首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundThe incidence of multidrug-resistant tuberculosis (MDR-TB) remains critically high in countries of the former Soviet Union, where >20% of new cases and >50% of previously treated cases have resistance to rifampin and isoniazid. Transmission of resistant strains, as opposed to resistance selected through inadequate treatment of drug-susceptible tuberculosis (TB), is the main driver of incident MDR-TB in these countries.Methods and findingsWe conducted a prospective, genomic analysis of all culture-positive TB cases diagnosed in 2018 and 2019 in the Republic of Moldova. We used phylogenetic methods to identify putative transmission clusters; spatial and demographic data were analyzed to further describe local transmission of Mycobacterium tuberculosis. Of 2,236 participants, 779 (36%) had MDR-TB, of whom 386 (50%) had never been treated previously for TB. Moreover, 92% of multidrug-resistant M. tuberculosis strains belonged to putative transmission clusters. Phylogenetic reconstruction identified 3 large clades that were comprised nearly uniformly of MDR-TB: 2 of these clades were of Beijing lineage, and 1 of Ural lineage, and each had additional distinct clade-specific second-line drug resistance mutations and geographic distributions. Spatial and temporal proximity between pairs of cases within a cluster was associated with greater genomic similarity. Our study lasted for only 2 years, a relatively short duration compared with the natural history of TB, and, thus, the ability to infer the full extent of transmission is limited.ConclusionsThe MDR-TB epidemic in Moldova is associated with the local transmission of multiple M. tuberculosis strains, including distinct clades of highly drug-resistant M. tuberculosis with varying geographic distributions and drug resistance profiles. This study demonstrates the role of comprehensive genomic surveillance for understanding the transmission of M. tuberculosis and highlights the urgency of interventions to interrupt transmission of highly drug-resistant M. tuberculosis.

In a prospective genome surveillance study, Chongguang Yang and colleagues investigate the dynamics of multidrug-resistant tuberculosis transmission in Moldova.  相似文献   

2.
We report here the synthesis and in vitro antitubercular activity of a new series of ferrocenyl derivatives. The quinoline-ferrocene hybrid 5 exhibited significant activity (MIC = 2.5-5 μg/ml) against Mycobacterium tuberculosis. Results indicate that such hybrid compounds provide an efficient approach for future pharmacological developments to fight against tuberculosis. Moreover, the antimalarial drug candidate ferroquine (FQ, SSR97193) was also evaluated mainly because of its structural similarity. FQ was found to display moderate inhibitory activity (MIC = 10-15 μg/ml) against M. tuberculosis. This new drug may offer an interesting alternative in endemic area where malaria and tuberculosis coexist.  相似文献   

3.
The increase in the prevalence of drug-resistant tuberculosis cases demonstrates the need of discovering new and promising compounds with antimycobacterial activity. As a continuation of our research and with the aim of identifying new antitubercular drugs candidates, a new series of quinoxaline 1,4-di-N-oxide derivatives containing isoniazid was synthesized and evaluated for in vitro anti-tuberculosis activity against Mycobacterium tuberculosis H37Rv strain. Moreover, various drug-like properties of new compounds were predicted. Taking into account the biological results and the promising drug-likeness profile of these compounds, make them valid leads for further experimental research.  相似文献   

4.
Tuberculosis (TB) remains an infectious disease of global significance and a leading cause of death in low- and middle-income countries. Significant effort has been directed towards understanding Mycobacterium tuberculosis genomics, virulence, and pathophysiology within the framework of Koch postulates. More recently, the advent of “-omics” approaches has broadened our appreciation of how “commensal” microbes have coevolved with their host and have a central role in shaping health and susceptibility to disease. It is now clear that there is a diverse repertoire of interactions between the microbiota and host immune responses that can either sustain or disrupt homeostasis. In the context of the global efforts to combatting TB, such findings and knowledge have raised important questions: Does microbiome composition indicate or determine susceptibility or resistance to M. tuberculosis infection? Is the development of active disease or latent infection upon M. tuberculosis exposure influenced by the microbiome? Does microbiome composition influence TB therapy outcome and risk of reinfection with M. tuberculosis? Can the microbiome be actively managed to reduce risk of M. tuberculosis infection or recurrence of TB? Here, we explore these questions with a particular focus on microbiome-immune interactions that may affect TB susceptibility, manifestation and progression, the long-term implications of anti-TB therapy, as well as the potential of the host microbiome as target for clinical manipulation.  相似文献   

