首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The previously reported class of potent inorganic inhibitors of Na,K-ATPase, named MCS factors, was shown to inhibit not only Na,K-ATPase but several P-type ATPases with high potency in the sub-micromolar range. These MCS factors were found to bind to the intracellular side of the Na, K-ATPase. The inhibition is not competitive with ouabain binding, thus excluding its role as cardiac-steroid-like inhibitor of the Na,K-ATPase. The mechanism of inhibition of Na,K-ATPase was investigated with the fluorescent styryl dye RH421, a dye known to report changes of local electric fields in the membrane dielectric. MCS factors interact with the Na,K-ATPase in the E1 conformation of the ion pump and induce a conformational rearrangement that causes a change of the equilibrium dissociation constant for one of the first two intracellular cation binding sites. The MCS-inhibited state was found to have bound one cation (H+, Na+ or K+) in one of the two unspecific binding sites, and at high Na+ concentrations another Na+ ion was bound to the highly Na+-selective ion-binding site.  相似文献   

2.
A method for the isolation of membrane-bound Na,K-ATPase in quantity from brain gray matter is described. The method permits a large amount of enzyme to be obtained rather quickly with about 60% of the original activity of Na,K-ATPase of the tissue being recovered. The enzyme is stable, it has a specific activity of about 200 μmoles ATP split per mg protein per hour. Mg-ATPase comprises about 1% of the total ATPase activity. The enzymatic properties of this Na,K-ATPase do not differ from those in the literature; the turnover number is about 9300 min?1.  相似文献   

3.
4.
The transport function of the Na pump (Na,K-ATPase) in cellular ion homeostasis involves both nucleotide binding reactions in the cytoplasm and alternating aqueous exposure of inward- and outward-facing ion binding sites. An osmotically active, nonpenetrating polymer (poly(ethyleneglycol); PEG) and a modifier of the aqueous viscosity (glycerol) were used to probe the overall and partial enzymatic reactions of membranous Na,K-ATPase from shark salt glands. Both inhibit the steady-state Na,K-ATPase as well as Na-ATPase activity, whereas the K+-dependent phosphatase activity is little affected by up to 50% of either. Both Na,K-ATPase and Na-ATPase activities are inversely proportional to the viscosity of glycerol solutions in which the membranes are suspended, in accordance with Kramers’ theory for strong coupling of fluctuations at the active site to solvent mobility in the aqueous environment. PEG decreases the affinity for Tl+ (a congener for K+), whereas glycerol increases that for the nucleotides ATP and ADP in the presence of NaCl but has little effect on the affinity for Tl+. From the dependence on osmotic stress induced by PEG, the aqueous activation volume for the Na,K-ATPase reaction is estimated to be ∼5-6 nm3 (i.e., ∼180 water molecules), approximately half this for Na-ATPase, and essentially zero for p-nitrophenol phosphatase. The change in aqueous hydrated volume associated with the binding of Tl+ is in the region of 9 nm3. Analysis of 15 crystal structures of the homologous Ca-ATPase reveals an increase in PEG-inaccessible water space of ∼22 nm3 between the E1-nucleotide bound forms and the E2-thapsigargin forms, showing that the experimental activation volumes for Na,K-ATPase are of a magnitude comparable to the overall change in hydration between the major E1 and E2 conformations of the Ca-ATPase.  相似文献   

5.
Abstract

Cordil-LND796 is a new cardiotonic glycoside under development. In rat brain microsomes where three isoforms of the Na, K-ATPase with differential affinities for cardiac glycosides have been identified, Cordil had higher affinity for the α3 (IC50 = 0.02 μM) than for the α2 (IC50 = 0.6 μM) and the α1 (IC50 = 30 μM) isozymes. Cordil is potentially a selective inhibitor for both α2 and α3 Na, K-ATPase isoforms. Using inside out vesicles we have shown that Cordil binds to and inhibits Na, K-ATPase at an extracellular site. The dissociation kinetic rates (k?1) from the ATPase and the phosphatase activity (K-dependent dephosphorylation) of the Na, K-ATPase were similar for Cordil. Despite these similarities to ouabain comparison of the kinetics of the Na, K-ATPase inhibition by ouabain and Cordil revealed marked differences in their association rates (k+1 = 0.7 1 mol1 min?1 and k+1 = 6 × 10?3 1 mol?1 min?1 respectively) and their dissociation rates (k?1 = 1.3 ± 0.2 × 10?4 S?1 and k?1 = 69 ± 7 × 10?4 s?1 respectively). Both binding association and dissociation rates were enhanced for Cordil. These data are compatible with a stabilizing effect of Cordil on the E2P conformational state of Na, K-ATPase.  相似文献   

