首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
The roles of ascorbic acid (AsA, 1 mM) under an osmotic stress [induced by 15 % (m/v) polyethylene glycol, PEG-6000] were investigated by examining morphological and physiological attributes in Brassica species. The osmotic stress reduced the fresh and dry masses, leaf relative water content (RWC), and chlorophyll (Chl) content, whereas increased the proline (Pro), malondialdehyde (MDA), and H2O2 content, and lipoxygenase (LOX) activity. The ascorbate content in B. napus, B. campestris, and B. juncea decreased, increased, and remained unaltered, respectively. The dehydroascorbate (DHA) content increased only in B. napus. The AsA/DHA ratio was reduced by the osmotic stress in all the species except B. juncea. The osmotic stress increased the glutathione (GSH) content only in B. juncea, but increased the glutathione disulfide (GSSG) content and decreased the GSH/GSSG ratio in all the species. The osmotic stress increased the activities of ascorbate peroxidase (APX) (except in B. napus), glutathione reductase (GR) (except in B. napus), glutathione S-transferase (GST) (except in B. juncea), and glutathione peroxidase (GPX), and decreased the activities of catalase (CAT) and monodehydroascorbate reductase (MDHAR) (only in B. campestris). The osmotic stress decreased the glyoxalase I (Gly I) and increased glyoxalase II (Gly II) activities. The application of AsA in combination with PEG improved the fresh mass, RWC, and Chl content, whereas decreased the Pro, MDA, and H2O2 content in comparison with PEG alone. The AsA addition improved AsA-GSH cycle components and improved the activities of all antioxidant and glyoxalase enzymes in most of the cases. So, exogenous AsA improved physiological adaptation and alleviated oxidative damage under the osmotic stress by improving the antioxidant and glyoxalase systems. According to measured parameters, B. juncea can be recognized as more drought tolerant than B. napus and B. campestris.  相似文献   

3.
4.
A protocol for chloroplast transformation of an elite rapeseed cultivar (Brassica napus L.) was developed based on optimized conditions for callus induction and regeneration from cotyledonary tissues. Comparison of six different media with three elite cultivars showed that B5 medium plus 3 mg/l AgNO3 supplemented with 0.6 mg/l 2,4-dichlorophenoxyacetic acid and 0.2 mg/l 6-furfurylaminopurine was optimal for callus formation and maintenance without differentiation, while the medium suitable for regeneration was B5 medium supplemented with 1 mg/l 6-benzylaminopurine, 1 mg/l 6-furfurylaminopurine and 0.5 mg/l α-naphthaleneacetic acid. A rapeseed-specific chloroplast transformation vector was constructed with the trnI and trnA sequences amplified from the rapeseed chloroplast genome using two primers designed according to Arabidopsis homologs. The aadA gene was used as a selection marker regulated by the ribosome-binding site from the bacteriophage T7 gene 10L, the tobacco 16S rRNA promoter and the psbA terminator. After bombardment, cotyledonary segments were cultured for callus formation on media containing 10 mg/l spectinomycin and regeneration was carried out on medium with 20 mg/l spectinomycin. Heteroplasmic plastid transformants were isolated. An overall efficiency for the chloroplast transformation was one transplastomic plant per four bombarded plates. Southern blot analyses demonstrated proper integration of the target sequence into the rapeseed chloroplast genome via homologous recombination. The expression of the aadA gene was confirmed by Northern blot analysis. Analysis of T1 transplastomic plants revealed that the transgenes integrated into the chloroplast were inheritable with a ratio of about 8%. These results suggest that rapeseed may be a suitable crop for chloroplast transformation with cotyledons as explants under appropriate conditions.  相似文献   

5.
The effects of cadmium on physiological and ultrastructural characteristics were evaluated in 6-d-old seedlings of two Brassica napus L. cultivars Zheda 619 and ZS 758. Results show that Cd at lower concentration (100 μM) stimulated the seedling growth but at higher concentration (500 μM) inhibited the growth of both cultivars, decreased content of photosynthetic pigments, activities of antioxidant enzymes, and increased the content of malondialdehyde and reactive oxygen species. Cd content in different parts of seedlings was higher in ZS 758 than in Zheda 619. Electron micrographs illustrated that 500 μM Cd severely damaged the leaf and root tip cells of both cultivars. Under Cd stress, the size and number of starch grains, plastoglobuli, and lipid bodies in the chloroplasts increased. In the root tip cells, enlarged vacuoles, diffused cell walls, and undeveloped mitochondria were detected.  相似文献   

