首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pathway of carbon dioxide fixation in crassulacean plants   总被引:8,自引:7,他引:1       下载免费PDF全文
Combined gas chromatography-mass spectrometry of malic acid derivatives has been used to show unequivocally that malic acid, synthesized during active acid accumulation in the dark by Kalanchoë daigremontiana Hammet et Perrier in the presence of 13CO2 is produced by a pathway involving a single carboxylation. The significance of the finding that crassulacean malate synthesized in the dark and in the presence of 14CO2 often contains 66% of the total carboxyl label in carbon atom 4, which has previously been taken to indicate the operation of a double carboxylation pathway or has been dismissed as an artefact, is discussed.  相似文献   

2.
After a 5-second exposure of illuminated bermudagrass (Cynodon dactylon L. var. `Coastal') leaves to 14CO2, 84% of the incorporated 14C was recovered as aspartate and malate. After transfer from 14CO2-air to 12CO2-air under continuous illumination, total radioactivity decreased in aspartate, increased in 3-phosphoglyceric acid and alanine, and remained relatively constant in malate. Carbon atom 1 of alanine was labeled predominantly, which was interpreted to indicate that alanine was derived from 3-phosphoglyceric acid. The activity of phosphoenolpyruvate carboxylase, alkaline pyrophosphatase, adenylate kinase, pyruvate-phosphate dikinase, and malic enzyme in bermudagrass leaf extracts was distinctly higher than those in fescue (Festuca arundinacea Schreb.), a reductive pentose phosphate cycle plant. Assays of malic enzyme activity indicated that the decarboxylation of malate was favored. Both malic enzyme and NADP+-specific malic dehydrogenase activity were low in bermudagrass compared to sugarcane (Saccharum officinarum L.). The activities of NAD+-specific malic dehydrogenase and acidic pyrophosphatase in leaf extracts were similar among the plant species examined, irrespective of the predominant cycle of photosynthesis. Ribulose-1, 5-diphosphate carboxylase in C4-dicarboxylic acid cycle plant leaf extracts was about 60%, on a chlorophyll basis, of that in reductive pentose phosphate cycle plants.  相似文献   

3.
Ting IP 《Plant physiology》1968,43(12):1919-1924
Phosphoenolpyruvate carboxylase was purified from corn root tips about 80-fold by centrifugation, ammonium sulfate fractionation, and anion exchange and gel filtration chromatography. The resulting preparation was essentially free from malate dehydrogenase, isocitrate dehydrogenase, malate enzyme, NADH oxidase, and pyruvate kinase activity. Kinetic analysis indicated that l-malate was a noncompetitive inhibitor of P-enolpyruvate carboxylase with respect to P-enolpyruvate (KI = 0.8 mm). d-Malate, aspartate, and glutamate inhibited to a lesser extent; succinate, fumarate, and pyruvate did not inhibit. Oxaloacetate was also a noncompetitive inhibitor of P-enolpyruvate carboxylase with an apparent KI of 0.4 mm. A comparison of oxaloacetate and l-malate inhibition suggested that the mechanisms of inhibition were different. These data indicated that l-malate may regulate CO2 fixation in corn root tips by a feedback or end product type of inhibition.  相似文献   

4.
The role of malate decarboxylation as a source of CO2 and NADPH for the evolution of photosynthesis of isolated maize bundle-sheath strands has been investigated. The bundle-sheath cells were supplied with malate plus NADP, in the presence of intermediates of the Calvin cycle to increase the rate of CO2 fixation. The effects of malate addition on the rate of 3 phospoglycerate synthesis, with non-saturating concentrations of bicarbonate, can be explained by an increase of the cellular pool of CO2 in the cells due to malate decarboxylation. The CO2 reacting with RuDP to give phosphoglycerate corresponds effectively to carbon atom 4 of malate. Malate addition produces an enhancement of the rate of CO2 incorporation which is much more important when the reducing power is the limiting process for the evolution of the Calvin cycle (with phosphoglycerate as added substrate and/or in the presence of DCMU. These results demonstrate the utilization of NADPH produced by malate decarboxylation for the regeneration of RuDP. NADPH can also reverse the reaction of malate decarboxylation and gives rise to a synthesis of malate by carboxylation of pyruvate. In contrast, the pattern of 14C distribution among compounds is not strongly modified by malate addition. This result suggests that PGA reduction in the whole leaf must occur also in mesophyll cells to allow correctregeneration of the reduced compounds of the photosynthetic cycle.  相似文献   

