首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
5-Oxo-ETE (5-oxo-6,8,11,14-eicosatetraenoic acid) is formed from the 5-lipoxygenase product 5-HETE (5S-hydroxy-6,8,11,14-eicosatetraenoic acid) by 5-hydroxyeicosanoid dehydrogenase (5-HEDH). The cofactor NADP+ is a limiting factor in the synthesis of 5-oxo-ETE because of its low concentrations in unperturbed cells. Activation of the respiratory burst in phagocytic cells, oxidative stress, and cell death all dramatically elevate both intracellular NADP+ levels and 5-oxo-ETE synthesis. 5-HEDH is widely expressed in inflammatory, structural, and tumor cells. Cells devoid of 5-lipoxygenase can synthesize 5-oxo-ETE by transcellular biosynthesis using inflammatory cell-derived 5-HETE. 5-Oxo-ETE is a chemoattractant for neutrophils, monocytes, and basophils and promotes the proliferation of tumor cells. However, its primary target appears to be the eosinophil, for which it is a highly potent chemoattractant. The actions of 5-oxo-ETE are mediated by the highly selective OXE receptor, which signals by activating various second messenger pathways through the release of the βγ-dimer from Gi/o proteins to which it is coupled. Because of its potent effects on eosinophils, 5-oxo-ETE may be an important mediator in asthma, and, because of its proliferative effects, may also contribute to tumor progression. Selective OXE receptor antagonists, which are currently under development, could be useful therapeutic agents in asthma and other allergic diseases.  相似文献   

2.
5-Oxo-ETE (5-oxo-6,8,11,14-eicosatetraenoic acid) is a highly potent granulocyte chemoattractant that acts through a selective G-protein coupled receptor. It is formed by oxidation of the 5-lipoxygenase product 5-HETE (5S-hydroxy-6,8,11,14-eicosatetraenoic acid) by 5-hydroxyeicosanoid dehydrogenase (5-HEDH). Although leukocytes and platelets display high microsomal 5-HEDH activity, unstimulated intact cells do not convert 5-HETE to appreciable amounts of 5-oxo-ETE. To attempt to resolve this dilemma we explored the possibility that 5-oxo-ETE synthesis could be enhanced by oxidative stress. We found that hydrogen peroxide and t-butyl hydroperoxide strongly stimulate 5-oxo-ETE formation by U937 monocytic cells. This was dependent on the GSH redox cycle, as it was blocked by depletion of GSH or inhibition of glutathione reductase and mimicked by oxidation of GSH to GSSG by diamide. Glucose inhibited the response to H2O2 through its metabolism by the pentose phosphate pathway, as its effect was reversed by the glucose-6-phosphate dehydrogenase inhibitor dehydroepiandrosterone. 5-Oxo-ETE synthesis was also strongly stimulated by hydroperoxides in blood monocytes, lymphocytes, and platelets, but not neutrophils. Unlike monocytic cells, lymphocytes and platelets were resistant to the inhibitory effects of glucose. 5-Oxo-ETE synthesis following incubation of peripheral blood mononuclear cells with arachidonic acid and calcium ionophore was also strongly enhanced by t-butyl hydroperoxide. Oxidative stress could act by depleting NADPH, resulting in the formation NADP+, the cofactor for 5-HEDH. This is opposed by the pentose phosphate pathway, which converts NADP+ back to NADPH. Oxidative stress could be an important mechanism for stimulating 5-oxo-ETE production in inflammation, promoting further infiltration of granulocytes into inflammatory sites.  相似文献   

3.
5-Oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) is formed from 5S-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE) by the 5-lipoxygenase (5-LO) pathway under conditions associated with oxidative stress. 5-Oxo-ETE is an important pro-inflammatory mediator, which stimulates the migration of eosinophils via a selective G-protein coupled receptor, known as the OXE receptor (OXE-R). Previously, we designed and synthesized structural mimics of 5-oxo-ETE such as 1 using an indole scaffold. In the present work, we added various substituents at C-3 of this moiety to block potential β-oxidation of the 5-oxo-valerate side chain, and investigated the structure-activity relationships of the resulting novel β-oxidation-resistant antagonists. Cyclopropyl and cyclobutyl substituents were well tolerated in this position, but were less potent as the highly active 3S-methyl compound. It seems likely that 3-alkyl substituents can affect the conformation of the 5-oxovalerate side chain containing the critical keto and carboxyl groups, thereby affecting interaction with the OXE-receptor.  相似文献   

