共查询到20条相似文献,搜索用时 9 毫秒
1.
A locus for binding a mobile water molecule was searched for in the immediate vicinity of the special pair in the reaction center. Using the PROTEUS PC-program (a part of the GRASP package) atomic structures of the reaction centers were analyzed in purple bacteria Rhodopseudomonas viridis and Rhodobacter sphaeroides. In both structures the loci for binding mobile water molecules were found at the distance of about 4.5 Å from the middle of the special pair in the reaction center. The reorientation of a hydrogen atom of this water molecule in the electric field of the excited special pair required energy of no less than 40 MeV that corresponded to predictions of the water-polarization model of trapping of electron excitation which was developed by M. V. Fok and one of the authors of this article. 相似文献
2.
3.
The mechanism of the charge separation and stabilization of separated charges was studied using the femtosecond absorption spectroscopy. It was found that nuclear wavepacket motions on potential energy surface of the excited state of the primary electron donor P* leads to a coherent formation of the charge separated states P+BA−, P+HA− and P+HB− (where BA, HB and HA are the primary and secondary electron acceptors, respectively) in native, pheophytin-modified and mutant reaction centers (RCs) of Rhodobacter sphaeroides R-26 and in Chloroflexus aurantiacus RCs. The processes were studied by measurements of coherent oscillations in kinetics at 890 and 935 nm (the stimulated emission bands of P*), at 800 nm (the absorption band of BA) and at 1020 nm (the absorption band of BA−) as well as at 760 nm (the absorption band of HA) and at 750 nm (the absorption band of HB). It was found that wavepacket motion on the 130–150 cm−1 potential surface of P* is accompanied by approaches to the intercrossing region between P* and P+BA− surfaces at 120 and 380 fs delays emitting light at 935 nm (P*) and absorbing light at 1020 nm (P+BA−). In the presence of Tyr M210 (Rb. sphaeroides) or M195 (C. aurantiacus) the stabilization of P+BA− is observed within a few picosseconds in contrast to YM210W. At even earlier delay (40 fs) the emission at 895 nm and bleaching at 748 nm are observed in C. aurantiacus RCs showing the wavepacket approach to the intercrossing between the P* and P+HB− surfaces at that time. The 32 cm−1 rotation mode of HOH was found to modulate the electron transfer rate probably due to including of this molecule in polar chain connecting PB and BA and participating in the charge separation. The mechanism of the charge separation and stabilization of separated charges is discussed in terms of the role of nuclear motions, of polar groups connecting P and acceptors and of proton of OH group of TyrM210. 相似文献
4.
Allen J. P. Williams J. C. Graige M. S. Paddock M. L. Labahn A. Feher G. Okamura M. Y. 《Photosynthesis research》1998,55(2-3):227-233
The direct charge recombination rates from the primary quinone, k
AD (D+Q
A
–
DQA) and the secondary quinone, k
BD (D+Q
B
–
DQB), in reaction centers from Rhodobacter sphaeroides were measured as a function of the free energy differences for the processes, G
AD
0
and G
BD
0
, respectively. Measurements were performed at 21 °C on a series of mutant reaction centers that have a wide range of dimer midpoint potentials and consequently a large variation in G
AD
0
and G
BD
0
. As –G
AD
0
varied from 0.43 to 0.78 eV, k
AD varied from 4.6 to 28.6 s–1. The corresponding values for the wild type are 0.52 eV and 8.9 s–1. Observation of the direct charge recombination rate k
BD was achieved by substitution of the primary quinone with naphthoquinones in samples in which ubiquinone was present at the secondary quinone site, resulting specifically in an increase in the free energy of the D+Q
A
–
state relative to the D+QAQ
B
–
state. As –G
BD
0
varied from 0.37 to 0.67 eV, k
BD varied from 0.03 to 1.4 s–1. The corresponding values for the wild type are 0.46 eV and 0.2 s–1. A fit of the two sets of data to the Marcus theory for electron transfer yielded significantly different reorganization energies of 0.82 and 1.3 eV for k
AD and k
BD, respectively. In contrast, the fitted values for the coupling matrix element, or equivalently the maximum possible rate, were comparable (25 s–1) for the two charge recombination processes. These results are in accord with QB having more interactions with dipoles, from both the surrounding protein and bound water molecules, than QA and with the primary determinant of the maximal rate being the quinone-donor distance. 相似文献
5.