5.
Malate synthesis by CO2 fixation in wheat (Triticum aestivum L.) and lupin (Lupinus luteus) roots was investigated by labeling with NaH13CO3 as well as with NaH14CO3. The distribution of 14C label in the malate was examined, using enzymic degradation methods (malic enzyme, pyruvate decarboxylase) and, in the case of 13C, gas chromatography-mass spectrometry. In long-term experiments (2 to 12 hours), both methods showed that the [1-C] and [4-C] positions of malic acid are approximately equally labeled, in agreement with former findings. Short-term experiments (15, 30 seconds) showed that 14C is confined initially to the [4-C] position of malate but then is distributed quickly to the [1-C] atom. Neither labeling pattern nor rate of randomization was influenced by salt treatment. Analysis of malate from roots by gas chromatography-mass spectrometry, a procedure which was tested against in vitro-prepared [1-13C]-, [4-13C]-, and [1,4-13C] malate, gave strong evidence for the existence of only singly labeled malate molecules. These data suggest that only one carboxylation step, catalyzed by phosphoenolpyruvate carboxylase and/or phosphoenolpyruvate carboxykinase, is responsible for malic acid synthesis in roots and that malate label is randomized by a fumarase-like reaction, presumably in mitochondria.  相似文献   

6.
Danner J  Ting IP 《Plant physiology》1967,42(5):719-724
Three enzymes assumed to mediate CO2 metabolism in corn root tips, P-enolpyruvate carboxylase, malic dehydrogenase, and the malic enzyme, were extracted to determine their relative specific activities and their partitioning between soluble and particulate fractions. The data indicated that the intracellular location of these 3 enzymes is nonparticulate and thus these enzymatic reactions of CO2 metabolism are apparently nonparticulate. The soluble malic dehydrogenase fraction differed from the particulate fraction in several kinetic properties, viz., response to the thionicotinamide analog of nicotinamide-adenine dinucleotide, oxaloacetate substrate inhibition at pH 8.3, and Km's for nicotinamide-adenine dinucleotide and l-malate. It was concluded that the soluble-malic dehydrogenase differed from the particulate forms in both structure and function. The soluble malic dehydrogenase is apparently involved in CO2 metabolism.  相似文献   

7.
The effect of anaplerotic pathways activation on CO2-dependent anaerobic glucose utilization by Escherichia coli strains deficient in the main fermentation pathways and possessing a modified system of glucose transport and phosphorylation was studied. Intracellular CO2 generation in the strains was ensured resulting from oxidative decarboxylation of pyruvic acid by pyruvate dehydrogenase. Sodium bicarbonate dissolved in the medium was used as an external source of CO2. The genes of heterologous pyruvate carboxylase and native NADH-dependent malic enzyme were overexpressed in the strains to allow anaplerotic carboxylation of pyruvic acid to oxaloacetic or malic acid. The ability of the strains to reoxidize NADH utilizing carboxylation products was additionally increased due to enhanced expression of malate dehydrogenase gene. In the case of endogenous CO2 formation, the activation of anaplerotic pathways did not cause a notable increase in the anaerobic glucose consumption by the constructed strains. At the same time, the expression of pyruvate carboxylase led to a pronounced decrease in the secretion of pyruvic acid with the concomitant increase in the yield of four-carbon metabolites. Further enhancement of NADH-dependent malic enzyme expression provoked activation of a pyruvate–oxaloacetate–malate–pyruvate futile cycle in the strains. The availability in the medium of the external CO2 source sharply increased the anaerobic utilization of glucose by strains expressing pyruvate carboxylase. The activity of the futile cycle has raised with the increased malic enzyme expression and dropped upon enhancement of malate dehydrogenase expression. As a result, the efficiency of CO2-dependent anaerobic glucose utilization coupled to the formation of four-carbon carboxylation products increased in the studied strains resulting from the primary anaplerotic conversion of pyruvic acid into oxaloacetic acid followed by the involvement of the precursor formed in NADH-consuming biosynthetic reactions dominating over the reactions of the revealed futile cycle.  相似文献   