6.
Iron is a key element in cell function; however, its excess in iron overload conditions can be harmful through the generation of reactive oxygen species (ROS) and cell oxidative stress. Activity of Na,K-ATPase has been shown to be implicated in cellular iron uptake and iron modulates the Na,K-ATPase function from different tissues. In this study, we determined the effect of iron overload on Na,K-ATPase activity and established the role that isoforms and conformational states of this enzyme has on this effect. Total blood and membrane preparations from erythrocytes (ghost cells), as well as pig kidney and rat brain cortex, and enterocytes cells (Caco-2) were used. In E1-related subconformations, an enzyme activation effect by iron was observed, and in the E2-related subconformations enzyme inhibition was observed. The enzyme's kinetic parameters were significantly changed only in the Na+ curve in ghost cells. In contrast to Na,K-ATPase α2 and α3 isoforms, activation was not observed for the α1 isoform. In Caco-2 cells, which only contain Na,K-ATPase α1 isoform, the FeCl3 increased the intracellular storage of iron, catalase activity, the production of H2O2 and the expression levels of the α1 isoform. In contrast, iron did not affect lipid peroxidation, GSH content, superoxide dismutase and Na,K-ATPase activities. These results suggest that iron itself modulates Na,K-ATPase and that one or more E1-related subconformations seems to be determinant for the sensitivity of iron modulation through a mechanism in which the involvement of the Na, K-ATPase α3 isoform needs to be further investigated.  相似文献   

7.
Because membrane fluidity is an important determinant of membrane function, the lateral diffusion rate (D L ) of the membrane protein Na,K-ATPase was determined in intact renal proximal tubule epithelial cells by the technique of fluorescence redistribution after photobleaching (FRAP). In normal cells the D L of Na,K-ATPase in the basal membrane was 3.31×10–10 cm2/ sec. Treatment with cytochalasin D to promote actin filament depolymerization caused a sevenfold increase in D L . Exposure of cells to a Ca2+-free medium or to hypoxia and reoxygenation, which have similar disruptive effects on the cytoskeleton, also caused increases in D L . Disruption of actin microfilament structure also increased the mobile fraction of Na,K-ATPase. Using a confocal laser microscopic technique only 14.9% of total Na,K-ATPase was observed to reside in the apical membrane domain of normal cells. Microfilament depolymerization caused this fraction to increase to 47.7%. Thus, the translocation of Na,K-ATPase from the basolateral to the apical domain induced by cytoskeletal protein dysfunction was enabled by an increased rate of lateral diffusion of Na,K-ATPase. The behavior of a variety of membrane lipids following actin depolymerization was more heterogeneous. Some lipids showed a similar increase in D L whereas others showed very little dependence upon the cytoskeleton for lateral restraint.This work was supported by an American Heart Association Grant-in-Aid, an extramural grant from Baxter Healthcare Corporation, and NIH Shared Instrument Grant RR-05877. We thank Dr. J. Carlos Manivel for performing the electron microscopic studies.This paper was prepared with the technical assistance of Xing-Xing Luo and Marshalleen Patten.  相似文献   