The nature of excitation energy transfer and charge separation in isolated Photosystem II reaction centers is an area of considerable interest and controversy. Excitation energy transfer from accessory chlorophyll a to the primary electron donor P680 takes place in tens of picoseconds, although there is some evidence that thermal equilibration of the excitation between P680 and a subset of the accessory chlorophyll a occurs on a 100-fs timescale. The intrinsic rate for charge separation at low temperature is accepted to be ca. (2 ps)–1, and is based on several measurements using different experimental techniques. This rate is in good agreement with estimates based on larger sized particles, and is similar to the rate observed with bacterial reaction centers. However, near room temperature there is considerable disagreement as to the observed rate for charge separation, with several experiments pointing to a ca. (3 ps)–1 rate, and others to a ca. (20 ps)-1 rate. These processes and the experiments used to measure them will be reviewed.Abbreviations Chl
chlorophyll
- FWHM
full-width at half-maximum
- Pheo
pheophytin
- PS II
Photosystem II
- P680
primary electron donor of the Photosystem II reaction center
- RC
reaction center
The US Government right to retain a non-exclusive, royalty free licence in and to any copyright is acknowledged. 相似文献
6.
Pearlstein RM 《Photosynthesis research》2002,73(1-3):119-126
7.
Michael R. Wasielewski Douglas G. Johnson Govindjee Christopher Preston Michael Seibert 《Photosynthesis research》1989,22(1):89-99
We have measured the rate constant for the formation of the oxidized chlorophyll a electron donor (P680+) and the reduced electron acceptor pheophytin a
– (Pheo a
–) following excitation of isolated Photosystem II reaction centers (PS II RC) at 15 K. This PS II RC complex consists of D1, D2, and cytochrome b-559 proteins and was prepared by a procedure which stabilizes the protein complex. Transient absorption difference spectra were measured from 450–840 nm as a function of time with 500fs resolution following 610 nm laser excitation. The formation of P680+-Pheo a
– is indicated by the appearance of a band due to P680+ at 820 nm and corresponding absorbance changes at 490, 515 and 546 nm due to the formation of Pheo a
–. The appearance of the 490 nm and 820 nm bands is monoexponenital with =1.4±0.2 ps. Treatment of the PS II RC with sodium dithionite and methyl viologen followed by exposure to laser excitation results in accumulation of Pheo a
–. Laser excitation of these prereduced RCs at 15 K results in formation of a transient absorption spectrum assigned to 1*P680. We observe wavelength-dependent kinetics for the recovery of the transient bleach of the Qy absorption bands of the pigments in both untreated and pre-reduced PS II RCs at 15K. This result is attributed to an energy transfer process within the PS II RC at low temperature that is not connected with charge separation.Abbreviations PS I
Photosystem I
- PS II
Photosystem II
- RC
reaction center
- P680
primary electron donor in Photosystem II
- Chl a
chlorophyll a
- Pheo a
pheophytin a 相似文献
8.
Nagashima Kenji V. P. Sakuragi Yumiko Shimada Keizo Matsuura Katsumi 《Photosynthesis research》1998,55(2-3):349-355
The amino acid sequences of the reaction center-bound cytochrome subunit of six species of purple bacteria were compared. Amino acid residues thought to be important in controlling the redox midpoint potentials of four hemes in Blastochloris (Rhodopseudomonas) viridis were found to be well conserved. As opposed to all other species studied, the amino acid sequence of the cytochrome subunit of B. viridis had several insertions of more than 10 residues at specific regions close to the LM core, suggesting that interaction of the cytochrome subunit with the LM core in most species is different from that in B. viridis. Distribution of charged amino acid residues on the surface of the cytochrome subunit was compared among six species and discussed from the viewpoint of interaction with soluble electron donors. 相似文献
9.