6.
The primary transformant of spring rapeseed cv. HM-81 contained TL- and TR-DNA of agropine plasmid pRi ofAgrobacterium rhizogenes 15834. The presence of TL-DNA corresponds to visible transformed phenotype in its progeny; the leaves are wrinkled and the plants are shorter than normal plants. R1 R2 and R3 generations have mostly transformed phenotype. The normal phenotype appears in a low frequency in F1 generation. Autogamised F1 plants segregate in F2 transformed and normal phenotype in 3:1 ratio. It is possible to suppose that TL-DNA is present in two differentloci of one pair of homologic chromosomes. The recombination frequency is 12 % (microsporogenesis) or 6 % (microsporogenesis and macrosporogenesis). In some crosses the transformed phenotype has a maternal type of inheritance. Maternal inheritance influences also several growth characteristics,e.g. length of plants and number of seeds/pods.  相似文献   

7.
Aluminum (Al) toxicity is one of the major problems affecting crop production. Boron (B) is an essential micronutrient for higher plants. In the present study, we investigated the alleviation of Al-induced inhibition of root growth and physiological characteristics by B in rapeseed. The rapeseeds were grown in different Al concentrations (0 and 300?μM), and for every concentration, two B treatments (2.5 and 25?µM as H3BO3) were applied. The results showed that Al toxicity under low B drastically inhibited root growth. The supply of B improved root length, photosynthesis, root activity, total chlorophyll by 60.15%, 104.7%, 102%, and 106.3%, respectively under Al toxicity. This further resulted in improvement of peroxidase, catalase, and ascorbate peroxidase activities while decreasing malondialdehyde, H2O2, and Al contents in roots and leaves. It might be supposed that B alleviates Al toxicity by less mobilization of Al in plant parts and through improving antioxidant enzyme activities.  相似文献   

8.
Plant helicases are known to be involved in salinity and low-temperature tolerance. However, a functional involvement of helicases in the antioxidative response of plants has not been described. We have isolated a DEAD-box-containing cDNA sequence from Medicago sativa (alfalfa) that is a homolog of the pea DNA helicase 45 (PDH45) and named it M. sativa helicase 1 (MH1). Transient transfection of 35S::MH1-GFP to onion epidermis revealed that MH1 was localized in the nucleus. Expression of MH1 was detected in roots, stems and leaves of alfalfa. Furthermore, real-time PCR analysis revealed that mannitol, NaCl, methyl viologen and abscisic acid induced the expression of MH1. The ectopic expression of MH1 in Arabidopsis improved seed germination and plant growth under drought, salt and oxidative stress. The capacity for osmotic adjustment, superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities and proline content were also elevated in the transgenic Arabidopsis plants. Our results suggest that MH1 responds to reactive oxygen species (ROS) and functions in drought and salt stress tolerance by enhancing the capacities for ROS scavenging and osmotic adjustment.  相似文献   

9.
Responses of canola (Brassica napus L.) seedlings to three ultraviolet (UV)-B levels [0 (zero), 5 (ambient) and 10 (enhanced) kJ m?2 d?1], two watering regimes (well-watered and water-stressed), and two abscisic acid (ABA) levels (with and without application) were investigated. Overall, enhanced UVB and water stress negatively affected plant growth and physiology, but ABA had very little effect. Enhanced UVB decreased stem height, leaf area, plant dry matter, water use efficiency and wax content, but increased concentrations of chlorophyll a, carotenoids and flavonoids, and ethylene evolution. Water stress reduced stem height and diameter, leaf area, plant dry matter, leaf weight ratio and shoot:root weight ratio under zero and ambient UVB. Water stress also reduced chlorophyll a and carotenoids in plants exposed to enhanced UVB. ABA with watering regime had significant interactive effects only on leaf dry matter and wax content. We found that enhanced UVB and water stress adversely affected B. napus seedlings. Interaction between these two factors affected plant performance. In this interaction, ABA had little significant role. Also, optimum vegetative growth and biomass were achieved under ambient UVB.  相似文献   