8.
Palytoxin (PTX) opens a pathway for ions to pass through Na,K-ATPase. We investigate here whether PTX also acts on nongastric H,K-ATPases. The following combinations of cRNA were expressed in Xenopus laevis oocytes: Bufo marinus bladder H,K-ATPase α2- and Na,K-ATPase β2-subunits; Bufo Na,K-ATPase α1- and Na,K-ATPase β2-subunits; and Bufo Na,K-ATPase β2-subunit alone. The response to PTX was measured after blocking endogenous Xenopus Na,K-ATPase with 10 μm ouabain. Functional expression was confirmed by measuring 86Rb uptake. PTX (5 nm) produced a large increase of membrane conductance in oocytes expressing Bufo Na,K-ATPase, but no significant increase occurred in oocytes expressing Bufo H,K-ATPase or in those injected with Bufo β2-subunit alone. Expression of the following combinations of cDNA was investigated in HeLa cells: rat colonic H,K-ATPase α1-subunit and Na,K-ATPase β1-subunit; rat Na,K-ATPase α2-subunit and Na,K-ATPase β2-subunit; and rat Na,K-ATPase β1- or Na,K-ATPase β2-subunit alone. Measurement of increases in 86Rb uptake confirmed that both rat Na,K and H,K pumps were functional in HeLa cells expressing rat colonic HKα1/NKβ1 and NKα2/NKβ2. Whole-cell patch-clamp measurements in HeLa cells expressing rat colonic HKα1/NKβ1 exposed to 100 nm PTX showed no significant increase of membrane current, and there was no membrane conductance increase in HeLa cells transfected with rat NKβ1- or rat NKβ2-subunit alone. However, in HeLa cells expressing rat NKα2/NKβ2, outward current was observed after pump activation by 20 mm K+ and a large membrane conductance increase occurred after 100 nm PTX. We conclude that nongastric H,K-ATPases are not sensitive to PTX when expressed in these cells, whereas PTX does act on Na,K-ATPase.  相似文献   

9.
The primary sequence of non-gastric H,K-ATPase differs much more between species than that of Na,K-ATPase or gastric H,K-ATPase. To investigate whether this causes species-dependent differences in enzymatic properties, we co-expressed the catalytic subunit of human non-gastric H,K-ATPase in Sf9 cells with the β1 subunit of rat Na,K-ATPase and compared its properties with those of the rat enzyme (Swarts et al., J. Biol. Chem. 280, 33115-33122, 2005). Maximal ATPase activity was obtained with NH4+ as activating cation. The enzyme was also stimulated by Na+, but in contrast to the rat enzyme, hardly by K+. SCH 28080 inhibited the NH4+-stimulated activity of the human enzyme much more potently than that of the rat enzyme. The steady-state phosphorylation level of the human enzyme decreased with increasing pH, [K+], and [Na+] and nearly doubled in the presence of oligomycin. Oligomycin increased the sensitivity of the phosphorylated intermediate to ADP, demonstrating that it inhibited the conversion of E1P to E2P. All three cations stimulated the dephosphorylation rate dose-dependently. Our studies support a role of the human enzyme in H+/Na+ and/or H+/NH4+ transport but not in Na+/K+ transport.  相似文献   

10.
In epithelial MDCK cells, the Na,K-ATPase is co-localized with adherens junctions in all stages of monolayer formation starting from initiation of cell–cell contact. The Na,K-ATPase and adherens junction proteins stay partially co-localized even after internalization due to disruption of intercellular contacts by Ca2+ deprivation. Similar to adherens junction proteins, the Na,K-ATPase is resistant to extraction with non-ionic detergent, suggesting pump association with the cytoskeleton. In contrast, the heterodimer formed by expressed unglycosylated Na,K-ATPase β1 subunit and the endogenous α1 subunit is easily dissociated from the adherens junctions and cytoskeleton by detergent extraction. The MDCK cells in which half of the endogenous β1 subunits in the lateral membrane are substituted by unglycosylated β1 subunits display a slower rate of cell-to-cell contact formation and decreased ability to both spread over the surface and migrate. The lack of N-glycans in the Na,K-ATPase β1 subunit results in an impairment of mature cell–cell junctions as detected by an increase in the paracellular permeability of the MDCK cell monolayers and by a decrease in resistance of adherens junction proteins to extraction by a non-ionic detergent. Therefore the N-glycans of the Na,K-ATPase β1 subunit are important for retention of the pump at the sites of cell–cell contact. Moreover, they are important for the integrity and stability of cell–cell junctions in mature epithelia. In addition, N-glycans contribute to the formation of cell–cell contacts between surface-attached dispersed cells by mediating lamellipodia formation and stabilizing the newly formed adherens junctions.  相似文献   

