首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
p180 was originally reported as a ribosome-binding protein on the rough endoplasmic reticulum membrane, although its precise role in animal cells has not yet been elucidated. Here, we characterized a new function of human p180 as a microtubule-binding and -modulating protein. Overexpression of p180 in mammalian cells induced an elongated morphology and enhanced acetylated microtubules. Consistently, electron microscopic analysis clearly revealed microtubule bundles in p180-overexpressing cells. Targeted depletion of endogenous p180 by small interfering RNAs led to aberrant patterns of microtubules and endoplasmic reticulum in mammalian cells, suggesting a specific interaction between p180 and microtubules. In vitro sedimentation assays using recombinant polypeptides revealed that p180 bound to microtubules directly and possessed a novel microtubule-binding domain (designated MTB-1). MTB-1 consists of a predicted coiled-coil region and repeat domain, and strongly promoted bundle formation both in vitro and in vivo when expressed alone. Overexpression of p180 induced acetylated microtubules in cultured cells in an MTB-1-dependent manner. Thus, our data suggest that p180 mediates interactions between the endoplasmic reticulum and microtubules mainly through the novel microtubule-binding and -bundling domain MTB-1.  相似文献   

3.
M J Lewis  J C Rayner    H R Pelham 《The EMBO journal》1997,16(11):3017-3024
Intracellular vesicular traffic is controlled in part by v- and t-SNAREs, integral membrane proteins which allow specific interaction and fusion between vesicles (v-SNAREs) and their target membranes (t-SNAREs). In yeast, retrograde transport from the Golgi complex to the ER is mediated by the ER t-SNARE Ufe1p, and also requires two other ER proteins, Sec20p and Tip20p, which bind each other. Although Sec20p is not a typical SNARE, we show that both it and Tip20p can be co-precipitated with Ufe1p, and that a growth-inhibiting mutation in Ufe1p can be compensated by a mutation in Sec20p. Furthermore, Sec22p, a v-SNARE implicated in forward transport from ER to Golgi, co-precipitates with Ufe1p and Sec20p, and SEC22 acts as an allele-specific multicopy suppressor of a temperature-sensitive ufe1 mutation. These results define a new functional SNARE complex, with features distinct from the plasma membrane and cis-Golgi complexes previously identified. They also show that a single v-SNARE can be involved in both anterograde and retrograde transport, which suggests that the mere presence of a particular v-SNARE may not be sufficient to determine the preferred target for a transport vesicle.  相似文献   

4.
Mechanisms that regulate partitioning of the endoplasmic reticulum (ER) during cell division are largely unknown. Previous studies have mostly addressed ER partitioning in cultured cells, which may not recapitulate physiological processes that are critical in developing, intact tissues. We have addressed this by analysing ER partitioning in asymmetrically dividing stem cells, in which precise segregation of cellular components is essential for proper development and tissue architecture. We show that in Drosophila neural stem cells, called neuroblasts, the ER asymmetrically partitioned to centrosomes early in mitosis. This correlated closely with the asymmetric nucleation of astral microtubules (MTs) by centrosomes, suggesting that astral MT association may be required for ER partitioning by centrosomes. Consistent with this, the ER also associated with astral MTs in meiotic Drosophila spermatocytes and during syncytial embryonic divisions. Disruption of centrosomes in each of these cell types led to improper ER partitioning, demonstrating the critical role for centrosomes and associated astral MTs in this process. Importantly, we show that the ER also associated with astral MTs in cultured human cells, suggesting that this centrosome/astral MT-based partitioning mechanism is conserved across animal species.  相似文献   

5.
When it is attacked by a pathogen, a plant produces a range of defense-related proteins. Many of these are synthesized by the rough endoplasmic reticulum (RER) to be secreted from the cell or deposited in vacuoles. Genes encoding endoplasmic reticulum (ER)-resident chaperones, such as the lumenal binding protein (BiP), are also induced under these conditions. Here, we show that BiP induction occurs systemically throughout the plant. Furthermore, this induction occurs rapidly and precedes expression of genes encoding pathogenesis-related (PR) proteins. The underlying signal transduction pathway was shown to be independent of the signaling molecule salicylic acid and the unfolded protein response pathway. In addition, BiP induction was independent of PR gene induction. Overproduction of BiP alone was not sufficient to cause induction of PR gene expression; however, limiting the amount of BiP in the ER lumen via superimposed ER stress inhibited the induction of PR gene expression. We propose that the induction of BiP expression during plant-pathogen interactions is required as an early response to support PR protein synthesis on the RER and that a novel signal transduction pathway exists to trigger this rapid response.  相似文献   