Extraction of PS II particles with 50 mM cholate and 1 M NaCl releases several proteins (33-, 23-, 17- and 13 kDa) and lipids from the thylakoid membrane which are essential for O2 evolution, dichlorophenolindophenol (DCIP) reduction and for stable charge separation between P680+ and QA
-. This work correlates the results on the loss of steady-state rates for O2 evolution and PS II mediated DCIP photo-reduction with flash absorption changes directly monitoring the reaction center charge separation at 830 nm due to P680+, the chlorophyll a donor. Reconstitution of the extracted lipids to the depleted membrane restores the ability to photo-oxidize P680 reversibly and to reduce DCIP, while stimulating O2 evolution minimally. Addition of the extracted proteins of masses 33-, 23- and 17- kDa produces no further stimulation of DCIP reduction in the presence of an exogenous donor like DPC, but does enhance this rate in the absence of exogenous donors while also stimulating O2 evolution. The proteins alone in the absence of lipids have little influence on charge separation in the reaction center. Thus lipids are essential for stable charge separation within the reaction center, involving formation of P680+ and QA
-.Abbreviations A830
Absorption change at 830 nm
- Chl
Chlorophyll
- D1
primary electron donor to P680
- DCIP
2,6-dichlorophenolindophenol
- DPC
1,5-diphenylcarbazide
- MOPS
3-(N-morpholino)propanesulfonic acid
- P680
reaction center chlorophyll a molecule of photosystem II
- PPBQ
Phenyl-p-benzoquinone
- PS II
Photosystem II
- QA, QB
first and second quinone acceptors in PS II
- V-DCIP
rate of DCIP reduction
- V-O2
rate of oxygen evolution
- Y
water-oxidizing enzyme system
- CHAPS
3-Cyclohexylamino-propanesulfonic acid 相似文献
10.
Results are presented of a study of primary processes of formation of the charge separated states P+BA
- and P+HA
- (where P is the primary electron donor, BA and HA the primary and secondary electron acceptors) in native and pheophytin-modified reaction centers (RCs) of Rhodobacter sphaeroides R-26 by methods of femtosecond spectroscopy of absorption changes at low temperature. Coherent oscillations were studied in the kinetics at 935 nm (P* stimulated emission band), at 1020 nm (BA
- absorption band), and at 760 nm (HA absorption band). It was found that when the wavepacket created under femtosecond light excitation approaches the intersection between P* and P+BA
- potential surfaces at 120- and 380-fsec delays, the formation of two electron states emitting light at 935 nm (P*) and absorbing light at 1020 nm (P+BA
-) takes place. At the later time the wavepacket motion has a frequency of 32 cm-1 and is accompanied by electron transfer from P* to BA in pheophytin-modified and native RCs and further to HA in native RCs. It was shown that electron transfer processes monitored by the 1020-nm absorption band development as well as by bleaching of 760-nm absorption band have the enhanced 32 cm-1 mode in the Fourier transform spectra. 相似文献
11.
Tatiana V. Dracheva Vladimir I. Novoderezhkin Andrei P. Razjivin 《Photosynthesis research》1996,49(3):269-276
The influence of energy disorder on exciton states of molecular aggregates (the dimer and the circular aggregate) was analyzed. The dipole strength and inhomogeneous line shapes of exciton states were calculated by means of numerical diagonalization of Hamiltonian with diagonal energy disorder without intersite correlation. The disorder degree corresponding to destruction of coherent exciton states was estimated. The circular aggregates were treated as a model of light-harvesting antenna structures of photosynthetic bacteria. It was concluded that the site inhomogeneity typical for LH1 and LH2 complexes of purple bacteria cannot significantly influence the exciton delocalization over the whole antenna.Abbreviations BChl-
bacteriochlorophyll
- LH1 and LH2-
core and peripheral light-harvesting complexes from purple bacteria
- RC-
reaction center 相似文献
12.
