首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Invasion of the intestinal epithelium is a critical step in Salmonella enterica infection and requires functions encoded in the gene cluster known as Salmonella Pathogenicity Island 1 (SPI-1). Expression of SPI-1 genes is repressed by l-arabinose, and not by other pentoses. Transport of l-arabinose is necessary to repress SPI-1; however, repression is independent of l-arabinose metabolism and of the l-arabinose-responsive regulator AraC. SPI-1 repression by l-arabinose is exerted at a single target, HilD, and the mechanism appears to be post-translational. As a consequence of SPI-1 repression, l-arabinose reduces translocation of SPI-1 effectors to epithelial cells and decreases Salmonella invasion in vitro. These observations reveal a hitherto unknown role of l-arabinose in gene expression control and raise the possibility that Salmonella may use L-arabinose as an environmental signal.  相似文献   

2.
Nitric oxide (NO) is a key neuromodulator of corticostriatal synaptic transmission. We have shown previously that dopamine (DA) D1/5 receptor stimulation facilitates neuronal NO synthase (nNOS) activity in the intact striatum. To study the impact of local manipulations of D1/5 and glutamatergic NMDA receptors on striatal nNOS activity, we combined the techniques of in vivo amperometry and reverse microdialysis. Striatal NO efflux was monitored proximal to the microdialysis probe in urethane‐anesthetized rats during local infusion of vehicle or drug. NO efflux elicited by systemic administration of SKF‐81297 was blocked following intrastriatal infusion of: (i) the D1/5 receptor antagonist SCH‐23390, (ii) the nNOS inhibitor 7‐nitroindazole, (iii) the non‐specific ionotropic glutamate receptor antagonist kynurenic acid, and (iv) the selective NMDA receptor antagonist 3‐phosphonopropyl‐piperazine‐2‐carboxylic acid. Glycine co‐perfusion did not affect SKF‐81297‐induced NO efflux. Furthermore, intrastriatal infusion of SKF‐81297 potentiated NO efflux evoked during electrical stimulation of the motor cortex. The facilitatory effects of cortical stimulation and SKF‐81297 were both blocked by intrastriatal infusion of SCH‐23390, indicating that striatal D1/5 receptor activation is necessary for the activation of nNOS by corticostriatal afferents. These studies demonstrate for the first time that reciprocal DA‐glutamate interactions play a critical role in stimulating striatal nNOS activity.  相似文献   

3.
Protozoan parasites of the genus Leishmania cause a number of important human diseases. One of the key determinants of parasite infectivity and survival is the surface glycoconjugate lipophosphoglycan (LPG). In addition, LPG is shown to be useful as a transmission blocking vaccine. Since culture supernatant of parasite promastigotes is a good source of LPG, we made attempts to characterize functions of the culture supernatant, and membrane LPG isolated from metacyclic promastigotes of Leishmania major. The purification scheme included anion-exchange chromatography, hydrophobic interaction chromatography and cold methanol precipitation. The purity of supernatant LPG (sLPG) and membrane LPG (mLPG) was determined by SDS-PAGE and thin layer chromatography. The effect of mLPG and sLPG on nitric oxide (NO) production by murine macrophages cell line (J774.1A) was studied. Both sLPG and mLPG induced NO production in a dose dependent manner but sLPG induced significantly higher amount of NO than mLPG. Our results show that sLPG is able to promote NO production by murine macrophages.  相似文献   

4.
5.
The pore-forming cytolysin of Vibrio vulnificus (VVC) causes severe hypotension and vasodilatation in vivo. Under the condition of bacterial sepsis, large amounts of nitric oxide (NO) produced by inducible NO synthase (iNOS) can contribute to host-induced tissue damage causing hypotension and septic shock. In this study, we investigated the effect of purified VVC on NO production in mouse peritoneal macrophages. VVC induced NO production in the presence of interferon-gamma. Increased NO production was not affected by polymyxin B, and heat inactivation of cytolysin abolished the NO-inducing capability. NO production was induced at the same concentration range of cytolysin for pore formation, as evidenced by the release of preloaded 2-deoxy-d-[(3)H]glucose. At the higher concentrations of cytolysin causing the depletion of cellular ATP, no NO production was observed. Increased expression of iNOS and activation of NFkappaB by VVC were confirmed by Western blotting and gel shift assay, respectively. These results suggest the role of cytolysin as an inducer of iNOS and NO production in macrophage and as a possible virulence determinant in V. vulnificus infection.  相似文献   