8.
P. Dittrich  K. Raschke 《Planta》1977,134(1):77-81
Epidermal strips with closed stomata were exposed to malic acid labelled with 14C either uniformly or in 4-C only. During incubation with [U-14C]malate, radioactivity appeared in products of the tricarboxylic-acid cycle and in transamination products within 10 min, in sugars after 2 h. Hardly any radioactivity was found in sugars if [4-14C]malate had been offered. This difference in the degree of labelling of sugars indicates that gluconeogenesis can occur in epidermal tissue, involving the decarboxylation of malate. Epidermis incubated with labelled malate was hydrolyzed after extraction with aqueous ethanol. The hydrolysate contained glucose as the only radioactive product, indicating that starch had been formed from malate. Microautoradiograms were black above stomatal complexes, showing that the latter were sites of starch formation. In order to follow the fate of malate during stomatal closure, malate was labelled in guard cells by exposing epidermes with open stomata to 14CO2 and then initiating stomatal closure. Of the radioactive fixation products of CO2 only malate was released into the water on which the epidermal samples floated; the epidermal strips retained some of the malate and all of its metabolites. In the case of rapid stomatal closure initiated by abscisic acid and completed within 5 min, 63% of the radioactivity was in the malate released, 22% in the malate retained, the remainder in aspartate, glutamate, and citrate. We conclude that during stomatal closing guard cells can dispose of malate by release, gluconeogenesis, and consumption in the tricarboxylic-acid cycle.Abbreviations ABA abscisic acid - NAD nicotinamide adenine dinucleotide - NADP nicotinamide adenine dinucleotide phosphate - PEP phosphoenolpyruvate  相似文献   

9.
The cell suspension of Leishmania donovani incorporates 14CO2 resulting in the formation of [14C]-succinic acid under anaerobic conditions. The results showed that the [14C]-succinate formation from [1-14C]-glucose is much greater than that from [6-14C]-glucose. [14C-pyruvate] takes part in the production of succinic acid under anaerobic conditions without decarboxylation. The anaerobic formation of succinate appears to involve the production of malate, which is then converted to succinate via the reduction of fumarate by the reversal of the tricarboxylic acid cycle. Evidence indicated that the active species in this carboxylation reaction was CO2 although HCO3 was active to some extent.  相似文献   

10.
The accumulation of malate by maize (Zea mays L.) root tips perfused with KH13CO3 was followed by 13C nuclear magnetic resonance spectroscopy. In vivo nuclear magnetic resonance spectra contained distinct signals from two pools of malate in maize root tips, one at a pH ~5.3 (assigned to the vacuole) and one at a pH > 6.5 (assigned to the cytoplasm). The ratio of cytoplasmic to vacuolar malate was lower in 12 millimeter long root tips than in 2 millimeter root tips. The relatively broad width of the signals from C1- and C4-labeled vacuolar malate indicated heterogeneity in vacuolar pH. During the 3 hour KH13CO3 treatment, 13C-malate accumulated first primarily in the cytoplasm, increasing to a fairly constant level of ~6 millimolar by 1 hour. After a lag, vacuolar malate increased throughout the experiment.  相似文献   

11.
These studies demonstrated that CO2 rather than HCO3 is the inorganic carbon metabolite produced by the C4 acid decarboxylases involved in C4 photosynthesis (chloroplast located NADP malic enzyme, mitochondrial NAD malic enzyme, and cytosolic phosphoenolpyruvate [PEP] carboxykinase). The effect of varying CO2 or HCO3 as a substrate for the carboxylation reaction catalyzed by these enzymes or as inhibitors of the decarboxylation reaction was also determined. The KmCO2 was 1.1 millimolar for NADP malic enzyme and 2.5 millimolar for PEP carboxykinase. For these two enzymes the velocity in the carboxylating direction was substantially less than for the decarboxylating direction even with CO2 concentrations at the upper end of the range of expected cellular levels. Activity of NAD malic enzyme in the carboxylating direction was undetectable. The decarboxylation reaction of all three enzymes was inhibited by added HCO3. For NADP malic enzyme CO2 was shown to be the inhibitory species but PEP carboxykinase and NAD malic enzyme were apparently inhibited about equally by CO2 and HCO3.  相似文献   

12.
Bicarbonate-14C and acetate-3H were simultaneously provided to corn roots to give 2 isotopic forms of malate in the tissue, malate-14C produced by dark fixation reactions and malate-3H produced by reactions of the tricarboxylic acid cycle. Following a short pulse of exposure to the isotopes, the dissimilation of both isotopic forms of malic acid was followed. The rate of utilization of malate-3H was much faster than that of malate-14C.