The kinetics of absorbance changes related to the charge-separated state, PF, and to the formation and decay of the carotenoid triplet state (CarT) were studied in the LM reaction center subunit isolated from a wild-type strain of the purple bacterium Rhodobacter sphaeroides (strain Y). The PF lifetime is lengthened (20±1.5 ns) in the LM complex as compared to the intact reaction centers (11±1 ns). The yield of the carotenoid triplet formation is higher (0.28±0.01) in the LM complex than in native reaction centers. We interpret our results in terms of perturbations of a first-order reaction connecting the singlet and the triplet state of the radical-pair state. Our results, together with those of a recent work (Agalidis, I., Nuijs, A.M. and Reiss-Husson, F. (1987) Biochim. Biophys. Acta (in press)) are consistent with a high I to QA electron transfer rate in this LM subunit, which is metal-depleted.The LM complex is considerably more sensitive than the reaction centers to photooxidative damage in the presence of oxygen. This is not readily accounted for simply by the higher carotenoid triplet yield, and may suggest a greater accessibility of the internal structures in the absence of the H-subunit.The lifetime of the carotenoid triplet decay (6.4±0.3 s) in the LM subunit is unchanged compared to the native reaction centers.Abbreviations BChl
bacteriochlorophyll
- Bph
bacteriopheophytin
- Car
carotenoid
- Chl
chlorophyll
- cyt
cytochrome
- L, M and H subunits
light, medium and heavy subunits of the reaction center complex
- PR
triplet electronic state of the primary electron donor
- P; QA
the first stable electron acceptor, a bound quinone
- RC
reaction center
- LDAO
lauryldimethylamine N-oxide
- SDS
sodium dodecyl sulfate
- UQ
ubiquinone
This paper is published in our new format. All future authors are requested to follow our new instructions (see Photosynthesis Research 10:519–526, 1986)—Editor. 相似文献
13.
Borisov AY 《Biochemistry. Biokhimii?a》2003,68(2):152-161
The contradiction between two groups of experimental data, which fails to be resolved within the framework of the widely accepted model of excitation migration and trapping (at least in case of purple bacteria), is discussed in the introduction to this review. Three directions of studies intended to resolve this conflict are reviewed in the three further sections: II. Exciton models; III. Water-polarization (water-latch) mechanism of excitation trapping; IV. Quantum-mechanical models. The maximum efficiency of these models in resolving the contradiction mentioned above was assessed. The advantages and disadvantages of the mechanisms described in sections II, III, and IV are discussed in the last section of this review. It is concluded that none of these mechanisms taken alone is able to solve this problem. Therefore, the fundamental problem of the primary excitation conversion in reaction centers remains unsolved and requires additional experimental research. 相似文献
14.
A. A. Dobrovolskii A. G. Filippov A. O. Goushcha M. T. Kapoustina V. N. Karataev A. V. Privalko V. N. Kharkyanen 《Journal of biological physics》1995,21(4):265-272
The results of a study of molecular self-organization processes in the reaction centers (RC) ofRb. Sphaeroides purple bacteria by the method of pulsed optical excitation is presented. The existence of a bistability domain for the parameters of RC recovery kinetics is shown. A good agreement between the theory and experimental results is obtained. 相似文献
15.
Isotope substitution of H2O by 2H2O causes an increase in the rate of dark recombination between photooxidized bacteriochlorophyll (P+) and reduced primary quinone acceptor in Rhodobacter sphaeroides reaction centers (RC) at room temperature. The isotopic effect declines upon decreasing the temperature. Dehydration of RC complexes of Ectothiorhodospira shaposhnikovii chromatophores containing multiheme cytochrome c causes a decrease in the efficiency of transfer of a photomobilized electron between the primary and secondary quinone acceptors and from cytochrome to P+. In the case of H2O medium these effects are observed at a lower hydration than in 2H2O-containing medium. In the E. shaposhnikovii chromatophores subjected to dehydration in H2O, the rate of electron transfer from the nearest high-potential cytochrome heme to P+ is virtually independent of hydration within the P/P0 range from 0.1 to 0.5. In samples hydrated in 2H2O this rate is approximately 1.5 times lower than in H2O. However, the isotopic effect of this reaction disappears upon dehydration. The intramolecular electron transfer between two high-potential hemes of cytochrome c in samples with 2H2O is inhibited within this range of P/P0, whereas in RC samples with H2O there is a trend toward gradual inhibition of the interheme electron transfer with dehydration. The experimental results are discussed in terms of the effects of isotope substitution and dehydration on relaxation processes and charge state of RC on implementation of the reactive states of RC providing electron transfer control. 相似文献
16.