6.
Members of Salmonella enterica are important foodborne pathogens of significant public health concern worldwide. This study aimed to determine a range of virulence genes among typhoidal (S. typhi) and non-typhoidal (S. enteritidis) strains isolated from different geographical regions and different years. A total of 87 S. typhi and 94 S. enteritidis strains were tested for presence of 22 virulence genes by employing multiplex PCR and the genetic relatedness of these strains was further characterized by REP-PCR. In S. typhi, invA, prgH, sifA, spiC, sopB, iroN, sitC, misL, pipD, cdtB, and orfL were present in all the strains, while sopE, agfC, agfA, sefC, mgtC, and sefD were present in 98.8, 97.7, 90.8, 87.4, 87.4 and 17.2 %, of the strains, respectively. No lpfA, lpfC, pefA, spvB, or spvC was detected. Meanwhile, in S. enteritidis, 15 genes, agfA, agfC, invA, lpfA, lpfC, sefD, prgH, spiC, sopB, sopE, iroN, sitC, misL, pipD, and orfL were found in all S. enteritidis strains 100 %, followed by sifA and spvC 98.9 %, pefA, spvB and mgtC 97.8 %, and sefC 90.4 %. cdtB was absent from all S. enteritidis strains tested. REP-PCR subtyped S. typhi strains into 18 REP-types and concurred with the virulotyping results in grouping the strains, while in S. enteritidis, REP-PCR subtyped the strains into eight profiles and they were poorly distinguishable between human and animal origins. The study showed that S. typhi and S. enteritidis contain a range of virulence factors associated with pathogenesis. Virulotyping is a rapid screening method to identify and profile virulence genes in Salmonella strains, and improve an understanding of potential risk for human and animal infections.  相似文献   

7.
Brassinosteroids (BRs) regulate various physiological processes, such as tolerance to stresses and root growth. Recently, a connection was reported between BRs and nitric oxide (NO) in plant responses to abiotic stress. Here we present evidence supporting NO functions in BR signaling during root growth process. Arabidopsis seedlings treated with BR 24-epibrassinolide (BL) show increased lateral roots (LR) density, inhibition of primary root (PR) elongation and NO accumulation. Similar effects were observed adding the NO donor GSNO to BR-receptor mutant bri1-1. Furthermore, BL-induced responses in the root were abolished by the specific NO scavenger c-PTIO. The activities of nitrate reductase (NR) and nitric oxide synthase (NOS)-like, two NO generating enzymes were involved in BR signaling. These results demonstrate that BR increases the NO concentration in root cells, which is required for BR-induced changes in root architecture.  相似文献   

8.
Nitric oxide (NO) is a major plant signaling molecule that plays key roles during plant-pathogen interactions and plant development. Previous work showed the participation of NO in the development and lignin composition of sunflower roots. Thereby, we have hypothesized that NO applications could control the attack of the fungal pathogen Verticillium dahliae in sunflowers. Seedlings growing hydroponically were pretreated with NO donors and further inoculated with the fungus. Evaluation of disease symptoms showed that NO pretreatments could not reduce Verticillium wilt. Strikingly, NO donors appear to promote the fungal infection. These results indicate that NO applications were unable to protect sunflowers from Verticillium attack and highlight the role played by the fine tuning regulation of NO levels required to balance plant responses between development and defense.  相似文献   

9.

Background and Aims

Plants are able to adapt to the environment dynamically through regulation of their growth and development. Excess copper (Cu2+), a toxic heavy metal, induces morphological alterations in plant organs; however, the underlying mechanisms are still unclear. With this in mind, the multiple signalling functions of nitric oxide (NO) in plant cells and its possible regulatory role and relationship with auxin were examined during Cu2+-induced morphological responses.

Methods

Endogenous auxin distribution was determined by microscopic observation of X-Gluc-stained DR5::GUS arabidopsis, and the levels of NO, superoxide and peroxynitrite were detected by fluorescence microscopy. As well as wild-type, NO-overproducer (nox1) and -deficient (nia1nia2 and nia1nia2noa1-2) arabidopsis plants were used.

Key Results

Cu2+ at a concentration of 50 µm resulted in a large reduction in cotyledon area and hypocotyl and primary root lengths, accompanied by an increase in auxin levels. In cotyledons, a low Cu2+ concentration promoted NO accumulation, which was arrested by nitric oxide synthase or nitrate reductase inhibitors. The 5-μm Cu2+-induced NO synthesis was not detectable in nia1nia2 or nia1nia2noa1-2 plants. In roots, Cu2+ caused a decrease of the NO level which was not associated with superoxide and peroxynitrite formation. Inhibition of auxin transport resulted in an increase in NO levels, while exogenous application of an NO donor reduced DR5::GUS expression. The elongation processes of nox1 were not sensitive to Cu2+, but NO-deficient plants showed diverse growth responses.