11.
Euryhaline crustaceans rarely hyporegulates and employ the driving force of the Na,K-ATPase, located at the basal surface of the gill epithelium, to maintain their hemolymph osmolality within a range compatible with cell function during hyper-regulation. Since polyamine levels increase during the adaptation of crustaceans to hyperosmotic media, we investigate the effect of exogenous polyamines on Na,K-ATPase activity in the posterior gills of Callinectes danae, a euryhaline swimming crab. Polyamine inhibition was dependent on cation concentration, charge and size in the following order: spermine > spermidine > putrescine. Spermidine affected K0.5 values for Na+ with minor alterations in K0.5 values for K+ and NH4+, causing a decrease in maximal velocities under saturating Na+, K+ and NH4+ concentrations. Phosphorylation measurements in the presence of 20 µM ATP revealed that the Na,K-ATPase possesses a high affinity site for this substrate. In the presence of 10 mM Na+, both spermidine and spermine inhibited formation of the phosphoenzyme; however, in the presence of 100 mM Na+, the addition of these polyamines allowed accumulation of the phosphoenzyme. The polyamines inhibited pumping activity, both by competing with Na+ at the Na+-binding site, and by inhibiting enzyme dephosphorylation. These findings suggest that polyamine-induced inhibition of Na,K-ATPase activity may be physiologically relevant during migration to fully marine environments.  相似文献   

12.
The thermal stability of Na,K-ATPase from pig kidney is markedly greater than that of Na,K-ATPase from shark salt glands. The role of the lipid bilayer is studied by solubilisation of the membrane-bound enzyme in the nonionic detergent octaethyleneglycoldodecylmonoether (C12E8), addition of excess dioleylphosphatidylcholine (DOPC) or palmitoyloleylphosphatidylcholine (POPC) and reconstitution of membranes by removal of detergent. At 54 °C the reconstituted enzymatically active pig enzyme retains a high thermal stability, and reconstituted shark enzyme retains a low thermal stability, even with a 9-fold excess of DOPC. This result suggests that the origin of the difference in thermal stability is not related to bulk lipid properties of the native membranes.  相似文献   

13.
Purified membrane-bound Na,K-ATPase incubated with cobalt-tetrammine-ATP [Co(NH3)4ATP], which is a stable MgATP complex analog, shows two new types of membrane crystals, a new p21 form and a p4 form. The building blocks of the crystalline arrays correspond to (αβ)2 dimers of the enzyme protein suggesting that α-α interaction may be important in the pumping process.  相似文献   

14.
The Na,K-ATPase is an ion-translocating transmembrane protein that actively maintains the electrochemical gradients for Na+ and K+ across the plasma membrane. The functional protein is a heterodimer comprising a catalytic α-subunit (four isoforms) and an ancillary β-subunit (three isoforms). Mutations in the α2-subunit have recently been implicated in familial hemiplegic migraine type 2, but almost no thorough studies of the functional consequences of these mutations have been provided. We investigated the functional properties of the mutations L764P and W887R in the human Na,K-ATPase α2-subunit upon heterologous expression in Xenopus oocytes. No Na,K-ATPase-specific pump currents could be detected in cells expressing these mutants. The binding of radiolabelled [3H]ouabain to intact cells suggested that this could be due to a lack of plasma membrane expression. However, plasma membrane isolation showed that the mutated pumps are well expressed at the plasma membrane. 86Rb+-flux and ATPase activity measurements demonstrated that the mutants are inactive. Therefore, the primary disease-causing mechanism is loss-of-function of the Na,K-ATPase α2-isoform.  相似文献   

