首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several recombinant Escherichia coli strains, including XL1-Blue, JM109, HB101, and DH5alpha harboring a stable high-copynumber plasmid pSYL105 containing the Alcaligenes eutrophus polyhydroxyalkanoate (PHA) biosynthesis genes were constructed. These recombinant strains were examined for their ability to synthesize and accumulate poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] copolymer from glucose and either propionate or valerate. All recombinant E. coli strains could synthesize the P(3HB-co-3HV) copolymer in the medium containing glucose and propionate. However, only the homopolymer poly-(3-hydroxybutyrate) [P(3HB)] was synthesized from glucose and valerate. The PHA concentration and the 3HV fraction could be increased by inducing with acetate and/or oleate. When supplemented with oleate, the 3HV fraction increased by fourfold compared with that obtained without induction. Induction with propionate resulted in lower PHA concentration due to the inhibitory effect, but an 3HV fraction of as high as 33.0% could be obtained. These results suggest that P(3HB-co-3HV) can be efficiently produced from propionate by recombinant E. coli by inducing with acetate, propionate, or oleate. (c) 1996 John Wiley & Sons, Inc.  相似文献   

2.
The recombinant Escherichia coli strain, equipped with the newly cloned Aeromonas PHA biosynthesis genes, could produce a terpolymer of 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), and 3-hydroxyhexanoate (3HHx) [P(3HB-co-3HV-co-3HHx)] from dodecanoic acid plus odd carbon number fatty acid. In addition, the orf1 gene of Aeromonas hydrophila was found to play a critical role in assimilating the 3HV monomer and in regulating the monomer fraction in the terpolymer.  相似文献   

3.
A number of taxonomically-related bacteria have been identified which accumulate poly(hydroxyalkanoate) (PHA) copolymers containing primarily 3-hydroxyvalerate (3HV) monomer units from a range of unrelated single carbon sources. One of these, Rhodococcus sp. NCIMB 40126, was further investigated and shown to produce a copolymer containing 75 mol% 3HV and 25 mol% 3-hydroxybutyrate (3HB) from glucose as sole carbon source. Polyesters containing both 3HV and 3HB monomer units, together with 4-hydroxybutyrate (4HB), 5-hydroxyvalerate (5HV) or 3-hydroxyhexanoate (3HHx), were also produced by this organism from certain accumulation substrates. With valeric acid as substrate, almost pure (99 mol% 3HV) poly(3-hydroxyvalerate) was produced. N.m.r. analysis confirmed the composition of these polyesters. The thermal properties and molecular weight of the copolymer produced from glucose were comparable to those of PHB produced by Alcaligenes eutrophus.  相似文献   

4.
Manna A  Paul AK 《Biodegradation》2000,11(5):323-329
Poly(3-hydroxybutyrate) [P(3HB)] test-pieces prepared from the polymer produced by Azotobacter chroococcum were degraded in natural environments like soil, water, compost and sewage sludge incubated under laboratory conditions. Degradation in terms of % weight loss of the polymer was maximum (45%) in sewage sludge after 200 days of incubation at 30°C. The P(3HB)-degrading bacterial cultures (36) isolated from degraded test-pieces showed different degrees of degradation in polymer overlayer method. The extent of P(3HB) degradation increases up to 12 days of incubation and was maximum at 30°C for majority of the cultures. For most efficient cultures the optimum concentration of P(3HB) for degradation was 0.3% (w/v). Supplementation of soluble carbon sources like glucose, fructose and arabinose reduced the degradation while it was almost unaffected with lactose. Though the cultures degraded P(3HB) significantly, they were comparatively less efficient in utilizing copolymer of 3-hydroxybutyrate and 3-hydroxyvalerate [P(3HB-co-3HV)].  相似文献   

5.
Lipopolysaccharides free P[3-hydroxybutyrate (3HB)-co-3-hydroxyvalerate (3HV)] production was achieved using recombinant Corynebacterium glutamicum harboring polyhydroxyalkanoate (PHA) biosynthetic genes from Ralstonia eutropha. Cells grown on glucose with feeding of propionate as a precursor of 3HV unit accumulated 8-47 wt% of P(3HB-co-3HV). The 3HV fraction in the copolymer was varied from 0 to 28 mol% depending on the propionate concentrations.  相似文献   