Conclusions

In plant organs, Cu2+ excess results in severe morphological responses during which the endogenous hormonal balance and signal transduction are affected. Auxin and NO negatively regulate each other''s level and NO intensifies the metal-induced cotyledon expansion, but mitigates elongation processes under Cu2+ exposure.  相似文献   

10.
Eleven diarylheptanoids (1-11) were isolated from rhizomes of Curcuma kwangsiensis, together with seven known compounds. Their structures were elucidated by 1D and 2D NMR, circular dichroism (CD), and accurate mass measurements. Inhibitory effects of the isolated compounds on nitric oxide production in lipopolysaccaride-activated macrophages were evaluated. Compounds 1, 2, and 3 showed strong inhibitory activity on NO production with IC(50) values of 3.13, 2.81 and 2.41 μM, respectively.  相似文献   

11.
Nitric oxide (NO) generated by inducible NO synthase (iNOS) contributes critically to inflammatory injury and host defense. While previously thought as a soluble protein, iNOS was recently reported to form aggresomes inside cells. But what causes iNOS aggresome formation is unknown. Here we provide evidence demonstrating that iNOS aggresome formation is mediated by its own product NO. Exposure to inflammatory stimuli (lipopolysaccharide and interferon-γ) induced robust iNOS expression in mouse macrophages. While initially existing as a soluble protein, iNOS progressively formed protein aggregates as a function of time. Aggregated iNOS was inactive. Treating the cells with the NOS inhibitor N-nitro-l-arginine methyl ester (L-NAME) blocked NO production from iNOS without affecting iNOS expression. However, iNOS aggregation in cells was prevented by L-NAME. The preventing effect of NO blockade on iNOS aggresome formation was directly observed in GFP-iNOS-transfected cells by fluorescence imaging. Moreover, iNOS aggresome formation could be recaptured by adding exogenous NO to L-NAME-treated cells. These studies demonstrate that iNOS aggresome formation is caused by NO. The finding that NO induces iNOS aggregation and inactivation suggests aggresome formation as a feedback inhibition mechanism in iNOS regulation.  相似文献   

12.
Cutaneous leishmaniasis (CL) is an infectious disease caused by Leishmania parasite. The expression of inducible nitric oxide synthase (iNOS) and generation of nitric oxide in response to IFN-γ and TNF-α is important in control of infection. The aim of the study was to determine the expression of iNOS in the lesions of Leishmania tropica, and whether there was a correlation between the level of expression and the duration of the disease. Punch biopsy was performed from patients (n = 29) and iNOS immunohistochemical staining was applied. Expression of iNOS protein was detected 82.8% of patients. There was a strong expression with the duration of the disease less than 6 months (p < 0.002). These findings demonstrate that iNOS has a role in L. tropica especially during the early stages of the infection. (Mol Cell Biochem xxx: 147–149, 2005)  相似文献   

13.
Flavohemoglobins (flavoHbs), commonly found in bacteria and fungi, afford protection from nitrosative stress by degrading nitric oxide (NO) to nitrate. Giardia intestinalis, a microaerophilic parasite causing one of the most common intestinal human infectious diseases worldwide, is the only pathogenic protozoon as yet identified coding for a flavoHb. By NO amperometry we show that, in the presence of NADH, the recombinant Giardia flavoHb metabolizes NO with high efficacy under aerobic conditions (TN = 116 ± 10 s−1 at 1 μM NO, T = 37 °C). The activity is [O2]-dependent and characterized by an apparent KM,O2 = 22 ± 7 μM. Immunoblotting analysis shows that the protein is expressed at low levels in the vegetative trophozoites of Giardia; accordingly, these cells aerobically metabolize NO with low efficacy. Interestingly, in response to nitrosative stress (24-h incubation with ?5 mM nitrite) flavoHb expression is enhanced and the trophozoites thereby become able to metabolize NO efficiently, the activity being sensitive to both cyanide and carbon monoxide. The NO-donors S-nitrosoglutathione (GSNO) and DETA-NONOate mimicked the effect of nitrite on flavoHb expression. We propose that physiologically flavoHb contributes to NO detoxification in G. intestinalis.  相似文献   

14.
Ljubkovic M  Shi Y  Cheng Q  Bosnjak Z  Jiang MT 《FEBS letters》2007,581(22):4255-4259
Previous observations on the activation of the mitochondrial ATP-sensitive potassium channel (mitoK(ATP)) by nitric oxide (NO) in myocardial preconditioning were based on indirect evidence. In this study, we have investigated the direct effect of NO on the rat cardiac mitoK(ATP) after reconstitution of the inner mitochondrial membranes into lipid bilayers. We found that the mitoK(ATP) was activated by exogenous NO donor S-nitroso-N-acetyl penicillamine or PAPA NONOate. This activation was inhibited by mitoK(ATP) blockers 5-hydroxydecanoate or glibenclamide. Our observations confirm that NO can directly activate the cardiac mitoK(ATP), which may underlie its contribution to myocardial preconditioning.  相似文献   