5.
6.
Tuberculosis (TB), one of the deadliest threats to human health, is mainly caused by 2 highly related and human-adapted bacteria broadly known as Mycobacterium tuberculosis and Mycobacterium africanum. Whereas M. tuberculosis is widely spread, M. africanum is restricted to West Africa, where it remains a significant cause of tuberculosis. Although several differences have been identified between these 2 pathogens, M. africanum remains a lot less studied than M. tuberculosis. Here, we discuss the genetic, phenotypic, and clinical similarities and differences between strains of M. tuberculosis and M. africanum. We also discuss our current knowledge on the immune response to M. africanum and how it possibly articulates with distinct disease progression and with the geographical restriction attributed to this pathogen. Understanding the functional impact of the diversity existing in TB-causing bacteria, as well as incorporating this diversity in TB research, will contribute to the development of better, more specific approaches to tackle TB.  相似文献   

7.
The article draws the attention of chemists to the literature data reporting the discovery of new targets for growth inhibition of Mycobacterium tuberculosis, namely, diterpene cyclase (Rv3377c) and tuberculosinol phosphatase (Rv3378c), which produce diterpenoids of tuberculosinols in the cell membrane of M. tuberculosis, and these diterpenoids ensure the pathogenicity and the virulence of M. tuberculosis. For the first time, by the example of diterpenoid of isosteviol, its binuclear derivatives, triterpenoid betulinic, oleanolic, and ursolic acids, it has been shown by the molecular docking method that the antitubercular activity of natural terpenoids is caused by their ability to bind to the active site of tuberculosinol phosphatase (Rv3378c) of M. tuberculosis. It is suggested that natural and semisynthetic terpenoids represent a promising platform for design of a new generation of antitubercular agents that affect this enzyme.  相似文献   

8.
In order to identify new and potent candidate drugs to treat tuberculosis, a library of compounds was screened, and (S,S)-N,N′-bis-[3-(2,2′,6,6′-tetramethylbenzhydryloxy)-2-hydroxy-propyl]-ethylenediamine (S2824) was identified as a hit in the screen. This research discusses our efforts to synthesize and test 30 analogs of this hit for activity against Mycobacterium tuberculosis. Two compounds with homopiperazine ring possess high in vitro activity against drug sensitive and resistant M. tuberculosis with MICs 0.78–3.13 μg/mL (or 1.22–4.88 μM).  相似文献   

9.
The re-emergence of tuberculosis in recent years led the World Health Organization (WHO) to launch the Stop TB Strategy program. Beside repurposing the existing drugs and exploring novel molecular combinations, an essential step to face the burden of tuberculosis will be to develop new drugs by identifying vulnerable bacterial targets. Recent studies have focused on decaprenylphosphoryl-d-ribose oxidase (DprE1) of Mycobacterium tuberculosis, an essential enzyme involved in cell wall metabolism, for which new promising molecules have proved efficacy as antitubercular agents. This review summarizes the state of the art concerning DprE1 in terms of structure, enzymatic activity and inhibitors. This enzyme is emerging as one of the most vulnerable target in M. tuberculosis.  相似文献   

10.
Defining the pharmacological target(s) of currently used drugs and developing new analogues with greater potency are both important aspects of the search for agents that are effective against drug-sensitive and drug-resistant Mycobacterium tuberculosis. Thiacetazone (TAC) is an anti-tubercular drug that was formerly used in conjunction with isoniazid, but removed from the antitubercular chemotherapeutic arsenal due to toxic side effects. However, several recent studies have linked the mechanisms of action of TAC to mycolic acid metabolism and TAC-derived analogues have shown increased potency against M. tuberculosis. To obtain new insights into the molecular mechanisms of TAC resistance, we isolated and analyzed 10 mutants of M. tuberculosis that were highly resistant to TAC. One strain was found to be mutated in the methyltransferase MmaA4 at Gly101, consistent with its lack of oxygenated mycolic acids. All remaining strains harbored missense mutations in either HadA (at Cys61) or HadC (at Val85, Lys157 or Thr123), which are components of the β-hydroxyacyl-ACP dehydratase complex that participates in the mycolic acid elongation step. Separately, a library of 31 new TAC analogues was synthesized and evaluated against M. tuberculosis. Two of these compounds, 15 and 16, exhibited minimal inhibitory concentrations 10-fold lower than the parental molecule, and inhibited mycolic acid biosynthesis in a dose-dependent manner. Moreover, overexpression of HadAB HadBC or HadABC in M. tuberculosis led to high level resistance to these compounds, demonstrating that their mode of action is similar to that of TAC. In summary, this study uncovered new mutations associated with TAC resistance and also demonstrated that simple structural optimization of the TAC scaffold was possible and may lead to a new generation of TAC-derived drug candidates for the potential treatment of tuberculosis as mycolic acid inhibitors.  相似文献   

