首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The effects of dopamine on pituitary prolactin secretion and pituitary cyclic AMP accumulation were studied by using anterior pituitary glands from adult female rats, incubated in vitro. During 2h incubations, significant inhibition of prolactin secretion was achieved at concentrations between 1 and 10nm-dopamine. However, 0.1–1μm-dopamine was required before a significant decrease in pituitary cyclic AMP content was observed. In the presence of 1μm-dopamine, pituitary cyclic AMP content decreased rapidly to reach about 75% of the control value within 20min and there was no further decrease for at least 2h. Incubation with the phosphodiesterase inhibitors theophylline (8mm) or isobutylmethylxanthine (2mm) increased pituitary cyclic AMP concentrations 3- and 6-fold respectively. Dopamine (1μm) had no effect on the cyclic AMP accumulation measured in the presence of theophylline, but inhibited the isobutylmethylxanthine-induced increase by 50%. The dopamine inhibition of prolactin secretion was not affected by either inhibitor. Two derivatives of cyclic AMP (dibutyryl cyclic AMP and 8-bromo cyclic AMP) were unable to block the dopamine (1μm) inhibition of prolactin secretion, although 8-bromo cyclic AMP (2mm) significantly stimulated prolactin secretion and both compounds increased somatotropin (growth hormone) release. Cholera toxin (3μg/ml for 4h) increased pituitary cyclic AMP concentrations 4–5-fold, but had no effect on prolactin secretion. The inhibition of prolactin secretion by dopamine was unaffected by cholera toxin, despite the fact that dopamine had no effect on the raised pituitary cyclic AMP concentration caused by this factor. Dopamine had no significant effect on either basal or stimulated somatotropin secretion under any of the conditions tested. We conclude that the inhibitory effects of dopamine on prolactin secretion are probably not mediated by lowering of cyclic AMP concentration, although modulation of the concentration of this nucleotide in some other circumstances may alter the secretion of the hormone.  相似文献   

2.
A protein-binding radioassay for cyclic AMP was modified to detect less than 0.025pmol of the nucleotide. The method was applied to the measurement of cyclic AMP in small numbers of mouse pancreatic islets (as little as 25μg of tissue) by use of barium acetate–H2SO4 for deproteinization. The concentration of cyclic AMP in mouse islets incubated in media containing 3.3 or 20mm-glucose was 0.016pmol/10 islets (approx. 1μm in intracellular water). Glucose concentration (3.3 or 20mm) had no detectable effect on islet concentrations of cyclic AMP with periods of incubation or perifusion ranging from 0.5 to 60min, although insulin release rate was rapidly increased by 20mm-glucose. Caffeine (5mm) or 3-isobutyl-1-methylxanthine (1mm), which are known inhibitors of islet cyclic AMP phosphodiesterase, produced marked and rapid increases in islet cyclic AMP concentration at 3.3 or 20mm-glucose, but only enhanced the insulin release rate at the higher glucose concentration. The role of cyclic AMP in insulin release induced by glucose is discussed.  相似文献   

3.
1. The `30s' and `50s' ribosomes from ribonuclease-active (Escherichia coli B) and -inactive (Pseudomonas fluorescens and Escherichia coli MRE600) bacteria have been studied in the ultracentrifuge. Charge anomalies were largely overcome by using sodium chloride–magnesium chloride solution, I 0·16, made 0–50mm with respect to Mg2+. 2. Differentiation of enzymic and physical breakdown at Mg2+ concentrations less than 5mm was made by comparing the properties of E. coli B and P. fluorescens ribosomes. 3. Ribonuclease-active ribosomes alone showed a transformation of `50s' into 40–43s components. This was combined with the release of a small amount of `5s' material which may be covalently bound soluble RNA. Other transformations of the `50s' into 34–37s components were observed in both ribonuclease-active and -inactive ribosomes at 1·0–2·5mm-Mg2+, and also with E. coli MRE600 when EDTA (0·2mm) was added to a solution in 0·16m-sodium chloride. 4. Degradation of ribonuclease-active E. coli B ribosomes at Mg2+ concentration 0·25mm or less was coincident with the formation of 16s and 21s ribonucleoprotein in P. fluorescens, and this suggested that complete dissociation of RNA from protein was not an essential prelude to breakdown of the RNA by the enzyme. 5. As high Cs+/Mg2+ ratios cause ribosomal degradation great care is necessary in the interpretation of equilibrium-density-gradient experiments in which high concentrations of caesium chloride or similar salts are used. 6. The importance of the RNA moiety in understanding the response of ribosomes to their ionic environment is discussed.  相似文献   