These results are interpreted as showing that the malate produced from 14CO2 is in a pool physically separated from that in the tricarboxylic acid cycle. The introduction of the 2 isotopes through distinct metabolic pathways produced the differential labeling of 2 distinct pools of malate.

  相似文献   

13.
Littlejohn RO  Ku MS 《Plant physiology》1984,74(4):1050-1054
The nature and sequence of metabolic events during phase II (early morning) Crassulacean acid metabolism in Opuntia erinacea var columbiana (Griffiths) L. Benson were characterized. Gas exchange measurements under 2 and 21% O2 revealed increased O2 inhibition of CO2 fixation with progression of phase II. Malate and titratable acidity patterns indicated continued synthesis of C4 acids for at least 30 minutes into the light period. Potential activities of phosphoenolpyruvate carboxylase (PEPC) and NADP-malic enzyme exhibited little change during phase II, while light activation of NADP-malate dehydrogenase, pyruvate, orthophosphate dikinase, and ribulose-1,5-bisphosphate carboxylase was apparent. Short-term 14CO2 fixation experiments showed that the per cent of 14C incorporated into C4 acids decreased while incorporation into other metabolites increased with time. PEPC exhibited increased sensitivity to 2 millimolar malate, and the Ki(malate) for PEPC decreased markedly with time. Sensitivity of PEPC to malate inhibition was considerably greater at pH 7.5 than at 8.0. The results indicate that decarboxylation and synthesis of malate occur simultaneously during the early morning period, and that phase II acid metabolism is not limited by CO2 diffusion through stomata. With progression of phase II, CO2 fixation by PEPC decreases while fixation by ribulose-1,5-bisphosphate carboxylase increases.  相似文献   

14.
The labeling patterns in malic acid from dark 13CO2 fixation in seven species of succulent plants with Crassulacean acid metabolism were analysed by gas chromatography-mass spectrometry and 13C-nuclear magnetic resonance spectrometry. Only singly labeled malic-acid molecules were detected and on the average, after 12–14 h dark 13CO2 fixation the ratio of [4-13C] to [1-13C] label was 2:1. However the 4-C carboxyl contained from 72 to 50% of the label depending on species and temperature. The 13C enrichment of malate and fumarate was similar. These data confirm those of W. Cockburn and A. McAuley (1975, Plant Physiol. 55, 87–89) and indicate fumarase randomization is responsible for movement of label to 1-C malic acid following carboxylation of phosphoenolpyruvate. The extent of randomization may depend on time and on the balance of malic-acid fluxes between mitochondria and vacuoles. The ratio of labeling in 4-C to 1-C of malic acid which accumulated following 13CO2 fixation in the dark did not change during deacidification in the light and no doubly-labeled molecules of malic acid were detected. These results indicate that further fumarase randomization does not occur in the light, and futile cycling of decarboxylation products of [13C] malic acid (13CO2 or [1-13C]pyruvate) through phosphoenolpyruvate carboxylase does not occur, presumably because malic acid inhibits this enzyme in the light in vivo. Short-term exposure to 13CO2 in the light after deacidification leads to the synthesis of singly and multiply labeled malic acid in these species, as observed by E.W. Ritz et al. (1986, Planta 167, 284–291). In the shortest times, only singly-labeled [4-13C]malate was detected but this may be a consequence of the higher intensity and better detection statistics of this ion cluster during mass spectrometry. We conclude that both phosphoenolpyruvate carboxylase (EC 4.1.1.32) and ribulose-1,5-biphosphate carboxylase (EC 4.1.1.39) are active at this time.Abbreviations CAM Crassulacean acid metabolism - GCMS gas chromatography-mass spectrometry - MS mass spectrometry - NMR nuclear magnetic resonance spectrometry - PEP phosphoenolpyruvate - RuBP ribulose 1,5-bisphosphate  相似文献   

15.
For one group of C4 species we have proposed that the C4 acid decarboxylation phase of C4 photosynthesis proceeds via a NAD ‘malic’ enzyme located in bundle sheath mitochondria. The present studies with Atriplex spongiosa demonstrate the capacity of isolated mitochondria and bundle sheath cell strands to decarboxylate malate at rates commensurate with an integral role in photosynthesis. With bundle sheath cells, rates of H14CO3? fixation into Calvin cycle intermediates and evolution of O2 when HCO3? was added, were above 2 μmoles/min/mg chlorophyll. Similar rates of O2 evolution resulted from the addition of C4 acids, and the C-4 carboxyl of malate was rapidly assimilated into photosynthetic intermediates and products.  相似文献   