11.
Arylamine N-acetyltransferases (NATs) are found in many eukaryotic organisms, including humans, and have previously been identified in the prokaryote Salmonella typhimurium. NATs from many sources acetylate the antitubercular drug isoniazid and so inactivate it. nat genes were cloned from Mycobacterium smegmatis and Mycobacterium tuberculosis, and expressed in Escherichia coli and M. smegmatis. The induced M. smegmatis NAT catalyzes the acetylation of isoniazid. A monospecific antiserum raised against pure NAT from S. typhimurium recognizes NAT from M. smegmatis and cross-reacts with recombinant NAT from M. tuberculosis. Overexpression of mycobacterial nat genes in E. coli results in predominantly insoluble recombinant protein; however, with M. smegmatis as the host using the vector pACE-1, NAT proteins from M. tuberculosis and M. smegmatis are soluble. M. smegmatis transformants induced to express the M. tuberculosis nat gene in culture demonstrated a threefold higher resistance to isoniazid. We propose that NAT in mycobacteria could have a role in acetylating, and hence inactivating, isoniazid.  相似文献   

12.
In the present investigation, a series of 3-substituted-N-aryl-6,7-dimethoxy-3a,4-dihydro-3H-indeno[1,2-c]pyrazole-2-carboxamide analogues were synthesized and were evaluated for antitubercular activity by two fold serial dilution technique. All the newly synthesized compounds showed moderate to high inhibitory activities against Mycobacterium tuberculosis H37Rv and INH resistant M. tuberculosis. The compound N,3-bis(4-fluorophenyl)-6,7-dimethoxy-3a,4-dihydro-3H-indeno[1,2-c]pyrazole-2-carboxamide (4c) was found to be the most promising compound active against M. tuberculosis H37Rv and isoniazid resistant M. tuberculosis with minimum inhibitory concentration 0.78 μM.  相似文献   

13.

Background

Early diagnosis and treatment of Mycobacterium tuberculosis infection can prevent most deaths resulting from this pathogen; however, multidrug-resistant strains present serious threats to global tuberculosis control and prevention efforts. In this study, we identified antigens that could be used for the serodiagnosis of drug-resistant M. tuberculosis strains, using a proteomics-based analysis.

Results

Serum from patients infected with drug-resistant or drug-susceptible M. tuberculosis strains and healthy controls was subjected to two-dimensional gel electrophoresis using a western blot approach. This procedure identified nine immunoreactive proteins, which were subjected to MALDI-TOF-MS analysis. Six recombinant proteins, namely rRv2031c, rRv0444c, rRv2145c, rRv3692, rRv0859c, and rRv3040, were expressed and used to determine the immuno-reactivity of 100 serum samples. Antibody reactivity against rRv2031c, rRv3692, and rRv0444c was consistently observed. Among them, the best sensitivity and specificity of rRv3692 were 37% and 95% respectively. Furthermore, when rRv2031c and rRv3692 or rRv2031c, rRv3692, and rRv0444c were combined in 2:1 or equal amounts, the assay sensitivity and specificity were improved to 56.7% and 100% respectively.

Conclusions

These results suggest that Rv2031c, Rv3692, and Rv0444c are possible candidate biomarkers for effective use in the serodiagnosis of drug-resistant tuberculosis infections, and a combined formula of these antigens should be considered when designing a subunit assay kit.  相似文献   