4.
Two major peaks of RNA polymerase activity have been routinely separated by diethylaminoethyl cellulose chromatography following solubilization from soybean (Glycine max L. var. Wayne) chromatin. The relative amounts of these two peaks depend upon the manner in which the chromatin is purified. Pelleting the chromatin through dense sucrose solutions results in not only a loss of total solubilized RNA polymerase activity but also a selective loss of the α-amanitin-sensitive form of the enzyme. Peak I elutes from a diethylaminoethyl cellulose column at a KCl concentration of approximately 0.27 m, is insensitive to α-amanitin and rifamycin, and has Mg2+ + Mn2+ optima of 5 mm and 1.25 mm, respectively. The enzyme is inhibited by KCl concentrations of about 0.03 m or greater. Peak II elutes from the column at a KCl concentration of approximately 0.35 m, is sensitive to α-amanitin, insensitive to rifamycin, and has Mg2+ + Mn2+ optima of 2 mm and 1.0 mm, respectively. Activity is inhibited by KCl concentrations of about 0.06 m or greater. Both enzymes prefer denatured calf thymus DNA, but peak II exhibits a stronger preference.  相似文献   

5.
Vessal M  Hassid WZ 《Plant physiology》1973,51(6):1055-1060
d-Glucosamine-6-P N-acetyltransferase (EC 2.3.1.4) from mung bean seeds (Phaseolus aureus) was purified 313-fold by protamine sulfate and isoelectric precipitation, ammonium sulfate and acetone fractionation, and CM Sephadex column chromatography. The partially purified enzyme was highly specific for d-glucosamine-6-P. Neither d-glucosamine nor d-galactosamine could replace this substrate. The partially purified enzyme preparation was inhibited up to 50% by 2 × 10−2m EDTA, indicating the requirement of a divalent cation. Among divalent metal ions tested, Mg2+ was required for maximum activity of the enzyme. Mn2+ and Zn2+ were inhibitory, while Co2+ had no effect on the enzyme activity. The pH optimum of the enzyme in sodium acetate and sodium citrate buffers was found to be 5.2. The effect of Mg2+ on the enzyme in sodium acetate and sodium citrate buffers was particularly noticeable in the range of optimum pH. Km values of 15.1 × 10−4m and 7.1 × 10−4m were obtained for d-glucosamine-6-P and acetyl CoA, respectively. The enzyme was completely inhibited by 1 × 10−4mp-hydroxymercuribenzoate, and this inhibition was partially reversed by l-cysteine; indicating the presence of sulfhydryl groups at or near the active site of the enzyme.  相似文献   

6.
A nuclear protein kinase that shows a high degree of substrate specificity for the phosphorylation of the acidic proteins casein, phosvitin and non-histone chromatin proteins, rather than the basic proteins histones and protamine, was partially purified from lactatingrat mammary gland. The enzyme is associated with the acidic protein fraction of chromatin. Nuclear kinase requires Co2+ for activity, and other bivalent cations such as Mg2+ and Mn2+ can substitute partially for Co2+. The kinase is further activates (2–3-fold) by various salts, their concentration for maximum stimulation being: NaCl, 150mm; KCl, 200mm; sodium acetate, 300mm. The sedimentation coefficient of the nuclear kinase is 8.9S and its mol.wt. is approx. 300000 by gel-exclusion chromatography. The enzyme is not activated by cyclic AMP or cyclic GMP and is inhibited neither by the regulatory subunit of mammary cyclic AMP-dependent protein kinase nor by the heat-stable protein kinase inhibitor from ox heart. Analysis of 32P-labelled protein products reveals that the kinase transfers the terminal phosphate of ATP to serine and threonine residues of proteins. The enzyme, however, has specificity for the phosphorylation of threonine in casein and serine in phosvitin. Molecular size and enzymic characteristics of the nuclear protein kinase are clearly different from those of the cytosol enzyme previously characterized.  相似文献   