16.
In vitro studies of dark 14CO2 fixation with isolated cell aggregates of Kalanchoë fedtschenkoi showed that malate synthesized after 20 sec is predominantly (85 to 92%) labeled at carbon 4, while after 20 min only 65 to 69% of the radioactivity was located in this position. The intramolecular labeling pattern of malate could not be changed by supplementing the cells with carboxylation reaction substrates such as ribulose diphosphate or phosphoenolpyruvate. The kinetic decline of label at carbon 4 of malate occurs independently of CO2 fixation, since 4-14C-labeled aspartate fed to the cells gave rise to malate labeled 62% at carbon 4 after 20 min. Furthermore, the cells were capable of converting fed malate to fumarate. It is concluded that synthesis of malate during dark CO2 fixation is accomplished by a single carboxylation step via phosphoenolpyruvate carboxylase and labeling patterns observed in malate are a consequence of the action of fumarase.  相似文献   

17.
Mitochondria isolated from the Crassulacean acid metabolism plant Sedum praealtum were demonstrated to decarboxylate added malate at basal rates of 30–50 μmol mg?1 original chlorophyll h?1. The basal rate could be stimulated markedly by the addition of ADP, oxaloacetic acid, an uncoupler of oxidative phosphorylation, or NAD, with maximum rates of 70–100 μmol mg?1 original chlorophyll h?1 observed. These observed rates were high enough to account for a large proportion of the estimated rate of malate decarboxylation in vivo. The major products of malate oxidation by the mitochondria in most cases were found to be pyruvate and CO2, indicating that malate oxidation in these mitochondria proceeds mainly through NAD malic enzyme rather than NAD malate dehydrogenase. Under conditions employed little of the pyruvate formed was further oxidized, suggesting a fate other than oxidation (conversion to starch) for this pyruvate. Malate decarboxylation by mitochondria and by partially purified NAD malic enzyme was markedly inhibited by NaHCO3. A possible physiological role is suggested for this inhibition as a feedback control on the enzyme.  相似文献   

18.
19.
Brown PH  Outlaw WH 《Plant physiology》1982,70(6):1700-1703
When Vicia faba guard cell protoplasts were treated with fusicoccin, dark 14CO2 fixation rates increased by as much as 8-fold. Rate increase was saturated with less than 1 micromolar fusicoccin. Even after 6 minutes of dark 14CO2 fixation, more than 95% of the incorporated radioactivity was in stable products derived from carboxylation of phosphoenolpyruvate (about 50% and 30% in malate and aspartate, respectively). The relative distribution of 14C among products and in the C-4 position of malate (initially more than 90% of [14C]malate) was independent of fusicoccin concentration. After incubation in the dark, malate content was higher in protoplasts treated with fusicoccin. A positive correlation was observed between the amounts of 14CO2 fixed and malate content.

It was concluded that (a) fusicoccin causes an increase in the rate of dark 14CO2 fixation without alteration of the relative fluxes through pathways by which it is metabolized, (b) fusicoccin causes an increase in malate synthesis, and (c) dark 14CO2 fixation and malate synthesis are mediated by phosphoenolpyruvate carboxylase.

  相似文献   

20.
The physiological role of malic enzyme in grape ripening   总被引:5,自引:0,他引:5  
The high specificity of malic enzyme (ME; EC 1.1.1.40) from grape berries (Vitis vinifera L.) for the naturally occurring l-enantiomer of malic acid, its very selective C4-decarboxylation, and certain allosteric properties, reported previously, favour the conjecture of a regulatory function of ME in fruit malic acid degradation. On the other hand, high ME activity was detected even during the acid-accumulating phase of berry development. Also, the in vitro reversibility of the reaction supports the possibility of malate formation under conditions facilitating carboxylation of pyruvate, notably high CO2/HCO 3 - and NADPH/NADP ratios. However, a very limited incorporation of 14C into malate and the uniform labeling pattern of the dicarboxylic acid after administration of [U-14C] alanine to grape berries before and after the onset of ripening, indicate that the reverse reaction does not contribute essentially to grape malate synthesis. A regulatory mechanism mediating malic acid remetabolization on the basis of cosubstrate availability, comparable to the control of the hexose monophosphate shunt, is discussed.Abbreviation ME Malic enzyme (l-malate: NADP oxidoreductase)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号