在武威绿洲农业试验站应用田间原位根系行分隔技术研究了蚕豆/玉米种间互作和施氮对玉米抽雄期的根系空间分布、根系形态和作物地上部生长的影响。研究结果表明:种间互作和施氮均增加了玉米和蚕豆在纵向和横向两个尺度上的根重密度、根长密度、根表面积、根系体积。根长密度和根表面积与两种作物产量和氮素吸收均呈正相关,而与蚕豆的根瘤重呈负相关;抽雄期的土壤含水量与玉米产量和养分吸收呈显著的负相关。玉米根系可以占据蚕豆地下部空间,但蚕豆的根却较少到间作玉米的地下部空间,也就是间作后增加了玉米根系水平尺度的生态位。蚕豆和玉米根系主要分布分别在0-40 cm浅土层和0-60 cm 土层,且间作玉米根系在60-120 cm比单作和分隔的多。因此,种间互作和施氮扩大了两作物根系纵向和横向的空间生态位,改变了作物根系形态,即扩展了两者水分和养分吸收的生态位,增加了作物吸收养分的有效空间,从而提高了间作生态系统的生产力。  相似文献   

9.
Root Growth and Water Uptake by Maize Plants in Drying Soil   总被引:16,自引:0,他引:16  
Sharp, R. E and Da vies, W. J. 1985. Root growth and water uptakeby maize plants in drying soil.— J. exp. Bot. 36: 1441–1456. The influence of soil drying on maize (Zea mays L.) root distributionand use of soil water was examined using plants growing in thegreenhouse in soil columns. The roots of plants which were wateredwell throughout the 18 d experimental period penetrated thesoil profile to a depth of 60 cm while the greatest percentageof total root length was between 20–40 cm. High soil waterdepletion rates corresponded with these high root densities.Withholding water greatly restricted root proliferation in theupper part of the profile, but resulted in deeper penetrationand higher soil water depletion rates at depth, compared withthe well watered columns. The deep roots of the unwatered plantsexhibited very high soil water depletion rates per unit rootlength. Key words: Maize, roots, water deficit, soil water depletion  相似文献   

10.
Chassot  André  Stamp  Peter  Richner  Walter 《Plant and Soil》2001,231(1):123-135
Suboptimal soil conditions are known to result in poor early growth of maize (Zea mays L.) in no-tillage (NT) systems in contrast with conventional tillage (CT) systems. However, most studies have generally focused on maize roots at later growth stages and/or do not give details on root morphology. In a 2-year field study at two locations (silt loam and loam soils) in the Swiss midlands, we investigated the impacts of tillage intensity, NT vs. CT, and NP-fertilizer sidebanding on the morphology, vertical and horizontal distribution, and nutrient uptake of maize roots at the V6 growth stage. The length density (RLD) and the length per diameter-class distribution (LDD) of the roots were determined from soil cores taken to a depth of 0.5 m and at distances of 0.05 and 0.15 m from both sides of the maize row. The temperature of the topsoil was lower, and the bulk density and penetration resistance were greater in the topsoil of NT compared with CT. The growth and the development of the shoot were slower in NT. RLD was greater and the mean root diameter smaller in CT than in NT, while the vertical and horizontal distribution of roots did not differ between CT and NT. RLD increased in the zone enriched by the sidebanded fertilizer, independent of the tillage system, but LDD did not change. The poorer growth of the roots and shoots of maize seedlings was presumably caused by the lower topsoil temperature in NT rather than by mechanical impedance. The placement of a starter fertilizer at planting under NT is emphasized.  相似文献   

11.
刘天凤  谢川  郭松  李在留 《广西植物》2022,42(7):1240-1247
为探讨土壤石砾含量对珍稀濒危植物掌叶木幼苗生长和根系的影响,该研究以1个月生掌叶木幼苗为试验材料,进行5种不同土壤石砾含量[0(CK),20%,40%,60%和80%]盆栽试验,筛选最适宜掌叶木幼苗生长的土壤石砾含量。结果表明:(1)土壤石砾含量对掌叶木幼苗生长有极显著影响,其中幼苗苗高和地径相对增长率、叶面积、苗木质量指数、生物量(根、叶和全株)和根冠比均在土壤石砾含量为40%时最大。(2)土壤石砾含量对掌叶木幼苗根系形态具有极显著影响,总根长和根表面积在土壤石砾含量为40%时最大; 而根系平均直径随石砾含量增加逐渐减小,当土壤石砾含量高达80%时,根系平均直径最小。(3)土壤石砾含量对掌叶木幼苗根系拓扑结构和分形特征无显著影响,而对根系平均连接长度和分叉数有极显著影响,其中各处理根系拓扑指数(TI)、修正拓扑指数(qaqb)均趋近于1,即掌叶木幼苗根系在不同土壤石砾含量中分支模式更趋近于鱼尾形分支; 根系平均连接长度随石砾含量增加先增大后减小,在土壤石砾含量40%时最大; 根系分叉数随石砾含量增加逐渐减小。(4)综合评价幼苗生长和根系形态与构型指标表明,掌叶木幼苗在40%土壤石砾含量中地下根系和地上茎叶生长状况最好。因此,土壤添加适量石砾能促进掌叶木幼苗生长,当石砾含量为40%时幼苗生长效果最好,苗木质量指数最高,最适宜掌叶木幼苗生长。  相似文献   