7.
O'neal D  Joy KW 《Plant physiology》1974,54(5):773-779
Purified glutamine synthetase from pea seedlings was most active with Mg2+ as the metal activator, but Mn2+ and Co2+ were 45 to 60% and 30 to 45% as effective, respectively, when assayed at the optimal pH for each cation. The Mg2+ saturation curve was quite sigmoid, and evidence indicates that MgATP is the active ATP substance. Co2+ also gave a sigmoidal saturation curve, but when Mn2+ was varied only slightly sigmoidal kinetics were seen. Addition of Mn2+, Ca2+, or Zn2+ at low concentrations sharply inhibited the Mg2+ -dependent activity, partially by shifting the pH optimum. Addition of Co2+ did not inhibit Mg2+-dependent activity. The nucleotide triphosphate specificity changed markedly when Co2+ or Mn2+ replaced Mg2+. Using the Mg2+-dependent assay, the Michaelis constant (Km) for NH4+ was about 1.9 × 10−3 M. The Km for l-glutamate was directly proportional to ATP concentration and ranged from 3.5 to 12.4 mm with the ATP levels tested. The Km for MgATP also varied with the l-glutamate concentration, ranging from 0.14 mm to 0.65 mm. Ethylenediaminetetracetic acid activated the enzyme by up to 54%, while sulfhydryl reagents gave slight activation, occasionally up to 34%.  相似文献   

8.
1. The kinetic properties of the soluble and particulate hexokinases from rat heart have been investigated. 2. For both forms of the enzyme, the Km for glucose was 45μm and the Km for ATP 0·5mm. Glucose 6-phosphate was a non-competitive inhibitor with respect to glucose (Ki 0·16mm for the soluble and 0·33mm for the particulate enzyme) and a mixed inhibitor with respect to ATP (Ki 80μm for the soluble and 40μm for the particulate enzyme). ADP and AMP were competitive inhibitors with respect to ATP (Ki for ADP was 0·68mm for the soluble and 0·60mm for the particulate enzyme; Ki for AMP was 0·37mm for the soluble and 0·16mm for the particulate enzyme). Pi reversed glucose 6-phosphate inhibition with both forms at 10mm but not at 2mm, with glucose 6-phosphate concentrations of 0·3mm or less for the soluble and 1mm or less for the particulate enzyme. 3. The total activity of hexokinase in normal hearts and in hearts from alloxan-diabetic rats was 21·5μmoles of glucose phosphorylated/min./g. dry wt. of ventricle at 25°. The temperature coefficient Q10 between 22° and 38·5° was 1·93; the ratio of the soluble to the particulate enzyme was 3:7. 4. The kinetic data have been used to predict rates of glucose phosphorylation in the perfused heart at saturating concentrations of glucose from measured concentrations of ATP, glucose 6-phosphate, ADP and AMP. These have been compared with the rates of glucose phosphorylation measured with precision in a small-volume recirculation perfusion apparatus, which is described. The correlation between predicted and measured rates was highly significant and their ratio was 1·07. 5. These findings are consistent with the control of glucose phosphorylation in the perfused heart by glucose 6-phosphate concentration, subject to certain assumptions that are discussed in detail.  相似文献   