6.
The microtubule-binding 63-kDa cytoskeleton-linking membrane protein (CLIMP-63) is an integral membrane protein that links the endoplasmic reticulum (ER) to microtubules. Here, we tested whether this interaction is regulated by phosphorylation. Metabolic labeling with (32)P showed that CLIMP-63 is a phosphoprotein with increased phosphorylation during mitosis. CLIMP-63 of mitotic cells is unable to bind to microtubules in vitro. Mitotic phosphorylation can be prevented by mutation of serines 3, 17, and 19 in the cytoplasmic domain of CLIMP-63. When these residues are mutated to glutamic acid, and hence mimic mitotic phosphorylation, CLIMP-63 does no longer bind to microtubules in vitro. Overexpression of the phospho-mimicking mitotic form of CLIMP-63 in interphase cells leads to a collapse of the ER around the nucleus, leaving the microtubular network intact. The results suggest that CLIMP-63-mediated stable anchoring of the ER to microtubules is required to maintain the spatial distribution of the ER during interphase and that this interaction is abolished by phosphorylation of CLIMP-63 during mitosis.  相似文献   

7.
A novel subfamily of Hsp70s in the endoplasmic reticulum   总被引:6,自引:0,他引:6  
  相似文献   

8.
An interaction map of endoplasmic reticulum chaperones and foldases   总被引:1,自引:0,他引:1  
Chaperones and foldases in the endoplasmic reticulum (ER) ensure correct protein folding. Extensive protein-protein interaction maps have defined the organization and function of many cellular complexes, but ER complexes are under-represented. Consequently, chaperone and foldase networks in the ER are largely uncharacterized. Using complementary ER-specific methods, we have mapped interactions between ER-lumenal chaperones and foldases and describe their organization in multiprotein complexes. We identify new functional chaperone modules, including interactions between protein-disulfide isomerases and peptidyl-prolyl cis-trans-isomerases. We have examined in detail a novel ERp72-cyclophilin B complex that enhances the rate of folding of immunoglobulin G. Deletion analysis and NMR reveal a conserved surface of cyclophilin B that interacts with polyacidic stretches of ERp72 and GRp94. Mutagenesis within this highly charged surface region abrogates interactions with its chaperone partners and reveals a new mechanism of ER protein-protein interaction. This ability of cyclophilin B to interact with different partners using the same molecular surface suggests that ER-chaperone/foldase partnerships may switch depending on the needs of different substrates, illustrating the flexibility of multichaperone complexes of the ER folding machinery.  相似文献   

9.
10.
Y Gaudin 《Journal of virology》1997,71(5):3742-3750
Four well-characterized monoclonal antibodies (MAbs) directed against rabies virus glycoprotein (G) were used to study G folding in vivo. Two of the MAbs were able to immunoprecipitate incompletely oxidized folding intermediates. The two others recognized G only after folding was completed. By using these MAbs, the ability of G to undergo low-pH-induced conformational changes during folding was also investigated. It appeared that some domains acquire this ability before folding is completed. In addition, interactions between unfolded G and some of the molecular chaperones were analyzed. Unfolded G was associated with BiP and calnexin. Association with BiP was maximal immediately after the pulse, whereas association with calnexin was maximal after 5 to 10 min of chase. The effects of tunicamycin and castanospermine on chaperone binding and folding were also studied. In the presence of both drugs, calnexin binding was reduced, consistent with the view that calnexin specifically recognizes monoglucosylated oligosaccharides, but some residual binding was still observed, indicating that calnexin also recognizes the polypeptide chain. In the presence of both drugs, association with BiP was increased and prolonged and folding was impaired. However, the global effects of the drugs were different, since folding was much more efficient in the presence of castanospermine than in the presence of tunicamycin. Taken together, these results provide the basis to draw a schematic view of rabies virus glycoprotein folding.  相似文献   