12.
In the greenhouse growth of two coffee-tree varieties, Catuaí (sensitive) and Icatu (tolerant) to aluminum, was evaluated in surface-fertilized and limed soil following subsurface treatment with seven lime levels (0.0; 0.49; 1.7; 2.9; 4.1; 6.6 and 9.3 t/ha). Plants were grown for 6.5 months in soils in PVC columns, subdivided into two horizons. In the lower 12 – 34 cm depth horizon, soil Al saturation varied between 93 and 0%. For both varieties evaluated, shoot dry weight and leaf area remained unchanged following limestone application. This fact shows that surface layer correction permitted normal shoot growth. High Al saturation resulted in decrease of root dry weight percent, root length percent and root surface percent in the 12–34 cm horizon, which were compensated by higher percentages of these properties in the upper 0–12 cm horizon. The ratio between root surface – root dry matter (cm2/g) of Catuaí variety was increased by limestone application to the lower soil horizons, indicating that roots turn longer and thinner, when Al soil saturation decreased. This also shows a great sensitivity to Al of the Catuaí variety. In contrast, in the Icatu variety, all root characteristics remained stable at all levels of Al tested.  相似文献   

13.
张明智  牛文全  许健  李元 《生态学杂志》2016,27(6):1925-1934
为探明微灌与播前深松耕作对夏玉米根际土壤酶活性和产量的影响,以大田夏玉米为研究对象,设计微灌灌溉方式(地表滴灌、地下滴灌和微润灌)、灌水量(分别控制土壤含水量下限为田间持水率的50%、65%和80%)和深松深度(20、40、60 cm)3因素、3水平正交田间试验.结果表明: 夏玉米全生育期内,土壤过氧化氢酶和脲酶活性均呈先增加后减小趋势,磷酸酶活性则呈先减小后增加趋势.地下滴灌0~80 cm生育期平均土壤含水率比地表滴灌和微润灌高6.3%和1.8%,且显著提高土壤脲酶活性、夏玉米根系体积和产量;随着灌水量的增加,土壤磷酸酶活性呈先减小后增加趋势,脲酶活性和产量均呈先增加后减小趋势,生育期平均土壤含水率与根系体积均呈增加趋势;深松40 cm比20 cm的产量和根系体积增加量大于深松60 cm比40 cm的增加量,深松40 cm土壤酶活性较高.从提高水资源、氮肥利用率及作物产量角度考虑,该地区夏玉米种植的最优组合应为地下滴灌、灌水下限为田间持水率的65%与播前深松40 cm.  相似文献   