10.
Seedlings of Brassica napus were cultivated on a slowly rotating clinostat (1 rpm) or in the vertical control for 5 d. The root growth, the cotyledonary reserves and the transport of 14C-labeled sucrose from cotyledons to root system were studied in both cultural conditions. The biomass (fresh weight) of the root system was 35% higher in the horizontally clinorotated seedlings than in the controls. This increase was correlated with a greater degradation of reserve lipids and faster accumulation of sucrose in the cotyledons. The activity of isocitrate lyase, one of the two enzymes necessary to conversion of lipids into glucids, was also greater in the cotyledons of clinorotated seedlings. The labeling distribution of 14C in the cotyledons, the hypocotyl and the root system after 30, 60 and 120 min of application of 14C-labeled sucrose on the cotyledons showed higher translocation of the cotyledonary sucrose to the root system of clinorotated seedlings. In addition, we studied the effects of clinorotation on the biomass of the excised root system (of 10 d old seedlings) cultivated in a medium containing 1% sucrose. The horizontally clinorotated root system grew more than that of the controls. These results showed that the horizontal clinorotation acted on the root system growth and provoked a higher sucrose translocation from source to sink, i.e. from cotyledons to root system.  相似文献   

11.
Fitness of hybrids between genetically modified (GM) crops and wild relatives influences the likelihood of ecological harm. We measured fitness components in spontaneous (non-GM) rapeseed x Brassica rapa hybrids in natural populations. The F1 hybrids yielded 46.9% seed output of B. rapa, were 16.9% as effective as males on B. rapa and exhibited increased self-pollination. Assuming 100% GM rapeseed cultivation, we conservatively predict < 7000 second-generation transgenic hybrids annually in the United Kingdom (i.e. approximately 20% of F1 hybrids). Conversely, whilst reduced hybrid fitness improves feasibility of bio-containment, stage projection matrices suggests broad scope for some transgenes to offset this effect by enhancing fitness.  相似文献   

12.
A pot study was conducted to determine the effects of arbuscular mycorrhizal (AM) fungi (Glomus mosseae and Paraglomus occultum) and salt (NaCl) stress on growth, photosynthesis, root morphology and ionic balance of citrus (Citrus tangerine Hort. ex Tanaka) seedlings. Eighty-five-day-old seedlings were exposed to 100 mM NaCl for 60 days to induce salt stress. Mycorrhizal colonization of citrus seedlings was not affected by salinity when associated with P. occultum, but significantly decreased when with G. mosseae. Compared with the non-mycorrhizal controls, mycorrhizal seedlings generally had greater plant height, stem diameter, shoot, root and total plant biomass, photosynthetic rate, transpiration rate and stomatal conductance under the 0 and 100 mM NaCl stresses. Root length, root projected area and root surface area were also higher in the mycorrhizal than in the non-mycorrhizal seedlings, but higher root volume in seedlings with G. mosseae. Leaf Na+ concentrations were significantly decreased, but leaf K+ and Mg2+ concentrations and the K+/Na+ ratio were increased when seedlings with both G. mosseae and P. occultum. Under the salt stress, Na+ concentrations were increased but K+ concentrations decreased in the mycorrhizal seedlings. Under the salt stress, Ca2+ concentrations were increased in the seedlings with P. occultum or without AM fungi (AMF), but decreased with G. mosseae. Ratios of both Ca2+/Na+ and Mg2+/Na+ were also increased in seedlings with G. mosseae under the non-salinity stress, while only the Mg2+/Na+ ratio was increased in seedlings with P. occultum under the salt stress. Our results suggested that salt tolerance of citrus seedlings could be enhanced by associated AMF with better plant growth, root morphology, photosynthesis and ionic balance.  相似文献   

13.
Rapeseed plants, of the summer annual variety Topas, that had been selfed twice consecutively were compared to outcrossed half-sibs for inbreeding depression in a rapeseed population at mating equilibrium. The effect of dominance-suppression competition was included in the effect of inbreeding. Both female-and male-fitness characters showed significant inbreeding depression. Biomass decreased 17% with inbreeding and was highly correlated with seed weight. The total number of flowers decreased 15% with inbreeding. There was a significant effect of lines. The possible importance of experimental design in studies that estimate inbreeding depression is discussed.  相似文献   