9.
1. Rat-liver mitochondria showed a decrease in amino acid production after preparation in 0·25m-sucrose containing EDTA (1mm), but an increase in water content. When EDTA was replaced by Mn2+ (1mm) or succinate (1mm), both amino acid production and water content were lowered, whereas preparation in 0·9% potassium chloride caused an increase in both. 2. Amino acid production by rat-liver homogenates prepared in 0·9% potassium chloride or 0·25m-sucrose was similar (qamino acid 0·047 and 0·042 respectively aerobically). After freezing-and-thawing qamino acid values were approximately doubled, and approached that of a homogenate prepared in water. 3. All cations tested inhibited amino acid production by mitochondria, Hg2+ and Zn2+ being the most effective in tris–hydrochloric acid buffer. In phosphate buffer Mg2+ and Mn2+ had no effect. Of the anions tested only pyrophosphate and arsenate had any inhibitory effect at final concn. 1mm. 4. Iodosobenzoate (1mm) and p-chloromercuribenzenesulphonate (1mm) inhibited mitochondrial amino acid production by 70–80%, whereas soya-bean trypsin inhibitor, EDTA and di-isopropyl phosphorofluoridate inhibited by a maximum of 30%. Respiratory inhibitors had no effect. 5. Rat-liver homogenate and subcellular fractions each showed an individual pattern of inhibition when a series of inhibitors was tested. 6. Amino acid production by mitochondria was decreased by up to 50% in the presence of oxidizable substrate, apart from α-glycerophosphate and palmitate, which had no effect. CoA stimulated amino acid production in tris–hydrochloric acid but not in phosphate buffer, α-oxoglutarate abolishing the stimulation. 7. Cysteine and glutathione stimulated amino acid production by whole mitochondria by 30%, but only reduced glutathione stimulated production in broken mitochondria. 8. Adrenocorticotrophic hormone and growth hormone stimulated mitochondrial amino acid production by 21–24%, whereas insulin inhibited production by 25%. 9. Coupled oxidative phosphorylation increased amino acid production by up to 154% at 25° and 40°. The increase was abolished by 2,4-dinitrophenol. 10. Amino acid incorporation in mitochondria was accompanied by an increase in amino acid production, both being decreased by chloramphenicol. 11. Mitochondrial production of ninhydrin-positive material was increased in the presence of albumin. The biggest increase was noted for the soluble fraction of broken mitochondria. No increase was found in the presence of 14C-labelled algal protein or denatured mitochondrial protein.  相似文献   

10.
Optimal activity of chromatin-bound RNA polymerase from soybeans is obtained with 1 mm Mn2−, but only when high ionic strength or polyamines are included in the medium. Such inclusion does not increase the Mg2+ activation of the polymerase, but it does lower the concentration needed for optimum activity from 10 mm to 1 mm. Mg2− activation is inhibited by added Mn2+, and the inhibition is relieved by high ionic strength or spermidine. The RNA polymerase with either cation is almost entirely polymerase I at low and high ionic strength as evidenced by insensitivity to α-amanitin. Treatment of soybean seedlings with 2,4-dichlorophenoxyacetic acid does not change these characteristics; although the activity rises 3- to 4-fold.  相似文献   

11.
Ca 2+ -specific removal of Z lines from rabbit skeletal muscle   总被引:15,自引:6,他引:9  
Removal of rabbit psoas strips immediately after death and incubation in a saline solution containing 1 mM Ca2+ and 5 nM Mg2+ for 9 hr at 37°C and pH 7.1 causes complete Z-line removal but has no ultrastructurally detectable effect on other parts of the myofibril. Z lines remain ultrastructurally intact if 1 mM 1,2-bis-(2-dicarboxymethylaminoethoxy)-ethane (EGTA) is substituted for 1 mM Ca2+ and the other conditions remain unchanged. Z lines are broadened and amorphous but are still present after incubation for 9 hr at 37°C if 1 mM ethylenediaminetetraacetate (EDTA) is substituted for 1 mM Ca2+ and 5 mM Mg2+ in the saline solution. A protein fraction that causes Z-line removal from myofibrils in the presence of Ca2+ at pH 7.0 can be isolated by extraction of ground muscle with 4 mM EDTA at pH 7.0–7.6 followed by isoelectric precipitation and fractionation between 0 and 40% ammonium sulfate saturation. Z-line removal by this protein fraction requires Ca2+ levels higher than 0.1 mM, but Z lines are removed without causing any other ultrastructurally detectable degradation of the myofibril. This is the first report of a protein endogenous to muscle that is able to catalyze degradation of the myofibril. The very low level of unbound Ca2+ in muscle cells in vivo may regulate activity of this protein fraction, or alternatively, this protein fraction may be localized in lysosomes.  相似文献   