6.
Degradation of poly(3-hydroxybutyrate) by soil streptomycetes   总被引:1,自引:0,他引:1  
The ability of 64 soil streptomycetes to degrade poly(3-hydroxybutyrate) [P(3HB)] was evaluated on Pridham and Lyons mineral salts agar medium overlayered with the same medium containing 0.2% P(3HB). The streptomycete isolates were grown on this overlayered medium and the degradation was detected by the formation of clear zone surrounding the growth. Four potent degrader isolates identified as species of Streptomyces were selected. Degradation of P(3HB) by these isolates was studied for a period of 8 days. The rate of degradation increased with increase in concentration of P(3HB) in the medium while it decreased with the supplementation of readily utili- zable carbon sources like glucose, fructose and sucrose. All four isolates also degraded the copolymer of 3-hydroxybutyrate and 3-hydroxyvalerate [P(3HB–co–3HV)] in solid medium but to a lesser extent. However, the isolates were equally efficient in degrading P(3HB) in liquid medium.  相似文献   

7.
In vitro and in situ enzymatic polymerization of polyhydroxyalkanoate (PHA) on two hydrophobic surfaces, a highly oriented pyrolytic graphite (HOPG) and an alkanethiol self-assembled monolayer (SAM), was studied by atomic force microscopy (AFM) and quartz crystal microbalance (QCM), using purified Ralstonia eutropha PHA synthase (PhaC(Re)) as a biocatalyst. (R)-Specific enoyl-CoA hydratase was used to prepare R-enantiomer monomers [(R)-3-hydroxyacyl-CoA] with an acyl chain length of 4-6 carbon atoms. PHA homopolymers with different side-chain lengths, poly[(R)-3-hydroxybutyrate] [P(3HB)] and poly[(R)-3-hydroxyvalerate] [P(3HV)] were successfully synthesized from such R-enantiomer monomers on HOPG substrates. After the reaction, the surface morphologies were analyzed by AFM, revealing a nanometer thick PHA film. The same biochemical polymerization process was observed on an alkanethiol (C18) SAM surface fabricated on a gold electrode using QCM. This analysis showed that a complex sequence of PhaC(Re) adsorption and PHA polymerization has occurred on the hydrophobic surface. On the basis of these observations, the possible mechanisms of the PhaC(Re)-catalyzed polymerization reaction on the surface of hydrophobic substrates are proposed.  相似文献   

8.
A new method to estimate the number of polyhydroxyalkanoates (PHA)-degraders in soil and to isolate degraders, called the film-MPN method, is proposed. The incubation time was measured by the first order reaction (FOR) model. This method was used to estimate numbers of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)[P(3HB-co-3HV)]- and poly(3-hydroxyvalerate-co-4-hydroxybutyrate)[P(3HB-co-4HB)]-degraders in garden soil (4.30 × 105 and 2.15 × 105 aerobic degraders per gram of dry soil, respectively). The number of P(3HB-co-3HV)-degraders in paddy field soil was 5.06 × 105 aerobic degraders per gram dry soil. Also, several P(3HB-co-3HV)-degraders were isolated directly from positive-growth tubes of high dilution.  相似文献   

9.
The combination of plant oils and 3-hydroxyvalerate (3HV) precursors were evaluated for the biosynthesis of polyhydroxyalkanoate (PHA) copolymers containing 3HV monomers by Cupriavidus necator H16. Among various mixtures of plant oils and 3HV-precursors, the mixture of palm kernel oil and sodium propionate was suitable for the biosynthesis of high concentration of PHA (6.8gL(-1)) containing 7mol% of 3HV. The 3HV monomer composition can be regulated in the range of 0-23mol% by changing culture parameters such as the initial pH, and the nitrogen source and its concentration. PHA copolymers with high weight-average molecular weights (Mw) ranging from 1,400,000 to 3,100,000Da were successfully produced from mixtures of plant oils and 3HV-precursors. The mixture of plant oils and sodium propionate resulted in PHA copolymers with higher M(w) compared to the mixture of plant oils and sodium valerate. DSC analysis on the PHA containing 3HV monomers showed the presence of two distinct melting temperature (Tm), which indicated that the PHA synthesized might be a blend of P(3HB) and P(3HB-co-3HV). Sodium propionate appears to be the better precursor of 3HV than sodium valerate.  相似文献   