11.
Chlamydiae and chlamydiae‐related organisms are obligate intracellular bacterial pathogens. They reside in a membrane‐bound compartment termed the inclusion and have evolved sophisticated mechanisms to interact with cellular organelles. This review focuses on the nature, the function(s) and the consequences of chlamydiae–inclusion interaction with the endoplasmic reticulum (ER). The inclusion membrane establishes very close contact with the ER at specific sites termed ER–inclusion membrane contact sites (MCSs). These MCSs are constituted of a specific set of factors, including the C. trachomatis effector protein IncD and the host cell proteins CERT and VAPA/B. Because CERT and VAPA/B have a demonstrated role in the non‐vesicular trafficking of lipids between the ER and the Golgi, it was proposed that Chlamydia establish MCSs with the ER to acquire host lipids. However, the recruitment of additional factors to ER–inclusion MCSs, such as the ER calcium sensor STIM1, may suggest additional functions unrelated to lipid acquisition. Finally, chlamydiae interaction with the ER appears to induce the ER stress response, but this response is quickly dampened by chlamydiae to promote host cell survival.  相似文献   

12.
The endoplasmic reticulum (ER) exhibits a characteristic tubular structure that is dynamically rearranged in response to specific physiological demands. However, the mechanisms by which the ER maintains its characteristic structure are largely unknown. Here we show that the integral ER-membrane protein VAP-B causes a striking rearrangement of the ER through interaction with the Nir2 and Nir3 proteins. We provide evidence that Nir (Nir1, Nir2, and Nir3)-VAP-B interactions are mediated through the conserved FFAT (two phenylalanines (FF) in acidic tract) motif present in Nir proteins. However, each interaction affects the structural integrity of the ER differently. Whereas the Nir2-VAP-B interaction induces the formation of stacked ER membrane arrays, the Nir3-VAP-B interaction leads to a gross remodeling of the ER and the bundling of thick microtubules along the altered ER membranes. In contrast, the Nir1-VAP-B interaction has no apparent effect on ER structure. We also show that the Nir2-VAP-B interaction attenuates protein export from the ER. These results demonstrate new mechanisms for the regulation of ER structure, all of which are mediated through interaction with an identical integral ER-membrane protein.  相似文献   

13.
We have studied the post-translational processing and the biosynthetic sorting of three protein components of murine endoplasmic reticulum (ER), ERp60, ERp72, and ERp99. In pulse-labeled MOPC-315 (where MOPC-315 represents mineral oil-induced plasmacytoma cells) plasmacytoma cells, no precursor forms of these proteins were detected and only ERp99 was sensitive to endoglycosidase H. The ERp99 oligosaccharide remained endoglycosidase H sensitive during a 3-h chase, and analysis by high performance liquid chromatography showed the predominant structure to be Man8GlcNAc2. We have used a sucrose gradient analysis of pulse-labeled MOPC-315 plasmacytoma cells in order to directly study the biosynthetic sorting of both glycosylated and nonglycosylated ERps and have found no strong evidence to suggest these proteins ever leave the endoplasmic reticulum. In spite of their common sorting pathway, these proteins differ in their membrane orientation. Both ERp60 and ERp72 are entirely protected by the endoplasmic reticulum membrane while ERp99 appears to have a large domain exposed on the cytoplasmic face of the endoplasmic reticulum.  相似文献   

14.
Association of poliovirus proteins with the endoplasmic reticulum.   总被引:18,自引:15,他引:3       下载免费PDF全文
Poliovirus proteins, except P3-7c, are associated with the endoplasmic reticulum after extraction of the cytoplasm and centrifugation of membranes to equilibrium in sucrose gradients. Proteins P3-2, P2-X, and P3-9 are found preferentially among the rough endoplasmic reticulum, whereas P3-7c is located in smooth endoplasmic reticulum fractions. P3-7c is probably not membrane associated, since it can be separated from membranes after centrifugation in buffer. However, P3-4a, P2-5b, P2-X, and P3-9 are avidly bound to membranes and cannot be dislodged with high-ionic-strength buffer containing EDTA or 4 M urea. These proteins are digested by trypsin, indicating peripheral rather than internal localization.  相似文献   