12.
Sperm from several invertebrates contained guanylate cyclase activity several-hundred-fold greater than that in the most active mammalian tissues; the enzyme was totally particulate. Activity in the presence of Mn2+ was up to several hundred-fold greater than with Mg2+ and was increased 3–10-fold by Triton X-100. Sperm from several vertebrates did not contain detectable guanylate cyclase. Sperm of both invertebrates and vertebrates contained roughly equal amounts of Mn2+-dependent adenylate cyclase activity; in invertebrate sperm, this enzyme was generally several hundred-fold less active than guanylate cyclase. Adenylate cyclase was particulate, was unaffected by fluoride, and was generally greater than 10-fold more active with Mn2+ than with Mg2+. Invertebrate sperm contained phosphodiesterase activities against 1.0 μm cyclic GMP or cyclic AMP in amounts greater than mammalian tissues. Fish sperm, which did not contain guanylate cyclase, had high phosphodiesterase activity with cyclic AMP as substrate but hydrolyzed cyclic GMP at a barely detectable rate. In sea urchin sperm, phosphodiesterase activity against cyclic GMP was largely particulate and was strongly inhibited by 1.0% Triton X-100. In contrast, activity against cyclic AMP was largely soluble and was weakly inhibited by Triton. The cyclic GMP and cyclic AMP contents of sea urchin sperm were in the range of 0.1–1 nmol/g. Sea urchin sperm homogenates possessed protein kinase activity when histone was used as substrate; activities were more sensitive to stimulation by cyclic AMP than by cyclic GMP.5  相似文献   

13.
A Ca2+-dependent cyclic nucleotide phosphodiesterase has been partially purified from extracts of porcine brain by column chromatography on Sepharose 6 B containing covalently linked protamine residues, ammonium sulfate salt fractionation, and ECTEOLA-cellulose column chromatography. The resultant preparation contained a single form of cyclic nucleotide phosphodiesterase activity by the criteria of isoelectric focusing, gel filtration chromatography on Sephadex G-200, and electrophoretic migration on polyacrylamide gels. When fully activated by the addition of Ca2+ and microgram quantities of a purified Ca2+-binding protein (CDR), the phosphodiesterase hydrolyzed both adenosine 3′,5′-monophosphate (cyclic AMP) and guanosine 3′,5′-monophosphate (cyclic GMP), with apparent Km values of 180 and 8 μm, respectively. Approximately 15% of the total enzymic activity was present in the absence of added CDR and Ca2+. This activity exhibited apparent Km values for the two nucleotides identical to those observed for the maximally activated enzyme. Competitive substrate kinetics and heat destabilization studies demonstrated that both cyclic nucleotides were hydrolyzed by the same phosphodiesterase. The purified enzyme was identical to a Ca2+-dependent phosphodiesterase present in crude extract by the criteria of gel filtration chromatography, polyacrylamide-gel electrophoresis, and kinetic behavior.Apparent Km values of the Ca2+-dependent phosphodiesterase for cyclic AMP and cyclic GMP were lowered more than 20-fold as CDR quantities in the assay were increased to microgram amounts, whereas the respective maximal velocities remained constant. The apparent Km for Mg2+ was lowered more than 50-fold as CDR was increased to microgram amounts. Half-maximal activation of the phosphodiesterase occurred with lower amounts of CDR as a function of either increasing degrees of substrate saturation or increasing concentrations of Mg2+. At low cyclic nucleotide substrate concentrations i.e., 2.5 μm, cyclic GMP was hydrolyzed at a fourfold greater velocity than cyclic AMP. At high substrate concentrations (millimolar range) cyclic AMP was hydrolyzed at a threefold greater rate than cyclic GMP.  相似文献   