14.
Adventitious rooting contributes to efficient phosphorus acquisition by enhancing topsoil foraging. However, metabolic investment in adventitious roots may retard the development of other root classes such as basal roots, which are also important for phosphorus acquisition. In this study we quantitatively assessed the potential effects of adventitious rooting on basal root growth and whole plant phosphorus acquisition in young bean plants. The geometric simulation model SimRoot was used to dynamically model root systems with varying architecture and C availability growing for 21 days at 3 planting depths in 3 soil types with contrasting nutrient mobility. Simulated root architectures, tradeoffs between adventitious and basal root growth, and phosphorus acquisition were validated with empirical measurements. Phosphorus acquisition and phosphorus acquisition efficiency (defined as mol phosphorus acquired per mol C allocated to roots) were estimated for plants growing in soil in which phosphorus availability was uniform with depth or was greatest in the topsoil, as occurs in most natural soils. Phosphorus acquisition and acquisition efficiency increased with increasing allocation to adventitious roots in stratified soil, due to increased phosphorus depletion of surface soil. In uniform soil, increased adventitious rooting decreased phosphorus acquisition by reducing the growth of lateral roots arising from the tap root and basal roots. The benefit of adventitious roots for phosphorus acquisition was dependent on the specific respiration rate of adventitious roots as well as on whether overall C allocation to root growth was increased, as occurs in plants under phosphorus stress, or was lower, as observed in unstressed plants. In stratified soil, adventitious rooting reduced the growth of tap and basal lateral roots, yet phosphorus acquisition increased by up to 10% when total C allocation to roots was high and adventitious root respiration was similar to that in basal roots. With C allocation to roots decreased by 38%, adventitious roots still increased phosphorus acquisition by 5%. Allocation to adventitious roots enhanced phosphorus acquisition and efficiency as long as the specific respiration of adventitious roots was similar to that of basal roots and less than twice that of tap roots. When adventitious roots were assigned greater specific respiration rates, increased adventitious rooting reduced phosphorus acquisition and efficiency by diverting carbohydrate from other root types. Varying the phosphorus diffusion coefficient to reflect varying mobilities in different soil types had little effect on the value of adventitious rooting for phosphorus acquisition. Adventitious roots benefited plants regardless of basal root growth angle. Seed planting depth only affected phosphorus uptake and efficiency when seed was planted below the high phosphorus surface stratum. Our results confirm the importance of root respiration in nutrient foraging strategies, and demonstrate functional tradeoffs among distinct components of the root system. These results will be useful in developing ideotypes for more nutrient efficient crops.  相似文献   

15.
The importance of macrostructure to root growth of ryegrass (L. perenne) seedlings sown on the soil surface was studied in two soils in which the macrostructure had resulted mainly from root growth and macro-faunal activity. Sets of paired soil cores were used, one of each pair undisturbed and the other ground and repacked to the field bulk density. Undisturbed and repacked soils were first compared at equal water potentials in the range −1.9 to −300 kPa. At equal water potential, the undisturbed soil always had the greater strength (penetration resistance), and root growth was always greater in the repacked soil with no macrostructure than it was in the soil with macrostructure intact. At equal high strength (low water potentials) it appeared that root growth was better when soils were structured. When strength was low (high water potentials), root growth was better in the unstructured soil. Soils were then compared during drying cycles over 21 days. The average rate at which roots grew to a depth of 60 mm, and also the final percentage of plants with a root reaching 60 mm depth, was greatest in repacked soils without macrostructure. The species of vegetation growing in the soil before the experiment affected root growth in undisturbed soil; growth was slower where annual grasses and white clover had grown compared with soil which had supported a perennial grass. It appears that relatively few roots locate and grow in the macrostructure. Other roots grow in the matrix, if it is soft enough to be deformed by roots. Roots in the matrix of a structured soil grow more slowly than roots in structureless soil of equal bulk density and water potential. The development of macrostructure in an otherwise structureless soil, of the type studied, is of no advantage to most roots. However, once a macrostructure has developed, the few roots locating suitable macropores are able to grow at low water potential when soil strength is high. The importance of macrostructure to establishing seedlings in the field lies in rapid penetration of at least a few roots to a depth that escapes surface drying during seasonal drought. ei]{gnB E}{fnClothier}  相似文献   

16.
土壤干旱条件下氮素营养对玉米内源激素含量影响   总被引:8,自引:6,他引:8  
张岁岐  山仑 《应用生态学报》2003,14(9):1503-1506
在田间持水量分别保持于35%、55%和75%±5%的土壤水分条件下,利用盆栽实验研究了土壤干旱和氮素营养对玉米内源激素和气孔导度的影响.结果表明,土壤干旱下氮素营养明显降低了玉米根系木质部汁液ABA浓度,而正常供水下施氮处理间则无显著差异(施氮处理仍较低),同时测定的叶片ABA浓度则呈相反的变化趋势,表现为干旱下施氮处理要高于不施氮处理;施氮处理木质部汁液中ZRs浓度应低于相应的不施氮处理,在调控气孔行为方面并未表现拮抗ABA作用;3种土壤水分条件下,施氮玉米叶片的气孔导度均高于不施氮处理,与木质部汁液ABA浓度呈负相关,说明施氮处理较低的根源ABA浓度是导致其气孔导度较大的主要原因.  相似文献   