15.
Recently, endoplasmic reticulum (ER) stress responses have been suggested to play important roles in maintaining various cellular functions and to underlie many tissue dysfunctions. In this study, we first identified cysteine-rich with EGF-like domains 2 (CRELD2) as an ER stress-inducible gene by analyzing a microarray analysis of thapsigargin (Tg)-inducible genes in Neuro2a cells. CRELD2 mRNA is also shown to be immediately induced by treatment with the ER stress-inducing reagents tunicamycin and brefeldin A. In the genomic sequence of the mouse CRELD2 promoter, we found a typical ER stress responsible element (ERSE), which is well conserved among various species. Using a luciferase reporter analyses, we demonstrated that the ERSE in mouse CRELD2 is functional and responds to Tg and ATF6-overexpression. Each mutation of ATF6- or NF-Y-binding sites in the ERSE of the mouse CRELD2 promoter dramatically decreased both the basal activity and responsiveness toward the ER stress stimuli. Our study suggests that CRELD2 could be a novel mediator in regulating the onset and progression of various ER stress-associated diseases.  相似文献   

16.
17.
Transport of proteins from the endoplasmic reticulum (ER) to the Golgi is mediated by the sequential action of two coat complexes: COPII concentrates cargo for secretion at ER export sites, then COPI is subsequently recruited to nascent carriers and retrieves recycling proteins back to the ER. These carriers then move towards the Golgi along microtubules, driven by the dynein/dynactin complexes. Here we show that the Sec23p component of the COPII complex directly interacts with the dynactin complex through the carboxy-terminal cargo-binding domain of p150(Glued). Functional assays, including measurements of the rate of recycling of COPII on the ER membrane and quantitative analyses of secretion, indicate that this interaction underlies functional coupling of ER export to microtubules. Together, our data suggest a mechanism by which membranes of the early secretory pathway can be linked to motors and microtubules for subsequent organization and movement to the Golgi apparatus.  相似文献   

18.
A new protein of feline infectious peritonitis coronavirus (FIPV) was discovered in lysates of [35S]cysteine-labeled infected cells. Expression of open reading frame (ORF) 6b of FIPV in recombinant vaccinia virus-infected cells was used to identify it as the 6b protein. Further characterization revealed that it is a novel type of viral glycoprotein whose function is not clear. It is a soluble protein contained in microsomes; its slow export from the cell is caused by the presence of an endoplasmic reticulum (ER) retention signal at the C terminus. This amino acid sequence, KTEL, closely resembles the consensus KDEL signal of soluble resident ER proteins. A mutant 6b protein with the C-terminal sequence KTEV became resistant to digestion by endo-beta-N-acetylglucosaminidase H with a half-time that was reduced threefold. In contrast, a mutant with the sequence KDEL was completely retained in the ER. The FIPV 6b protein is the first example of a viral protein with a functional KDEL-like ER retention signal.  相似文献   

19.
Sec61β, a subunit of the Sec61 translocon complex, is not essential in yeast and commonly used as a marker of endoplasmic reticulum (ER). In higher eukaryotes, such as Drosophila, deletion of Sec61β causes lethality, but its physiological role is unclear. Here, we show that Sec61β interacts directly with microtubules. Overexpression of Sec61β containing small epitope tags, but not a RFP tag, induces dramatic bundling of the ER and microtubule. A basic region in the cytosolic domain of Sec61β is critical for microtubule association. Depletion of Sec61β induces ER stress in both mammalian cells and Caenorhabditis elegans, and subsequent restoration of ER homeostasis correlates with the microtubule binding ability of Sec61β. Loss of Sec61β causes increased mobility of translocon complexes and reduced level of membrane-bound ribosomes. These results suggest that Sec61β may stabilize protein translocation by linking translocon complex to microtubule and provide insight into the physiological function of ER-microtubule interaction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号