14.
1. The catabolism of purine nucleotides was investigated by both chemical and radiochemical methods in isolated rat hepatocytes, previously incubated with [14C]adenine. The production of allantoin reached 32±5nmol/min per g of cells (mean±s.e.m.) and as much as 30% of the radioactivity incorporated in the adenine nucleotides was lost after 1h. This rate of degradation is severalfold in excess over values previously reported to occur in the liver in vivo. An explanation for this enhancement of catabolism may be the decrease in the concentration of GTP. 2. In a high-speed supernatant of rat liver, adenosine deaminase was maximally inhibited by 0.1μm-coformycin. The activity of AMP deaminase, measured in the presence of its stimulator ATP in the same preparation, as well as the activity of the partially purified enzyme, measured after addition of its physiological inhibitors GTP and Pi, required 50μm-coformycin for maximal inhibition. 3. The production of allantoin by isolated hepatocytes was not influenced by the addition of 0.1μm-coformycin, but was decreased by concentrations of coformycin that were inhibitory for AMP deaminase. With 50μm-coformycin the production of allantoin was decreased by 85% and the formation of radioactive allantoin from [14C]adenine nucleotides was completely suppressed. 4. In the presence of 0.1μm-coformycin or in its absence, the addition of fructose (1mg/ml) to the incubation medium caused a rapid degradation of ATP, without equivalent increase in ADP and AMP, followed by transient increases in IMP and in the rate of production of allantoin; adenosine was not detectable. In the presence of 50μm-coformycin, the fructose-induced breakdown of ATP was not modified, but the depletion of the adenine nucleotide pool proceeded much more slowly and the rate of production of allantoin increased only slightly. No rise in IMP concentration could be detected, but AMP increased manyfold and reached values at which a participation of soluble 5′-nucleotidase in the catabolism of adenine nucleotides is most likely. 5. These results are in agreement with the hypothesis that the formation of allantoin is controlled by AMP deaminase. They constitute further evidence that 5′-nucleotidase is inactive on AMP, unless the concentration of this nucleotide rises to unphysiological values.  相似文献   

15.
dCMP deaminase was partially purified from BHK-21/C13 cells grown in culture. The molecular weight of the enzyme was estimated by gel filtration and gradient centrifugation to be 130000 and 115000 respectively. The enzyme had a pH optimum of 8.4. Its activity versus substrate concentration curve was sigmoid, the substrate concentration at half-maximal velocity being 4.4mm. dCTP activated the deaminase maximally at 40μm, gave a hyperbolic curve for activity versus dCMP concentration and a Km value for dCMP of 0.91mm. dCTP activation required the presence of Mg2+ or Mn2+ ions. dTTP inhibited the deaminase maximally at 15μm; the inhibition required the presence of Mg2+ or Mn2+ ions. The enzyme was very heat-labile but could be markedly stabilized by dCTP at 0.125mm and ethylene glycol at 20% (v/v).  相似文献   

16.
Five metallic cations (Fe3+, Cr3+, Ca2+, Mg2+, Mn2+; concentration range, 1.85 × 10-4 to 37 × 10-4m) were incorporated individually as chlorides into nutrient broth and agar media used for the recovery of phenol-treated Escherichia coli. The effects observed varied with the concentration and the ionic species. In nutrient agar, Fe3+ and Cr3+ were generally beneficial but were toxic at 37 × 10-4m. Of the divalent ions tested, Ca2+ and Mg2+ usually gave higher counts in nutrient broth, except at a concentration of 9.25 × 10-4m, whereas the effect of Mn2+ was rather variable. Two possible explanations are suggested to explain these effects. Toxic materials may be removed from the media by the precipitates formed on the addition of Fe3+ or Cr3+, or, in the case of the divalent ions, the integrity of the bacterial cell membranes may be maintained.  相似文献   

17.
1. The hormonal control of glycogen breakdown was studied in hepatocytes isolated from livers of fed rats. 2. Glucose release was stimulated by [8-arginine]vasopressin (10pm–10nm), oxytocin (1nm–1μm), and angiotensin II (1nm–0.1μm). These responses are all at least as sensitive to hormone as is glucose output in the perfused rat liver. 3. The effect of these three hormones on glucose release was critically dependent on extracellular Ca2+, unlike that of glucagon. Half-maximal restoration of the vasopressin response occurred if 0.3mm-Ca2+ was added back to the incubation medium. 4. Glycogen breakdown was more than sufficient to account for the glucose released into the medium, in the absence or presence of hormones. Lactate release by hepatocytes was not affected by vasopressin, but was inhibited by glucagon. 5. If Ca2+ was omitted from the extracellular medium, vasopressin stimulated glycogenolysis, but not glucose release. 6. The phosphorylase a content of hepatocytes was increased by vasopressin, oxytocin and angiotensin II; minimum effective concentrations were 0.1pm, 0.1nm and 10pm respectively. This response was also dependent on Ca2+. 7. These results demonstrate that hepatocytes can respond to low concentrations of vasopressin and angiotensin II, i.e. these effects are likely to be relevant in the intact animal. The role of extracellular Ca2+ in the effects of these hormones on hepatic glycogenolysis and glucose release is discussed.  相似文献   