14.
Salicylic acid (SA) is known to affect photosynthesis under normal conditions and induces tolerance in plants to biotic and abiotic stresses through influencing physiological processes. In this study, physiological processes were compared in salt-tolerant (Pusa Vishal) and salt-sensitive (T44) cultivars of mungbean and examined how much these processes were induced by SA treatment to alleviate decrease in photosynthesis under salt stress. Cultivar T44 accumulated higher leaf Na+ and Cl content and exhibited greater oxidative stress than Pusa Vishal. Activity of antioxidant enzymes, ascorbate peroxidase (APX) and glutathione reductase (GR) was greater in Pusa Vishal than T44. Contrarily, activity of superoxide dismutase (SOD) was greater in T44. The greater accumulation of leaf nitrogen and sulfur through higher activity of their assimilating enzymes, nitrate reductase (NR) and ATP-sulfurylase (ATPS) increased reduced glutathione (GSH) content more conspicuously in Pusa Vishal than T44. Application of 0.5 mM SA increased nitrogen and sulfur assimilation, GSH content and activity of APX and GR. This resulted in the increase in photosynthesis under non-saline condition and alleviated the decrease in photosynthesis under salt stress. It also helped in restricting Na+ and Cl content in leaf, and maintaining higher efficiency of PSII, photosynthetic N-use efficiency (NUE) and water relations in Pusa Vishal. However, application of 1.0 mM SA resulted in inhibitory effects. The effect of SA was more pronounced in Pusa Vishal than T44. These results indicate that SA application alleviates the salt-induced decrease in photosynthesis mainly through inducing the activity of NR and ATPS, and increasing antioxidant metabolism to a greater extent in Pusa Vishal than T44.  相似文献   

15.
16.
17.
Abstract

An experiment was conducted to assess the effect of pre-sowing seed treatment with triacontanol (TRIA) in canola (Brassica napus L.) cultivar (RBN-3060) under saline stress. Canola seeds were soaked in three levels of TRIA (0, 0.5, and 1 mg L?1) for 12 hours. Three levels of salt stress (0, 100, and 150 mM NaCl) in full strength Hoagland's nutrient solution were applied to 56-days-old plants. Salt stress caused a significant reduction in growth, gas exchange, photochemical quenching (qP), and shoot and root K+ contents, while increased leaf glycine betaine, free proline, and shoot Na+ contents. Pre-sowing seed treatment with TRIA increased shoot fresh weight, number of seeds per plant, photosynthetic rate, transpiration rate, ratio of chlorophyll a/b, qP, electron transport rate, shoot and root K+ contents, and free proline and glycine betaine contents of canola plants at various TRIA levels under nonsaline or saline conditions.  相似文献   

18.
Zhang  Wenjin  Xie  Zhicai  Wang  Lianhong  Li  Ming  Lang  Duoyong  Zhang  Xinhui 《Journal of plant research》2017,130(3):611-624
Journal of Plant Research - This study was conducted to determine effect and mechanism of exogenous silicon (Si) on salt and drought tolerance of Glycyrrhiza uralensis seedling by focusing on the...  相似文献   

19.
Photosynthetic and yield effects of paclobutrazol and mixtalol sprayed, respectively, on rape at the three-leaf stage and shoot or anthesis stages were examined. They significantly increased chlorophyll content and photosynthetic rates, prolonged leaf longevity, and increased green pod area. Paclobutrazol-treated plants were shorter, more branched, and produced more seeds. Foliar sprays of mixtalol increased podding percentage, pods per plant, and seeds per pod. A high seed yield of 1809.0 kg/ha was obtained with mixtalol sprayed at anthesis, while significant yields were also achieved with treatments of mixtalol at the shoot stage and paclobutrazol at the three-leaf stage. The photosynthetic and yield effects of mixtalol or paclobutrazol were reduced when both growth regulators were applied together, and this led to yield reductions. No adverse effects from mixtalol or paclobutrazol were observed on seed oil content, erucic acid, and glucosinolate content. The total rape oil production with mixtalol sprayed at anthesis and shoot stages and paclobutrazol at the three-leaf stage increased significantly by 20.9%, 14.4%, and 13.4%, respectively, over the controls.  相似文献   

20.
The utilization of heterosis is a successful strategy in increasing yield for many crops. However, it consumes tremendous manpower to test the combining ability of the parents in fields. Here, we applied the genomic-selection (GS) strategy and developed models that significantly increase the predictability of heterosis by introducing the concept of a regional parental genetic-similarity index (PGSI) and reducing dimension in the calculation matrix in a machine-learning approach. Overall, PGSI negatively affected grain yield and several other traits but positively influenced the thousand-seed weight of the hybrids. It was found that the C subgenome of rapeseed had a greater impact on heterosis than the A subgenome. We drew maps with overviews of quantitative-trait loci that were responsible for the heterosis (h-QTLs) of various agronomic traits. Identifications and annotations of genes underlying high impacting h-QTLs were provided. Using models that we elaborated, combining abilities between an Ogu-CMS-pool member and a potential restorer can be simulated in silico, sidestepping laborious work, such as testing crosses in fields. The achievements here provide a case of heterosis prediction in polyploid genomes with relatively large genome sizes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号