Around 1960 experiments of Arnold and Clayton, Chance and Nishimura and Calvin and coworkers demonstrated that the primary photosynthetic electron transfer processes are not abolished by cooling to cryogenic temperatures. After a brief historical introduction, this review discusses some aspects of electron transfer in bacterial reaction centers and of optical spectroscopy of photosynthetic systems with emphasis on low-temperature experiments.Abbreviations (B)Chl
(bacterio)chlorophyll
- (B)Phe
(bacterio)pheophytin
- FMO
Fenna-Matthews-Olson
- LH1, LH2
light harvesting complexes of purple bacteria
- LHC II, CP47
light harvesting complexes of Photosystem II
- P, P870
primary electron donor
- RC
reaction center 相似文献
17.
P. P. Knox P. M. Krasilnikov P. A. Mamonov N. Kh. Seifullina A. F. Uchoa M. S. Baptista 《Biophysics》2008,53(4):291-295
The evolution of the light-induced absorption difference spectrum (380–500 nm) of the reaction centers from photosynthetic purple bacteria Rhodobacter sphaeroides has been examined over 200 μs. The observed changes are interpreted as the effects of proton movement along the H-bond between the primary quinone acceptor and its protein surroundings. A theoretical analysis of the spectral evolution, considering the proton tunneling kinetics, corroborates this interpretation. The electronic state of the primary quinone is stabilized within tens of microseconds; the process is retarded upon deuteration of the reaction center as well as in 90% glycerol, and accelerated upon nondestructive heating to 40°C. 相似文献
18.
Corson Gary E. Nagashima Kenji V. P. Matsuura Katsumi Sakuragi Yumiko Wettasinghe Ruwanthi Qin Hong Allen Randy Knaff David B. 《Photosynthesis research》1999,59(1):39-52
Sequencing of a 3.4 kb DNA fragment isolated from the photosynthetic purple sulfur bacterium Chromatium vinosum and of PCR products has resulted in identification of the Chr. vinosum pufL, pufM, and pufC genes, reading from the 5 to the 3 direction, and coding, respectively, for the L, M and cytochrome c subunits of the reaction center of this bacterium. Other PCR products have been used to obtain complete sequences for the pufB and pufA genes, located immediately upstream from pufL and encoding the apoproteins of two Chr. vinosum light- harvesting proteins. The 3-portion of the bchZ gene, a gene that codes for a protein involved in the biosynthesis of bacteriochlorophyll, has been located immediately upstream from pufB. A second pufB gene, pufB2, has been located downstream from pufC, as has the 5-portion of a second pufA gene, pufA2. The location of a second set of pufB and pufA genes, encoding light- harvesting proteins, downstream from pufC has not previously been reported for any photosynthetic bacterium. Translation of the gene sequences encoding these Chr. vinosum light-harvesting proteins reveals both similarities to and differences from the amino acid sequences, obtained from direct sequencing of the apoproteins, previously reported for Chr. vinosum light-harvesting proteins. Translation of these gene sequences, and of those for pufL, pufM and pufC, revealed significant homology, at the amino acid level, to the corresponding peptides of photosynthetic purple non-sulfur bacteria. 相似文献
19.
Primary photochemistry in photosystem I (PS I) reaction center complex from Acaryochloris marina that uses chlorophyll d instead of chlorophyll a has been studied with a femtosecond spectroscopy. Upon excitation at 630 nm, almost full excitation equilibration among antenna chlorophylls and 40% of the excitation quenching by the reaction center are completed with time constants of 0.6(±0.1) and 4.9(±0.6) ps, respectively. The rise and decay of the primary charge-separated state proceed with apparent time constants of 7.2(±0.9) and 50(±10) ps, suggesting the reduction of the primary electron acceptor chlorophyll (A0) and its reoxidation by phylloquinone (A1), respectively. 相似文献