4.
5-Oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) is a metabolite of arachidonic acid shown to possess important biological activities within different cell types. In the neutrophil, a specific NADP(+)-dependent dehydrogenase utilizes 5-lipoxygenase-derived 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5(S)-HETE) as the required substrate. In the present study, 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid (5-HpETE), rather than 5-HETE, was found to be the biosynthetic precursor of 5-oxo-ETE in the murine macrophage. The macrophage was not able to convert 5-HETE into 5-oxo-ETE even when preincubated with phorbol ester or with other lipid hydroperoxides. The factor responsible for the conversion of 5-HpETE into 5-oxo-ETE was found predominantly in the cytosolic fraction of the macrophage, with an approximate molecular weight of 50,000-60,000, as assessed by size exclusion chromatography. Formation of 5-oxo-ETE was rapid and the catalytic protein was found to have an apparent K(m) of 5.3 microM for the eicosanoid. Furthermore, the protein could efficiently utilize 5(R,S)-HpETE as substrate and was heat and protease labile. This novel pathway of 5-oxo-ETE biosynthesis in the murine macrophage was consistent with reduction of a 5-hydroperoxy group to an intermediate alkoxy radical that could be subsequently oxidized to the 5-oxo product. Such a mechanism would enable racemic 5-HpETE, derived from free radical oxidation of arachidonic acid, to be efficiently converted into this potent chemotactic eicosanoid.  相似文献   

5.
Arachidonic acid (AA) is converted to biologically active metabolites by different pathways, one of the most important of which is initiated by 5-lipoxygenase (5-LO). 5-Hydroxyeicosatetraenoic acid (5-HETE), although possessing only weak biological activity itself, is oxidized to 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE), a potent chemoattractant for eosinophils and neutrophils. Our main goal is to determine how the biosynthesis of 5-oxo-ETE is regulated and to determine its pathophysiological roles. To achieve this task, we designed and synthesized affinity chromatography ligands for the purification of 5-hydroxyeicosanoid dehydrogenase (5-HEDH), the enzyme responsible for the formation of 5-oxo-ETE.  相似文献   

6.
5-Oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) is a potent eosinophil chemoattractant that is synthesized from the 5-lipoxygenase product 5S-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE) by the NADP+-dependent enzyme 5-hydroxyeicosanoid dehydrogenase (5-HEDH), previously reported only in inflammatory cells. Because of their critical location at the interface of the lung with the external environment, we sought to determine whether epithelial cells could also synthesize this substance. We found that HEp-2, T84, A549, and BEAS-2B cells all synthesize 5-oxo-ETE from 5-HETE in amounts comparable to leukocytes. The epithelial dehydrogenase is localized in the microsomal fraction, requires NADP+, and is selective for the S-isomer of 5-HETE, suggesting that it is identical to leukocyte 5-HEDH. Normal human bronchial epithelial cells have an even greater capacity to synthesize 5-oxo-ETE. H2O2 dramatically stimulates its synthesis in association with increased levels of intracellular GSSG and NADP+. These responses were all blocked by removal of GSH/GSSG with N-ethylmaleimide, suggesting that H2O2 stimulates 5-oxo-ETE synthesis by raising NADP+ levels through activation of the GSH redox cycle. Airway smooth muscle cells can also synthesize 5-oxo-ETE, but to a lesser extent. These results suggest that epithelial cells may be a major source of 5-oxo-ETE under conditions of oxidative stress, which may contribute to eosinophil infiltration in allergic diseases.  相似文献   