15.
16.
The Na,K-ATPases and the H,K-ATPases are two potassium-dependent homologous heterodimeric P2-type pumps that catalyze active transport of Na+ in exchange for K+ (Na,K-ATPase) or H+ in exchange for K+ (H,K-ATPase). The ubiquitous Na,K-ATPase maintains intracellular ion balance and membrane potential. The gastric H,K-ATPase is responsible for acid secretion by the parietal cell of the stomach. Both pumps consist of a catalytic α-subunit and a glycosylated β-subunit that is obligatory for normal pump maturation and trafficking. Individual N-glycans linked to the β-subunits of the Na,K-ATPase and H,K-ATPase are important for stable membrane integration of their respective α subunits, folding, stability, subunit assembly, and enzymatic activity of the pumps. They are also essential for the quality control of unassembled β-subunits that results in either the exit of the subunits from the ER or their ER retention and subsequent degradation. Overall, the importance of N-glycans for the␣maturation and quality control of the H,K-ATPase is greater than that of the Na,K-ATPase. The roles of individual N-glycans of the β-subunits in the post-ER trafficking, membrane targeting and plasma membrane retention of the Na,K-ATPase and H,K-ATPase are different. The Na,K-ATPase β 1-subunit is the major β-subunit isoform in cells with lateral location of the pump. All three N-glycans of the Na,K-ATPase β 1-subunit are important for the lateral membrane retention of the pump due to glycan-mediated interaction between the β 1-subunits of the two neighboring cells in the cell monolayer and cytosolic linkage of the α-subunit to the cytoskeleton. This intercellular β 1β 1 interaction is also important for formation of cell–cell contacts. In contrast, the N-glycans unique to the Na,K-ATPase β 2-subunit,which has up to eight N-glycosylation sites, contain apical sorting information. This is consistent with the apical location of the Na,K-ATPase in normal and malignant epithelial cells with high abundance of the β 2-subunit. Similarly, all seven N-glycans of the gastric H,K-ATPase β-subunit determine apical sorting of this subunit. Supported in part by NIH grants DK46917, DK58333, D53642, and USVA  相似文献   

17.
18.
Function of FXYD Proteins,Regulators of Na,K-ATPase   总被引:3,自引:0,他引:3  
In this short review, we summarize our work on the role of members of the FXYD protein family as tissue-specific modulators of Na, K-ATPase. FXYD1 or phospholemman, mainly expressed in heart and skeletal muscle increases the apparent affinity for intracellular Na+ of Na, K-ATPase and may thus be important for appropriate muscle contractility. FXYD2 or γ subunit and FXYD4 or CHIF modulate the apparent affinity for Na+ of Na, K-ATPase in an opposite way, adapted to the physiological needs of Na+ reabsorption in different segments of the renal tubule. FXYD3 expressed in stomach, colon, and numerous tumors also modulates the transport properties of Na, K-ATPase but it has a lower specificity of association than other FXYD proteins and an unusual membrane topology. Finally, FXYD7 is exclusively expressed in the brain and decreases the apparent affinity for extracellular K+, which may be essential for proper neuronal excitability.  相似文献   

19.
Oncopeltus fasciatus tolerated 1954× and 7288×, respectively, the LD50 ouabain dose of Schistocerca gregaria and Periplaneta americana when ouabain was injected into the haemocoel of these insects. The maximal ouabain dose that could be injected into O. fasciatus (200 nmol) resulted in no mortality; this dose is higher than the lethal ouabain doses recorded for vertebrates and invertebrates. The ouabain concentration resulting in 50% inhibition (I50) of Na,K-ATPase activity was determined in lyophilates of nervous tissue of O. fasciatus and brain and recta of S. gregaria and were 2.0 × 10−4, 2.0 × 10−6 and 1.0 × 10−6 M, respectively. The I50 value for ouabain inhibition of Na,K-ATPase activity in the nervous tissue of O. fasciatus is higher than the I50 values for nervous tissue in most other insects as well as many other invertebrate and vertebrate tissues. Thus, the presence of ouabain-resistant Na,K-ATPases appears to be a factor in the tolerance and sequestration of plant cardenolides in O. fasciatus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号