10.
AIMS: Burkholderia sp. USM (JCM15050) isolated from oil-polluted wastewater is capable of utilizing palm oil products and glycerol to synthesize poly(3-hydroxybutyrate) [P(3HB)]. To confer the ability to produce polymer containing 3-hydroxyhexanoate (3HHx), plasmid (pBBREE32d13) harbouring the polyhydroxyalkanoate (PHA) synthase gene of Aeromonas caviae (phaC(Ac)) was transformed into this strain. Methods and Results: The resulting transformant incorporated approximately 1 ± 0·3 mol% of 3HHx in the polymer when crude palm kernel oil (CPKO) or palm kernel acid oil was used as the sole carbon source. In addition, when the transformed strain was cultivated in the mixtures of CPKO and sodium valerate, PHA containing 69 mol% 3HB, 30 mol% 3-hydroxyvalerate and 1 mol% 3HHx monomers was produced. Batch feeding of carbon sources with 0·5% (v/v) CPKO at 0 h and 0·25% (w/v) sodium valerate at 36 h yielded 6 mol% of 3HHx monomer by controlled-feeding strategies. CONCLUSIONS: Burkholderia sp. USM (JCM15050) has the metabolic pathways to supply both the short-chain length (SCL) and medium-chain length (MCL) PHA monomers. By transforming the strain with the Aer. caviae PHA synthase with broader substrate specificity, SCL-MCL PHA was produced. Significance and Impact of the Study: This is the first study demonstrating the ability of transformant Burkholderia to produce P(3HB-co-3HHx) from a single carbon source.  相似文献   

11.
Summary Poly(3-hydroxybutyrate) [P(3HB)] depolymerase was purified from a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)]-degrading fungus, Paecilomyces lilacinus F4-5 by hydrophobic and ion exchange column chromatography, and showed a molecular mass of 45 kDa. The optimum temperature and pH of the P(3HB) depolymerase were 50 °C and 7.0, respectively. The enzyme was stable for at least 30 min at temperatures below 40 °C, while the activity abruptly decreased over 55 °C. Enzymatic P(3HB-co-3HV) degradation showed a similar degradation pattern to that of film overlaid by fungal hyphae. It reflects that the fungal degradation of P(3HB-co-3HV) in soil is mainly caused by extracellular depolymerases.  相似文献   

12.
The objective of the present study was to investigate the ability of Cupriavidus necator to produce poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) on various carbon sources in batch cultivation. These results show that C. necator produces poly-3-hydroxybutyrate from single carbon sources. The highest poly-3-hydroxybutyrate (P3HB) content was achieved at growth on fructose in the exponential growth phase. The maximum yield of the P3HV content was obtained when fructose was mixed with acetate. The highest content P3HB-co-3HV was also achieved by C. necator when we supplied C-excess and N- and P-normal conditions. These results indicate that C. necator accumulates high polyhydroxyalkanoates (PHA) content by depleting these elements in the culture medium. Nitrogen and phosphorus limitation has no significant effect on the PHA production, whereas C-excess leads to an increase in PHA formation of up to 92% PHAs of cell dry weight after growth on 5 g/L acetate and 40 g/L fructose.  相似文献   

13.
A rapid quantitative measurement of accumulated polyhydroxyalkanoate (PHA) is essential for rapid monitoring of PHA production by microorganisms. In the present study, a 96-well microplate was used as a high throughput means to measure the fluorescence intensity of the Nile red stained cells containing PHA. The linear correlation obtained between intracellular PHA concentration and the fluorescence intensity represents the potential of the Nile red method employment to determine PHA concentration. The optimal ranges of excitation and emission wavelengths were determined using bacterial cells containing different types of PHAs, of different co-monomers and compositions. Interestingly, in spite of different co-monomers compositions in each PHA, all tested PHAs fluoresced maximally at excitation wavelength between 520 and 550 nm, and emission wavelength between 590 and 630 nm. The developed staining method also had successfully demonstrated a good correlation between the amount of accumulated PHA based on the fluorescence intensity measurements and that from chromatographic analysis to evaluate poly(3-hydroxybutyrate) [P(3HB)], poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)], poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] and poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) [P(3HB-co-3HV-co-4HB)], using the same calibration curve, despite of different co-monomers that the PHA consist. Strongly supported by these experimental results, it can therefore be concluded that the developed staining method can be efficiently applied for rapid monitoring of PHA production.  相似文献   