7.
B lymphocytes convert arachidonic acid (AA) to the 5-lipoxygenase products leukotriene B4 (LTB4) and 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE) when subjected to oxidative stress. 5-HETE has little biological activity, but can be oxidized by a selective dehydrogenase in some cells to 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE), a potent eosinophil chemoattractant. We found that CESS cells, a B lymphocyte cell line, convert AA to 5-oxo-ETE and this is selectively stimulated by oxidative stress. In the presence of H2O2, 5-oxo-ETE is a major AA metabolite in these cells (5-oxo-ETE≈5-HETE>LTB4). The cyclooxygenase product 12-hydroxy-5,8,10-heptadecatrienoic acid is also formed, but is not affected by H2O2. Diamide had effects similar to those of H2O2 and both substances had similar effects on human tonsillar B cells. H2O2 also stimulated 5-oxo-ETE formation from its direct precursor 5-HETE in tonsillar B and CESS cells, and this was inhibited by the glutathione reductase inhibitor carmustine. H2O2 concomitantly induced rapid increases in GSSG and NADP+ and reductions in GSH and NADPH. We conclude that oxidative stress stimulates 5-oxo-ETE synthesis in B lymphocytes by two mechanisms: activation of 5-lipoxygenase and increased oxidation of 5-HETE by NADP+-dependent 5-hydroxyeicosanoid dehydrogenase. B lymphocyte-derived 5-oxo-ETE could contribute to eosinophilic inflammation in asthma and other allergic diseases.  相似文献   

8.
We investigated the effect of lipopolysaccharide (LPS) chemotypes differing in their carbohydrate chain length on phagocytosis of serum-opsonized zymosan (OZ) particles and related functions of human polymorphonuclear leukocyte (PMNL, neutrophils). LPS from deep core mutant (Re), complete core (Ra) and smooth (S) phenotypes of Salmonella typhimurium was studied. Priming of neutrophils with various LPSs caused prominent enhancement of OZ phagocytosis, superoxide production and leukotriene (LT) synthesis in neutrophils, with LPS effects increasing as Re < S < Ra. The LPS forms were less potent to activate OZ uptake in the presence of MK-886, 5-lipoxygenase activating protein inhibitor, suggesting the regulatory function of 5-lipoxygenase (5-LO)-derived LTs. Direct measurement of nitrite release from OZ-stimulated neutrophils revealed that the effects of LPS on NO synthesis increased in the range of Ra < S < Re. Nitric oxide synthase (NOS) inhibitor l-NAME increased phagocytosis, LT and superoxide formation by neutrophils, and abolished the difference in the action of the LPSs forms. Further mechanistic studies revealed that NO modulates cellular 5-LO activity in a guanylyl cyclase and protein kinase G dependent manner, as well as interplay between NO and superoxide, and peroxynitrite generation contribute to distinct effects of LPS chemotypes on phagocytosis and LT synthesis in human neutrophils. Our investigation of the three LPS species demonstrates that the LPS polysaccharide core is mostly essential for the PMNL activation and is able to suppress lipid A-induced increase in NOS activity in phagocyting cells by triggering specific signaling cascades.  相似文献   

9.
5-Oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE), a metabolite of arachidonic acid formed by the 5-lipoxygenase pathway, is a potent eosinophil chemoattractant that may be an important mediator in asthma. To further investigate the physiological and pathological roles of 5-oxo-ETE we have developed a mass spectrometric assay employing a tetradeuterated analog (5-oxo-[11,12,14,15-(2)H]ETE) as an internal standard. Collision-induced dissociation of the quasimolecular anion of 5-oxo-[11,12,14,15-(2)H]ETE (m/z 321) resulted in the formation of a major ion at m/z 207 that retained all four deuterium atoms. Measurement of the ratio of ions at m/z 203 (endogenous 5-oxo-ETE) and m/z 207 permitted quantitation of this compound by liquid chromatography-mass spectrometry-mass spectrometry using multiple reaction monitoring. The resulting assay was highly sensitive (< or =20 pg/sample) and selective, enabling detection of the amount of 5-oxo-ETE produced by as few as 10,000 neutrophils. This assay should permit measurement of 5-oxo-ETE in biological fluids, enabling evaluation of its role in asthma and other inflammatory diseases.  相似文献   