15.
Apoptosis can be induced by activation of so-called "death receptors" (extrinsic pathway) or multiple apoptotic factors (intrinsic pathway), which leads to release of cytochrome c from mitochondria. This event is considered to be a point of no return in apoptosis. One of the most important events in the development of apoptosis is the enhancement of cytochrome c peroxidase activity upon its interaction with cardiolipin, which modifies the active center of cytochrome c. In the present work, we have investigated the effects of nitric oxide on the cytochrome c peroxidase activity when cytochrome c is bound to cardiolipin or sodium dodecyl sulfate. We have observed that cytochrome c peroxidase activity, distinctly increased due to the presence of anionic lipids, is completely suppressed by nitric oxide. At the same time, nitrosyl complexes of cytochrome c, produced in the interaction with nitric oxide, demonstrated sensitivity to laser irradiation (441 nm) and were photolyzed during irradiation. This decomposition led to partial restoration of cytochrome c peroxidase activity. Finally, we conclude that nitric oxide and laser irradiation may serve as effective instruments for regulating the peroxidase activity of cytochrome c, and, probably, apoptosis.  相似文献   

16.
The Ca2+-free form of calmodulin (CaM), apocalmodulin (ApoCaM), regulates a variety of target proteins including nitric oxide synthase II (NOS-II). The CaM-binding site of NOS-II can bind ApoCaM with high affinity. Substitution of hydrophobic amino acids by charged amino acids at crucial positions 3, 9 and 13 within the CaM-binding motif did not abolish the ApoCaM interaction that occurred with significant affinity, though the affinity of the interaction was decreased remarkably. Isothermal titration calorimetry revealed that interaction of ApoCaM and synthetic NOS-II peptides was driven entropically.  相似文献   

17.
Until recently endothelial nitric oxide synthase (eNOS) has been associated exclusively with physiological functions, particularly in the cardiovascular system. However, increasing evidence has been accumulated that supports the concept for a role of eNOS in pathophysiology. In particular, detection of eNOS protein and activity in human monocytes/macrophages suggest an immunomodulatory role of this enzyme. Here, we review data that promote the hypothesis that by enhancing TNFalpha production, eNOS activity should be regarded as a novel pro-inflammatory parameter in human monocytes/macrophages.  相似文献   

18.
Although nitric oxide (NO) is known to regulate root growth, the factor(s) modulating NO during this process have not yet been elucidated. Here, we identified Arabidopsis WD40‐REPEAT 5a (WDR5a) as a novel factor that functions in root growth by modulating NO accumulation. The wdr5a‐1 mutant accumulated less NO and produced longer roots than the wild type, whereas the WDR5a overexpression lines had the opposite phenotype. The role of NO was further supported by our observation that the NO donor sodium nitroprusside (SNP) and the NO scavenger 2‐(4‐carboxyphenyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide (cPTIO) rescued the root meristem growth phenotypes of the wdr5a‐1 and WDR5a overexpression lines, respectively. The regulation of root growth by WDR5a was found to involve auxin because the auxin levels were similar in SNP‐treated wdr5a‐1 and wild‐type roots, but higher in untreated wdr5a‐1 roots than in wild‐type roots. In addition, the wdr5a‐1 mutant had higher production and activity levels of the auxin biosynthetic enzyme TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS1 (TAA1), in contrast to its reduced expression and activity in the WDR5a overexpression lines, and the increased root meristem growth in wdr5a‐1 was suppressed by treatment with l ‐kynurenine, which inhibits TAA1, as well as by mutating TAA1. WDR5a therefore functions in root meristem growth by maintaining NO homeostasis, and thus TAA1‐mediated auxin biosynthesis.  相似文献   

19.
Neuronal nitric oxide synthase: prototype for pulsed enzymology   总被引:1,自引:0,他引:1  
Salerno JC 《FEBS letters》2008,582(10):1395-1399
  相似文献   

20.
Nitric oxide (NO), generated by NO synthases (NOSs), has multifarious roles in signal transduction. Reactive oxygen species (ROS), generated by ubiquitous NADPH oxidases (NOXs), also participate in cellular signaling. However, the coordination of signals conveyed by NO and ROS is poorly understood. We show that the small GTPase Rac, a component of some NOXs, also interacts with and regulates the constitutively-expressed NOSs. Cellular NO and O(2)(-) production increase or decrease together following activation or inhibition of Rac, and Rac inhibition reveals transduction mechanisms that depend upon NO (vasodilation), ROS (actin polymerization) or both (cytoskeletal organization). Thus, signaling by NO and ROS may be coordinated through a common control element.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号