17.
Quantification of root dynamics by destructive methods is confounded by high coefficients of variation and loss of fine roots. The minirhizotron technique is non-destructive and allows for sequential root observations to be made at the same depth in situ. Observations can be stored on video tape which facilitates data handling and computer-aided image processing. A color composite technique using digital image analyses was adapted in this study to detect barley root dynamics from sequential minirhizotron images. Plants were grown in the greenhouse in boxes (80 × 80 × 75 cm) containing soil from a surface horizon of a Typic Cryoboroll. A minirhizotron was installed at a 45°C angle in each box. Roots intersecting the minirhizotron were observed and video-recorded at tillering, stem extension, heading, dough and ripening growth stages. The images from a particular depth were digitized from the analog video then registered to each other. Discrimination of roots from the soil matrix gave quantitative estimates of root appearance and disappearance. Changes in root appearance and disappearance were detected by assigning a separate primary color (red, green, blue) to selected growth stages, then overlaying the images to create red-green and red-green-blue color composites. The resulting composites allowed for a visual interpretation and quantification of barley root dynamics in situ.  相似文献   

18.
【背景】丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)是一类重要的土壤微生物,能显著影响植物对镉(cadmium,Cd)的耐性与累积,但其对不同形态Cd胁迫的响应尚不清楚。【目的】探讨不同形态Cd胁迫下接种AMF对玉米(Zea mays L.)生长和Cd累积的影响。【方法】采用30 cm高的培养容器填装石英砂(0.2 mm),开展室内砂培玉米试验,研究溶解态和胶体态Cd (1 mg/kg)胁迫下,接种摩西斗管囊霉(Funneliformis mosseae)对玉米幼苗生长、根系特征、光合生理及Cd累积的影响。【结果】双因素分析表明,AMF和Cd形态均对玉米生长(株高和生物量)、根系特征、光合生理(叶绿素含量和光合速率)与Cd累积量存在显著的影响,但二者之间没有显著交互作用。与未接种处理相比,接种AMF显著降低玉米株高、生物量、叶片叶绿素含量和光合速率,抑制玉米根长、根表面积、根体积和根尖数;同时增加了玉米根系Cd含量,但减少玉米地上部Cd含量以及地上部与根系Cd累积量;与胶体态Cd处理相比,溶解态Cd显著降低玉米的根长、根表面积、平均根系直径、根尖数和地上部Cd累积量,但增加了植株叶片光合速率、根系Cd含量和累积量。相关分析发现,玉米根长、根表面积和根尖数与地上部Cd含量呈显著或极显著正相关,与根系Cd含量呈极显著负相关。【结论】溶解态Cd比胶体态Cd对砂培玉米幼苗的毒害效应严重,而且接种AMF加重溶解态和胶体态Cd对玉米幼苗的损伤,但降低了植株对Cd的累积。  相似文献   

19.
Summary This study examined the effects of aggregate size on root impedance and developed an equation to describe the root pressure necessary to avoid deflection around an aggregate. This critical root pressure was predicted to increase with increasing aggregate size, decreasing root diameter, and decreasing deflection angle. In growth chamber experiments, maize (Zea mays L.) seedlings were grown in A horizon material of Groseclose silt loam (Clayey, mixed, mesic, Typic Hapludult). The soil had been moist sieved into different aggregate sizes (0–1, 1–2, 2–3, and 3–6 mm diameter). The larger aggregates did constitute a slight root impedance as roots were deflected around them. Diameters of roots grown in 3–6 mm aggregates increased significantly, whereas root lengths were not always signficantly decreased. The smaller aggregates did not impede root growth and were readily displaced by roots. Large aggregates were more of an impedance to lateral roots than to main axes.  相似文献   

20.
To clarify the nutrient acquisition strategies for below-ground resources in a subalpine Abies forest with shallow soils, we examined the vertical patterns of fine root biomass, morphology, nitrogen concentration of fine root tissue and soil chemical characteristics in nine quadrats of sapling, young and mature stands in a subalpine fir-wave forest, central Japan. The community characteristics changed with stand development, but stand development did not influence the vertical pattern of fine root characteristics. Fine root biomass decreased with soil depth. Specific root length did not differ among soil depths, and neither average diameter nor tissue density of fine roots changed vertically. The nitrogen concentration of fine roots differed significantly among soil depths, and was higher in surface soils than in deeper soils. Moreover, soil pH, soil electrical conductivity and soil nitrogen concentration were higher in surface layers than deeper layers. Therefore, we suggest that the subalpine Abies community has a nutrient acquisition strategy that allows uptake of more nutrients near the surface in shallow soils due to the larger investment in biomass and more active metabolism, but not due to phenotypic plasticity in fine root morphology. In addition, we observed that fine root biomass changed with stand development, where specific root length was greater in sapling stands than in older stands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号