10.
5-Oxo-ETE (5-oxo-6,8,11,14-eicosatetraenoic acid) is an arachidonic acid metabolite formed by the oxidation of 5S-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE) by 5-hydroxyeicosanoid dehydrogenase (5-HEDH), a microsomal enzyme found in leukocytes and platelets. 5-HEDH is highly selective for 5S-HETE, and displays little activity for other monohydroxy metabolites of arachidonic acid. The synthesis of 5-oxo-ETE requires NADP(+) and can be stimulated by activation of the respiratory burst and by oxidative stress. 5-Oxo-ETE is a chemoattractant for eosinophils and neutrophils, and elicits a variety of responses in these cells, including actin polymerization, calcium mobilization, integrin expression, and degranulation. Its primary target appears to be the eosinophil, and among lipid mediators it is the strongest chemoattractant for these cells. It is also a chemoattractant for monocytes and stimulates the proliferation of prostate tumor cells. Its actions are mediated by a G(i) protein-coupled receptor (OXE receptor) that is highly expressed by eosinophils>neutrophils>monocytes. When administered in vivo in both humans and rodents it elicits tissue eosinophilia, suggesting that it may be an important mediator in allergic diseases such as asthma, and that the development of drugs designed to prevent its formation or effects may be useful therapeutic agents in these diseases.  相似文献   

11.
5-Oxo-(7E,9E,11Z,14Z)-eicosatetraenoic acid (5-oxo-ETE) has been identified as a non-enzymatic hydrolysis product of leukotriene A4 (LTA4) in addition to 5,12-dihydroxy-(6E,8E,10E,14Z)-eicosatetraenoic acids (5,12-diHETEs) and 5,6-dihydroxy-(7E,9E,11Z,14Z)-eicosatetraenoic acids (5,6-diHETEs). The amount of 5-oxo-ETE detected in the mixture of the hydrolysis products of LTA4 was found to be pH-dependent. After incubation of LTA4 in aqueous medium, the ratio of 5-oxo-ETE to 5,12-diHETE was 1:6 at pH 7.5, and 1:1 at pH 9.5. 5-Oxo-ETE was isolated from the alkaline hydrolysis products of LTA4 in order to evaluate its effects on human polymorphonuclear (PMN) leukocytes. 5-Oxo-ETE induced a rapid and dose-dependent mobilization of calcium in PMN leukocytes with an EC50 of 250 nM, as compared to values of 3.5 nM for leukotriene B4 (LTB4) and >500 nM for 5(S)-hydroxy-(6E,8Z,11Z,14Z)-eicosatetraenoic acid (5-HETE). Pretreatment of the cells with LTB4 totally abolished the calcium response induced by 5-oxo-ETE. In contrast, the preincubation with 5-oxo-ETE did not affect the calcium mobilization induced by LTB4. The calcium response induced by 5-oxo-ETE was totally inhibited by the specific LTB4 receptor antagonist LY223982. These data demonstrate that 5-oxo-ETE can induce calcium mobilization in PMN leukocyte via the LTB4 receptor in contrast to the closely related analog 5-oxo-(6E,8Z,11Z,14Z)-eicosatetraenoic acid which is known to activate human neutrophils by a mechanism independent of the receptor for LTB4.  相似文献   

12.
The total synthesis of C20-trifluoro-6(E),8(Z),11(Z),14(Z) 5-oxo-ETE is reported. This compound was designed as an ω-oxidation-resistant analog of 5-oxo-ETE that would be resistant to metabolism. The trifluoro derivative of 5-oxo-ETE stimulated calcium mobilization in neutrophils and desensitized these cells to subsequent exposure to 5-oxo-ETE.  相似文献   

13.
Allergic diseases such as asthma are characterized by tissue eosinophilia induced by the combined effects of chemoattractants and cytokines. Lipid mediators are a major class of endogenous chemoattractants, among which 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) is the most potent for human eosinophils. In this study, we investigated the effects of 5-oxo-ETE on eosinophil survival by flow cytometry. We found that this compound could promote eosinophil survival in the presence of small numbers of contaminating monocytes, but not in their absence. The conditioned medium from monocytes treated for 24 h with 5-oxo-ETE also strongly promoted eosinophil survival, whereas the medium from vehicle-treated monocytes had no effect. An antibody against the granulocyte/macrophage colony-stimulating factor (GM-CSF) completely blocked the response of eosinophils to the conditioned medium from 5-oxo-ETE-treated monocytes, whereas an antibody against interleukin-5 had no effect. Furthermore, 5-oxo-ETE stimulated the release of GM-CSF from cultured monocytes in amounts compatible with eosinophil survival activity, with a maximal effect being observed after 24 h. This effect was concentration-dependent and could be observed at concentrations in the picomolar range. 5-Oxo-ETE and leukotriene B(4) had similar effects on GM-CSF release at low concentrations, but 5-oxo-ETE induced a much stronger response at concentrations of 10 nm or higher. This is the first report that 5-oxo-ETE can induce the release of any cytokine, suggesting that it could be an important mediator in allergic and other inflammatory diseases due both to its chemoattractant properties and to its potent effects on the synthesis of the survival factor GM-CSF.  相似文献   