14.
A novel copolymer that consisted of 3-hydroxyvalerate and 4-hydroxybutyrate, P(3HV-co-4HB), was synthesized in Hydrogenophaga pseudoflava by growing it in media containing gamma-valerolactone and gamma-butyrolactone as a carbon source. The monomer ratio in the copolymer was changed by altering the feed ratio of the two lactones. The cultivation technique was composed of three steps: the first-step for high cell production in Luria-Bertani medium, the second-step for intracellular degrading removal of poly(3-hydroxybutyrate) (P(3HB)), which was formed in the first step, by culturing the cells in carbon-source-free medium, and the final step for accumulation of P(3HV-co-4HB) in a mixed lactone medium. All the P(3HV-co-4HB) copolymers contained less than 1 mol % of 3HB unit. These copolymers were characterized by NMR spectroscopy, differential scanning calorimetry, wide-angle X-ray diffraction, and first-order kinetic analysis of intracellular degradation. The copolymer with an approximately equal ratio of the comonomers was found amorphous. The NMR microstructural analysis showed that the copolymers contained appreciable amounts of 3HV-rich or 4HB-rich chains. The (13)C NMR splitting patterns associated with the four carbons in the 4HB unit of P(3HV-co-4HB) bear close resemblance to those observed in the 4HB unit of P(3HB-co-4HB). The signals arising from the carbons in the 3HV unit of P(3HV-co-4HB) split in a manner similar to those in the 3HB unit of P(3HB-co-4HB). Thus the sequences were assigned by comparing the NMR splittings for P(3HV-co-4HB) with those for P(3HB-co-4HB) and P(3HB-co-3HV). The sequence assignment was further checked by comparing the signal intensities before and after degradation of the copolymers. This was considered reasonable because the H. pseudoflava intracellular PHA depolymerase is more specific to the 3HV unit than to the 4HB unit, which was also confirmed by the higher degradation rate constant for the 3HV unit in the first-order kinetic analysis.  相似文献   

15.
A new method to estimate the number of polyhydroxyalkanoates (PHA)-degraders in soil and to isolate degraders, called the film-MPN method, is proposed. The incubation time was measured by the first order reaction (FOR) model. This method was used to estimate numbers of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)[P(3HB-co-3HV)]- and poly(3-hydroxyvalerate-co-4-hydroxybutyrate)[P(3HB-co-4HB)]-degraders in garden soil (4.30 x 10(5) and 2.15 x 10(5) aerobic degraders per gram of dry soil, respectively). The number of P(3HB-co-3HV)-degraders in paddy field soil was 5.06 x 10(5) aerobic degraders per gram dry soil. Also, several P(3HB-co-3HV)-degraders were isolated directly from positive-growth tubes of high dilution.  相似文献   

16.
Copolyesters of 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) were produced by Burkholderia cepacia D1 at 30°C in nitrogen-free culture solutions containing n-butyric acid and/or n-valeric acid. When n-valeric acid was used as the sole carbon source, the 3HV fraction in copolyester increased from 36 to 90 mol% as the concentration of n-valeric acid in the culture solution increased from 1 to 20 g/l. The addition of n-butyric acid to the culture solution resulted in a decrease in the 3HV fraction in copolyester. The copolymers biosynthesized by this method were mixtures of random copolymers having a wide variety of composition of the 3HV component. The melting points of the fractionated copolymers show a concave curve with the minimum at the 3HV content of ≈40 mol%. The a-parameter of lattice indices of the P(3HB) crystal for the fractionated copolymers largely increased as the 3HV composition increased. Biodegradability of the copolymer increased with the lower content of 3HV composition and/or the lower crystallinity.  相似文献   