14.
Tuberculosis remains a global health problem caused by infection with Mycobacterium tuberculosis. Numerous studies have established a close correlation between the development of tuberculosis and the roles of neutrophils. Recently, a distinct population of CD15+ granulocytes was found to be present in the peripheral blood mononuclear cell (PBMC) fraction in humans. This population of granulocytes, termed low-density granulocytes (LDGs), was reported to be elevated and associated with disease activity or severity in a number of different conditions including SLE, asthma and HIV infection. However, both the frequency and clinical significance of LDGs associated with tuberculosis are unclear. Here we determined LDG levels and made comparisons between subjects with active pulmonary tuberculosis (PTB) and healthy controls, between PTB patients with mild-to-moderate disease and patients with advanced disease, and among PTB patients following anti-tuberculous therapy of varying durations. The direct correlation between M. tuberculosis infection and LDG levels was confirmed by in vitro infection of whole peripheral blood and isolated granulocytes with mycobacteria. Our results demonstrated that PBMCs in PTB patients contained significantly elevated percentages of LDGs compared with control subjects. LDGs in tuberculosis expressed higher levels of activation markers compared to normal-density granulocytes (NDGs). M. tuberculosis induced the generation of LDGs in both whole blood and isolated NDGs from control subjects, which suggests that LDGs associated with M. tuberculosis infection are likely to originate from in situ activation. Furthermore, our results revealed that the frequency of LDGs is associated with the severity of tuberculosis.  相似文献   

15.
Mycobacteria of the Mycobacterium tuberculosis complex (MTBC) greatly affect humans and animals worldwide. The life cycle of mycobacteria is complex and the mechanisms resulting in pathogen infection and survival in host cells are not fully understood. Recently, comparative genomics analyses have provided new insights into the evolution and adaptation of the MTBC to survive inside the host. However, most of this information has been obtained using M. tuberculosis but not other members of the MTBC such as M. bovis and M. caprae. In this study, the genome of three M. bovis (MB1, MB3, MB4) and one M. caprae (MB2) field isolates with different lesion score, prevalence and host distribution phenotypes were sequenced. Genome sequence information was used for whole-genome and protein-targeted comparative genomics analysis with the aim of finding correlates with phenotypic variation with potential implications for tuberculosis (TB) disease risk assessment and control. At the whole-genome level the results of the first comparative genomics study of field isolates of M. bovis including M. caprae showed that as previously reported for M. tuberculosis, sequential chromosomal nucleotide substitutions were the main driver of the M. bovis genome evolution. The phylogenetic analysis provided a strong support for the M. bovis/M. caprae clade, but supported M. caprae as a separate species. The comparison of the MB1 and MB4 isolates revealed differences in genome sequence, including gene families that are important for bacterial infection and transmission, thus highlighting differences with functional implications between isolates otherwise classified with the same spoligotype. Strategic protein-targeted analysis using the ESX or type VII secretion system, proteins linking stress response with lipid metabolism, host T cell epitopes of mycobacteria, antigens and peptidoglycan assembly protein identified new genetic markers and candidate vaccine antigens that warrant further study to develop tools to evaluate risks for TB disease caused by M. bovis/M.caprae and for TB control in humans and animals.  相似文献   

16.
Control and prevention of tuberculosis is a major challenge, as one-third of the world’s population is infected with Mycobacterium tuberculosis. The resurgence of tuberculosis and the emergence of multidrug-resistance strains of mycobacteria, necessitate the search for new class of antimycobacterial agents. As a part of investigation of new antitubercular agents in this laboratory, we describe the syntheses of various hydrazides of comarins, quinolones and pyrroles and screening against M. tuberculosis (Mtb) H37Rv by using rifampin as a standard drug. Among the designed molecules, the most prominent compounds 2a-g, 4a and 9a showed >90% GI at MIC <6.25 μg/mL. Finally, these studies suggests that compounds 2a-g, 4a and 9a may serve as promising lead scaffolds for further generation of new anti-TB agents.  相似文献   

17.
Mycobacterium tuberculosis complex (MTBC) comprises closely related species responsible for human and animal tuberculosis (TB). Efficient species determination is useful for epidemiological purposes, especially for the elucidation of the zoonotic contribution. In Algeria, data on MTBC genotypes are largely unknown. In this study, we aimed to investigate the occurrence and diversity of MTBC genotypes causing human and bovine TB in Northern Algeria. During a two-year sampling period (2017–2019) in two regions of Northern Algeria, we observed an overall prevalence of 6.5% of tuberculosis (TB) among slaughtered cattle, which is higher than previous Algerian data yet comparable to neighboring countries. A total of 296 Mycobacterium tuberculosis complex (MTBC) isolates were genotyped by spoligotyping: 181 from tissues with TB-like lesions collected from 181 cattle carcasses and 115 from TB patients. In human isolates, we identified 107 M. tuberculosis, seven M. bovis and one “M. pinnipedii-like”, while for bovine samples, 174 isolates were identified as M. bovis, three as M. caprae, three as “M. pinnipedii-like” and one as “M. microti-like”. The majority of isolates (89.2%) belonged to 72 different known Shared International Types (SIT) or M. bovis spoligotypes (SB), while we also identified seven new SB profiles (SB2695 to SB2701). Twenty-eight of the SB profiles were new to Algeria. Our data suggest zoonotic transmission in Sétif, where significantly more TB was observed among cattle (20%) compared to the slaughterhouses from the three other regions (5.4%–7.3%) (p < 0.0001), with the isolation of the same M. bovis genotypes from TB patients. The present study showed a high genetic diversity of MTBC isolated from human and cattle in Northern Algeria. Even though relatively small in terms of numbers, our data suggest the zoonotic transmission of TB from cattle to humans, suggesting the need for stronger eradication strategies for bovine TB.  相似文献   