14.
While screening genes encoding G protein-coupled receptors (GPCRs) in the human genome, we and other groups have identified a GPCR named hGPCR48 as a high affinity receptor for 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE), which is arachidonic acid metabolite and an endogenous chemoattractant for granulocytes. Using Chinese hamster ovary (CHO) cells stably expressing hGPCR48, we show here that activation of the receptor causes the chemotaxis of the cells toward 5-oxo-ETE. We also show that the chemotaxis of human granulocytes toward 5-oxo-ETE is inhibited by pretreatment with anti-hGPCR48 antibodies, indicating that hGPCR48 is an endogenous receptor responsible for chemotaxis of granulocytes toward 5-oxo-ETE. In addition, we show that the chemotaxis of CHO cells expressing hGPCR48 is suppressed by pretreatment with pertussis toxin, and enhanced by overexpression of the carboxy terminal peptides of Galpha (12/13) subunits or a regulator of the G protein signaling domain of p115RhoGEF, both of which are known to suppress G(12/13)-dependent signaling pathways. These results indicate that hGPCR48 couples with G(i/o) and G(12/13) proteins, which then initiate or attenuate the chemotaxis of the cells toward 5-oxo-ETE, respectively.  相似文献   

15.
5-oxo-(7E,9E,11Z,14Z)-eicosatetraenoic acid (5-oxo-ETE) has been identified as a non-enzymatic hydrolysis product of leukotriene A(4) (LTA(4)) in addition to 5,12-dihydroxy-(6E,8E,10E, 14Z)-eicosatetraenoic acids (5,12-diHETEs) and 5,6-dihydroxy-(7E,9E, 11Z,14Z)-eicosatetraenoic acids (5,6-diHETEs). The amount of 5-oxo-ETE detected in the mixture of the hydrolysis products of LTA(4) was found to be pH-dependent. After incubation of LTA(4) in aqueous medium, the ratio of 5-oxo-ETE to 5,12-diHETE was 1:6 at pH 7.5, and 1:1 at pH 9.5. 5-Oxo-ETE was isolated from the alkaline hydrolysis products of LTA(4) in order to evaluate its effects on human polymorphonuclear (PMN) leukocytes. 5-Oxo-ETE induced a rapid and dose-dependent mobilization of calcium in PMN leukocytes with an EC(50) of 250 nM, as compared to values of 3.5 nM for leukotriene B(4) (LTB(4)500 nM for 5(S)-hydroxy-(6E,8Z,11Z,14Z)-eicosatetraenoic acid (5-HETE). Pretreatment of the cells with LTB(4) totally abolished the calcium response induced by 5-oxo-ETE. In contrast, the preincubation with 5-oxo-ETE did not affect the calcium mobilization induced by LTB(4). The calcium response induced by 5-oxo-ETE was totally inhibited by the specific LTB(4) receptor antagonist LY223982. These data demonstrate that 5-oxo-ETE can induce calcium mobilization in PMN leukocyte via the LTB(4) receptor in contrast to the closely related analog 5-oxo-(6E,8Z,11Z, 14Z)-eicosatetraenoic acid which is known to activate human neutrophils by a mechanism independent of the receptor for LTB(4).  相似文献   