17.
The paper deals with the study of the synthesis of 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) copolymers by the bacterium Ralstonia eutropha B-5786 grown under different carbon nutrition conditions (growth on carbon dioxide, fructose, and CO2-valerate and fructose-valerate mixtures). The parameters to be analyzed included the yield of biomass, the yield, synthesis rate, and composition of copolymers, the activity of the key enzymes of polyhydroxyalkanoate (PHA) synthesis (beta-ketothiolase, acetoacetyl-CoA reductase, and PHA synthase), the maximum tolerable concentration of valerate to the bacterium, and the conditions that govern the incorporation of hydroxyvalerate to copolymers. This allowed the relationship between cultivation conditions and the proportion of monomers in the copolymers to be deduced. We were able to synthesize a range of 3HB/3HV copolymers and found that the thermal characteristics and the degree of crystallinity of these copolymers depend on the molar fraction of 3HV.  相似文献   

18.
Interesting morphologies were observed when Comamonas acidovorans containing polyhydroxyalkanoates (PHA) of various compositions was freeze-fractured at temperatures far below the glass transition temperatures of PHA. In vivo granules of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) comparatively showed the most ductility, and could be stretched extensively. Contrary to the uniform needle-type deformation shown by the poly(3-hydroxybutyrate) homopolymer when fractured at -110 degrees C, copolymers containing 3-hydroxyvalerate units showed various deformation structures. Similar observations were made when in vivo granules of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) were freeze-fractured, although the ductility of the latter was much reduced. In addition, it was found that fracturing at -160 degrees C resulted in decreased ductility of the PHA granules with the concomitant increase in the number of mushroom-type deformation structures. Our results suggest that PHA granules with higher resistance to freeze-fracture deformation show less ductility, and therefore produce the mushroom-type morphology. This is the first report on the freeze-fracture morphology of PHA copolymers containing short-chain-length monomers.  相似文献   

19.
A locally isolated Gram negative bacterium, Cupriavidus sp. USMAA9-39 was able to produce various types of biodegradable polyesters through a two-step cultivation process. These are copolymer poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)], copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] and terpolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) [P(3HB-co-3HV-co-4HB)]. These polymers were synthesized by this bacterium when grown with a combination of some carbon sources. The biosynthesis of P(3HB-co-4HB) was achieved by using carbon sources such as γ-butyrolactone or 1,4-butanediol or by a combination of oleic acid with either γ-butyrolactone or 1,4-butanediol. Meanwhile, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) was produced using 1-pentanol or valeric acid or by a combination of oleic acid with either 1-pentanol or valeric acid. When γ-butyrolactone or 1,4-butanediol with either valeric acid or 1-pentanol were used as mixed carbon sources, P(3HB-co-3HV-co-4HB) terpolymer were produced. The presence of 3HB, 3HV or/and 4HB monomers were confirmed by gas chromatography and nuclear magnetic resonance (NMR) spectroscopy.  相似文献   

20.
Saturation point mutagenesis was carried out at position 479 in the polyhydroxyalkanoate (PHA) synthase from Chromobacterium sp. strain USM2 (PhaCCs) with specificities for short-chain-length (SCL) [(R)-3-hydroxybutyrate (3HB) and (R)-3-hydroxyvalerate (3HV)] and medium-chain-length (MCL) [(R)-3-hydroxyhexanoate (3HHx)] monomers in an effort to enhance the specificity of the enzyme for 3HHx. A maximum 4-fold increase in 3HHx incorporation and a 1.6-fold increase in PHA biosynthesis, more than the wild-type synthase, was achieved using selected mutant synthases. These increases were subsequently correlated with improved synthase activity and increased preference of PhaCCs for 3HHx monomers. We found that substitutions with uncharged residues were beneficial, as they resulted in enhanced PHA production and/or 3HHx incorporation. Further analysis led to postulations that the size and geometry of the substrate-binding pocket are determinants of PHA accumulation, 3HHx fraction, and chain length specificity. In vitro activities for polymerization of 3HV and 3HHx monomers were consistent with in vivo substrate specificities. Ultimately, the preference shown by wild-type and mutant synthases for either SCL (C4 and C5) or MCL (C6) substrates substantiates the fundamental classification of PHA synthases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号