18.
While T cell immunity initially limits Mycobacterium tuberculosis infection, why T cell immunity fails to sterilize the infection and allows recrudescence is not clear. One hypothesis is that T cell exhaustion impairs immunity and is detrimental to the outcome of M. tuberculosis infection. Here we provide functional evidence for the development T cell exhaustion during chronic TB. Second, we evaluate the role of the inhibitory receptor T cell immunoglobulin and mucin domain–containing-3 (TIM3) during chronic M. tuberculosis infection. We find that TIM3 expressing T cells accumulate during chronic infection, co-express other inhibitory receptors including PD1, produce less IL-2 and TNF but more IL-10, and are functionally exhausted. Finally, we show that TIM3 blockade restores T cell function and improves bacterial control, particularly in chronically infected susceptible mice. These data show that T cell immunity is suboptimal during chronic M. tuberculosis infection due to T cell exhaustion. Moreover, in chronically infected mice, treatment with anti-TIM3 mAb is an effective therapeutic strategy against tuberculosis.  相似文献   

19.
The tuberculous granuloma is an elaborately organized structure and one of the main histological hallmarks of tuberculosis. Macrophages, which are important immunologic effector and antigen-presenting cells, are the main cell type found in the tuberculous granuloma and have high plasticity. Macrophage polarization during bacterial infection has been elucidated in numerous recent studies; however, macrophage polarization during tuberculous granuloma formation and development has rarely been reported. It remains to be clarified whether differences in the activation status of macrophages affect granuloma formation. In this study, the variation in macrophage polarization during the formation and development of tuberculous granulomas was investigated in both sections of lung tissues from tuberculosis patients and an in vitro tuberculous granuloma model. The roles of macrophage polarization in this process were also investigated. Mycobacterium tuberculosis (M. tuberculosis) infection was found to induce monocyte-derived macrophage polarization. In the in vitro tuberculous granuloma model, macrophage transformation from M1 to M2 was observed over time following M. tuberculosis infection. M2 macrophages were found to predominate in both necrotic and non-necrotic granulomas from tuberculosis patients, while both M1 and M2 polarized macrophages were found in the non-granulomatous lung tissues. Furthermore, it was found that M1 macrophages promote granuloma formation and macrophage bactericidal activity in vitro, while M2 macrophages inhibit these effects. The findings of this study provide insights into the mechanism by which M. tuberculosis circumvents the host immune system as well as a theoretical foundation for the development of novel tuberculosis therapies based on reprogramming macrophage polarization.  相似文献   

20.
Understanding the biology of the tuberculosis pathogen during dormant asymptomatic infection, called latent tuberculosis is crucial to decipher a resilient therapeutic strategy for the disease. Recent discoveries exhibiting presence of pathogen’s DNA and bacilli in mesenchymal stem cells (MSCs) of human and mouse despite completion of antitubercular therapy, indicates that these specific cells could be one of the niches for dormant Mycobacterium tuberculosis in humans. To determine if in vitro infection of human MSCs could recapitulate the in vivo characteristics of dormant M. tuberculosis, we examined survival, phenotype, and drug susceptibility of the pathogen in MSCs. When a very low multiplicity of infection (1:1) was used, M. tuberculosis could survive in human bone marrow derived MSCs for more than 22 days without any growth. At this low level of infection, the pathogen did not cause any noticeable host cell death. During the later phase of infection, MSC-residing M. tuberculosis exhibited increased expression of HspX (a 16-kDa alpha-crystallin homolog) with a concurrent increase in tolerance to the frontline antitubercular drugs Rifampin and isoniazid. These results present a human MSC-based intracelllular model of M. tuberculosis infection to dissect the mechanisms through which the pathogen acquires and maintains dormancy in the host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号