16.
Oxo-lipids, a large family of oxidized human lipoxygenase (hLOX) products, are of increasing interest to researchers due to their involvement in different inflammatory responses in the cell. Oxo-lipids are unique because they contain electrophilic sites that can potentially form covalent bonds through a Michael addition mechanism with nucleophilic residues in protein active sites and thus increase inhibitor potency. Due to the resemblance of oxo-lipids to LOX substrates, the inhibitor potency of 4 different oxo-lipids; 5-oxo-6,8,11,14-(E,Z,Z,Z)-eicosatetraenoic acid (5-oxo-ETE), 15-oxo-5,8,11,13-(Z,Z,Z,E)-eicosatetraenoic acid (15-oxo-ETE), 12-oxo-5,8,10,14-(Z,Z,E,Z)-eicosatetraenoic acid (12-oxo-ETE), and 13-oxo-9,11-(Z,E)-octadecadienoic acid (13-oxo-ODE) were determined against a library of LOX isozymes; leukocyte 5-lipoxygenase (h5-LOX), human reticulocyte 15-lipoxygenase-1 (h15-LOX-1), human platelet 12-lipoxygenase (h12-LOX), human epithelial 15-lipoxygenase-2 (h15-LOX-2), soybean 15-lipoxygenase-1 (s15-LOX-1), and rabbit reticulocyte 15-LOX (r15-LOX). 15-Oxo-ETE exhibited the highest potency against h12-LOX, with an IC50 = 1 ± 0.1 μM and was highly selective. Steady state inhibition kinetic experiments determined 15-oxo-ETE to be a mixed inhibitor against h12-LOX, with a Kic value of 0.087 ± 0.008 μM and a Kiu value of 2.10 ± 0.8 μM. Time-dependent studies demonstrated irreversible inhibition with 12-oxo-ETE and h15-LOX-1, however, the concentration of 12-oxo-ETE required (Ki = 36.8 ± 13.2 μM) and the time frame (k2 = 0.0019 ± 0.00032 s−1) were not biologically relevant. These data are the first observations that oxo-lipids can inhibit LOX isozymes and may be another mechanism in which LOX products regulate LOX activity.  相似文献   

17.
Human neutrophils incorporated 5-hydroxy-E,Z,Z,Z-6,8,11,14-eicosatetraenoic acid (5-HETE) into cellular triglyceride and phospholipid. They also metabolized 5-HETE into a novel, extracellularly released derivative, 5,20-dihydroxy-E,Z,Z,Z-6,8,11,14-eicosatetraenoic acid (5,20-diHETE). 5,20-diHETE formation predominated at higher substrate concentrations and longer incubation intervals. In the absence of added 5-HETE, 1 X 10(8) neutrophils stimulated with 20 microM ionophore A23187 produced up to 243 ng of 5,20-diHETE, indicating that both endogenously formed and exogenously added substrate could be oxidized at carbon 20. 5,20-diHETE was about 10- to 100-fold weaker than 5-HETE in enhancing human neutrophil degranulation responses to platelet-activating factor. omega-Oxidation appears to be a general enzymatic mechanism for inactivation of arachidonic acid metabolites.  相似文献   

18.
A biologically active glutathione adduct of the eicosanoid 5-oxo-eicosatetraenoic acid has been observed as a product formed within the murine peritoneal macrophage. This five-oxo glutathione adduct (FOG(7)) was structurally characterized using electrospray tandem mass spectrometry as a 1,4 Michael addition product 5-oxo-7-glutathionyl-8,11,14-eicosatrienoic acid. FOG(7) was found to be highly potent in stimulating eosinophil as well as neutrophil chemotaxis, also capable of initiating actin polymerization, without elevating intracellular free calcium ion concentration within either the eosinophil or polymorphonuclear leukocyte. These biological responses suggest that either FOG(7) activates a subset of receptors mediating the broader biological activity of the parent eicosanoid 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) or that a receptor not activated by 5-oxo-ETE participates in the chemotactic activity of FOG(7). The only other known biologically active glutathione adduct has been leukotriene C(4) (LTC(4)), another eicosanoid that exerts potent effects through the Cys-LT receptor. The biochemical parallel between the formation of LTC(4) and FOG(7) suggests an interesting mechanism by which biologically active eicosanoids derived from electrophilic intermediates may have unique distribution and prolonged efficacy in vivo.  相似文献   