18.
1. The aerobic transport of d-glucose and d-galactose in rabbit kidney tissue at 25° was studied. 2. In slices forming glucose from added substrates an accumulation of glucose against its concentration gradient was found. The apparent ratio of intracellular ([S]i) and extracellular ([S]o) glucose concentrations was increased by 0·4mm-phlorrhizin and 0·3mm-ouabain. 3. Slices and isolated renal tubules actively accumulated glucose from the saline; the apparent [S]i/[S]o fell below 1·0 only at [S]o higher than 0·5mm. 4. The rate of glucose oxidation by slices was characterized by the following parameters: Km 1·16mm; Vmax. 4·5μmoles/g. wet wt./hr. 5. The active accumulation of glucose from the saline was decreased by 0·1mm-2,4-dinitrophenol, 0·4mm-phlorrhizin and by the absence of external Na+. 6. The kinetic parameters of galactose entry into the cells were: Km 1·5mm; Vmax 10μmoles/g. wet wt./hr. 7. The efflux kinetics from slices indicated two intracellular compartments for d-galactose. The galactose efflux was greatly diminished at 0°, was inhibited by 0·4mm-phlorrhizin, but was insensitive to ouabain. 8. The following mechanism of glucose and galactose transport in renal tubular cells is suggested: (a) at the tubular membrane, these sugars are actively transported into the cells by a metabolically- and Na+-dependent phlorrhizin-sensitive mechanism; (b) at the basal cell membrane, these sugars are transported in accordance with their concentration gradient by a phlorrhizin-sensitive Na+-independent facilitated diffusion. The steady-state intracellular sugar concentration is determined by the kinetic parameters of active entry, passive outflow and intracellular utilization.  相似文献   

19.
A soluble enzyme system from suspension cultures of Acer pseudoplatanus L. converts d-glucose 6-phosphate to myoinositol. A Mg2+-dependent phosphatase, present in the crude extract, hydrolyzes the product of the cyclization, myoinositol monophosphate, to free myoinositol. Further purification of the enzyme system by precipitation with (NH4)2SO4 followed by diethylaminoethyl cellulose chromatography eliminates the phosphatase and makes it necessary to add alkaline phosphatase to the reaction mixture in order to assay for free myoinositol. Gel filtration on Sephadex G-200 increases the specific activity of the cycloaldolase to 8.8 × 10−4 units per milligram protein (1 unit = 1 micromole of myoinositol formed per minute). The cycloaldolase has an absolute requirement for nicotinamide adenine dinucleotide and a maximum activity at pH 8 with 0.1 mm nicotinamide adenine dinucleotide. The reaction rate is linear for 2.5 hours when d-glucose 6-phosphate is below 4 mm and has a Km of 1.77 mm. The diethylaminoethyl cellulose-purified enzyme is stable for 6 to 8 weeks in the frozen state.  相似文献   

20.
Amir J  Cherry JH 《Plant physiology》1972,49(6):893-897
A 40-fold purification of adenosine diphosphoglucose pyrophosphorylase from sweet corn (Zea mays var. Golden Beauty) revealed the enzyme to be specific for adenosine triphosphate. The enzyme has an absolute requirement for Mg2+ and is activated by 3-phosphoglycerate and to a lesser extent by ribose-5-phosphate and fructose-6-phosphate. The apparent Km values of the enzyme for glucose-1-phosphate, adenosine triphosphate, pyrophosphate, and adenosine diphosphoglucose are 1.9 × 10−4, 3.2 × 10−5, 3.3 × 10−5, and 6.2 × 10−4m, respectively. Pyrophosphate inhibits adenosine diphosphoglucose synthesis competitively (Ki = 3.8 × 10−7m), while orthophosphate and sulfate appear to inhibit the reacion noncompetitively. These results show that the production of this sugar nucleotide can be controlled by the concentration of pyrophosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号