19.
5-Oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) is a proinflammatory mediator, but its effects on airway smooth muscle (ASM) have never been assessed. Tension measurements performed on guinea pig ASM showed that 5-oxo-ETE induced sustained concentration-dependent positive inotropic responses (EC50 = 0.89 microM) of somewhat lower amplitude than those induced by carbamylcholine and the thromboxane A2 (TXA2) agonist U-46619. Transient inotropic responses to 5-oxo-ETE were recorded in Ca2+-free medium, suggesting mobilization of intracellular Ca2+. Meanwhile, the sustained contraction, which required Ca2+ entry, was partially blocked by 1 microM nifedipine (an L-type Ca2+ channel blocker) but relatively insensitive to 100 microM Gd3+. The 5-oxo-ETE responses were also inhibited by indomethacin and SC-560 [a cyclooxygenase (COX-1) inhibitor] pretreatments but not by NS-398 (a selective COX-2 inhibitor). The contractile effects of 5-oxo-ETE on ASM were inhibited by the selective TXA2 receptor (TP receptor) antagonist SQ-29548 (-75%) and by 2-(p-amylcinnamoyl) amino-4-chlorobenzoic acid pretreatment, a phospholipase A2 inhibitor (-66%), suggesting that the major part of its effect is mediated by the release of TXA2. ASM responses to 5-oxo-ETE were also blocked by the Rho-kinase inhibitor Y-27632, which also partially inhibited the response to the TP receptor agonist U-46619, suggesting that the contractile response is due in part to Ca2+ sensitization of ASM cell myofilaments.  相似文献   

20.
Human polymorphonuclear leukocytes (PMNL) convert 6-trans isomers of leukotriene B4 (LTB4) to dihydro metabolites (Powell, W.S., and Gravelle, F. (1988) J. Biol. Chem. 263, 2170-2177). In the present study we investigated the mechanism for the initial step in the formation of these products. We found that the 1,500 x g supernatant fraction from human PMNL converts 12-epi-6-trans-LTB4 to its 5-oxo metabolite which was identified by mass spectrometry and UV spectrophotometry. The latter compound was subsequently converted to the corresponding dihydro-oxo product, which was further metabolized to 6,11-dihydro-12-epi-6-trans-LTB4, which was the major product after longer incubation times. The 5-hydroxyeicosanoid dehydrogenase activity is localized in the microsomal fraction and requires NADP+ as a cofactor. These experiments therefore suggest that the initial step in the formation of dihydro metabolites of 6-trans isomers of LTB4 is oxidation of the 5-hydroxyl group by a microsomal dehydrogenase. Studies with a variety of substrates revealed that the microsomal dehydrogenase in human PMNL oxidizes the hydroxyl groups of a number of other eicosanoids which contain a 5(S)-hydroxyl group followed by a 6-trans double bond. There is little or no oxidation of hydroxyl groups in the 8-, 9-, 11-, 12-, or 15-positions of eicosanoids, or of the 5-hydroxyl group of LTB4, which has a 6-cis rather than a 6-trans double bond. The preferred substrate for this enzyme is 5(S)-hydroxy-6,8,11,14-eicosatetraenoic acid (5(S)-HETE) (Km, 0.2 microM), which is converted to 5-oxo-6,8,11,14-eicosatetraenoic acid. Unlike 5(S)-HETE, 5(R)-HETE is a poor substrate for the 5(S)-hydroxyeicosanoid dehydrogenase, indicating that in addition to exhibiting a high degree of positional specificity, this enzyme is also highly stereospecific. In addition to 5(S)-HETE and 6-trans isomers of LTB4, 5,15-diHETE is also a good substrate for this enzyme, being converted to 5-oxo-15-hydroxy-6,8,11,13-eicosatetraenoic acid (5-oxo-15-hydroxy-ETE). The oxidation of 5(S)-HETE to 5-oxo-ETE is reversible since human PMNL microsomes stereospecifically reduce 5-oxo-ETE to the 5(S)-hydroxy compound in the presence of NADPH. 5-Oxo-ETE is formed rapidly from 5(S)-HETE by intact human PMNL, but because of the reversibility of the reaction, its concentration only reaches about 25% that of 5(S)-HETE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号