首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AMPA receptors (AMPARs) are tetrameric ion channels that mediate rapid glutamate signaling in neurons and many non-neuronal cell types. Endoplasmic reticulum (ER) quality control mechanisms permit only correctly folded functional receptors to be delivered to the cell surface. We analyzed the biosynthetic maturation and transport of all 12 GluA1–4 subunit splice variants as homomeric receptors and observed robust isoform-dependent differences in ER exit competence and surface expression. In contrast to inefficient ER exit of both GluA3 splice forms and the flop variants of GluA1 and GluA4, prominent plasma membrane expression was observed for the other AMPAR isoforms. Surprisingly, deletion of the entire N-terminal domain did not alter the transport phenotype, nor did the different cytosolic C-terminal tail splice variants. Detailed analysis of mutant receptors led to the identification of distinct residues in the ligand-binding domain as primary determinants for isoform-specific maturation. Considered together with the essential role of bound agonist, our findings reveal the ligand-binding domain as the critical quality control target in AMPAR biogenesis.  相似文献   

2.
Ionotropic glutamate receptors are widely distributed in the central nervous system and play a major role in excitatory synaptic transmission. All three ionotropic glutamate subfamilies (i.e. AMPA-type, kainate-type, and NMDA-type) assemble as tetramers of four homologous subunits. There is good evidence that both heteromeric AMPA and kainate receptors have a 2:2 subunit stoichiometry and an alternating subunit arrangement. Recent studies based on presumed structural homology have indicated that NMDA receptors adopt the same arrangement. Here, we use atomic force microscopy imaging of receptor-antibody complexes to show that whereas the GluA1/GluA2 AMPA receptor assembles with an alternating (i.e. 1/2/1/2) subunit arrangement, the GluN1/GluN2A NMDA receptor adopts an adjacent (i.e. 1/1/2/2) arrangement. We conclude that the two types of ionotropic glutamate receptor are built in different ways from their constituent subunits. This surprising finding necessitates a reassessment of the assembly of these important receptors.  相似文献   

3.
Inhibitors of AMPA-type glutamate ion channels are useful as biochemical probes for structure-function studies and as drug candidates for a number of neurological disorders and diseases. Here, we describe the identification of an RNA inhibitor or aptamer by an in vitro evolution approach and a characterization of its mechanism of inhibition on the sites of interaction by equilibrium binding and on the receptor channel opening rate by a laser-pulse photolysis technique. Our results show that the aptamer is a noncompetitive inhibitor that selectively inhibits the GluA2Q(flip) AMPA receptor subunit without any effect on other AMPA receptor subunits or kainate or NMDA receptors. On the GluA2 subunit, this aptamer preferentially inhibits the flip variant. Furthermore, the aptamer preferentially inhibits the closed-channel state of GluA2Q(flip) with a K(I) = 1.5 μM or by ~15-fold over the open-channel state. The potency and selectivity of this aptamer rival those of small molecule inhibitors. Together, these properties make this aptamer a promising candidate for the development of water-soluble, highly potent, and GluA2 subunit-selective drugs.  相似文献   

4.
The Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII) and the NMDA-type glutamate receptor are key regulators of synaptic plasticity underlying learning and memory. Direct binding of CaMKII to the NMDA receptor subunit GluN2B (formerly known as NR2B) (i) is induced by Ca2+/CaM but outlasts this initial Ca2+-stimulus, (ii) mediates CaMKII translocation to synapses, and (iii) regulates synaptic strength. CaMKII binds to GluN2B around S1303, the major CaMKII phosphorylation site on GluN2B. We show here that a phospho-mimetic S1303D mutation inhibited CaM-induced CaMKII binding to GluN2B in vitro, presenting a conundrum how binding can occur within cells, where high ATP concentration should promote S1303 phosphorylation. Surprisingly, addition of ATP actually enhanced the binding. Mutational analysis revealed that this positive net effect was caused by four modulatory effects of ATP, two positive (direct nucleotide binding and CaMKII T286 autophosphorylation) and two negative (GluN2B S1303 phosphorylation and CaMKII T305/6 autophosphorylation). Imaging showed positive regulation by nucleotide binding also within transfected HEK cells and neurons. In fact, nucleotide binding was a requirement for efficient CaMKII interaction with GluN2B in cells, while T286 autophosphorylation was not. Kinetic considerations support a model in which positive regulation by nucleotide binding and T286 autophosphorylation occurs faster than negative modulation by GluN2B S1303 and CaMKII T305/6 phosphorylation, allowing efficient CaMKII binding to GluN2B despite the inhibitory effects of the two slower reactions.  相似文献   

5.
The prefrontal cortex (PFC), a key brain region for cognitive and emotional processes, is highly regulated by dopaminergic inputs. The dopamine D4 receptor, which is enriched in PFC, has been implicated in mental disorders, such as attention deficit-hyperactivity disorder and schizophrenia. Recently we have found homeostatic regulation of AMPA receptor-mediated synaptic transmission in PFC pyramidal neurons by the D4 receptor, providing a potential mechanism for D4 in stabilizing cortical excitability. Because stress is tightly linked to adaptive and maladaptive changes associated with mental health and disorders, we examined the synaptic actions of D4 in stressed rats. We found that neural excitability was elevated by acute stress and dampened by repeated stress. D4 activation produced a potent reduction of excitatory transmission in acutely stressed animals and a marked increase of excitatory transmission in repeatedly stressed animals. These effects of D4 targeted GluA2-lacking AMPA receptors and relied on the bi-directional regulation of calcium/calmodulin kinase II activity. The restoration of PFC glutamatergic transmission in stress conditions may enable D4 receptors to serve as a synaptic stabilizer in normal and pathological conditions.  相似文献   

6.
7.
Trafficking of NMDA receptors to the surface of neurons and to synapses is critical for proper brain function and activity-dependent plasticity. Recent evidence suggests that surface trafficking of other ionotropic glutamate receptors requires ligand binding for exit from the endoplasmic reticulum. Here, we show that glutamate binding to GluN2 is required for trafficking of NMDA receptors to the cell surface. We expressed a panel of GluN2B ligand binding mutants in heterologous cells with GluN1 or in rat cultured neurons and found that surface expression correlates with glutamate efficacy. Such a correlation was found even in the presence of dominant negative dynamin to inhibit endocytosis and surface expression correlated with Golgi localization, indicating differences in forward trafficking. Co-expression of wild type GluN2B did not enhance surface expression of the mutants, suggesting that glutamate must bind to both GluN2 subunits in a tetramer and that surface expression is limited by the least avid of the two glutamate binding sites. Surface trafficking of a constitutively closed cleft GluN2B was indistinguishable from that of wild type, suggesting that glutamate concentrations are typically not limiting for forward trafficking. YFP-GluN2B expressed in hippocampal neurons from GluN2B(-/-) mice rescued synaptic accumulation at similar levels to wild type. Under these conditions, surface synaptic accumulation of YFP-GluN2B mutants also correlated with apparent glutamate affinity. Altogether, these results indicate that glutamate controls forward trafficking of NMDA receptors to the cell surface and to synapses and raise the intriguing idea that NMDA receptors may be functional at intracellular sites.  相似文献   

8.
9.
Accumulating evidence suggests that glycogen synthase kinase 3 (GSK-3) is a multifunctional kinase implicated in neuronal development, mood stabilization, and neurodegeneration. However, the synaptic actions of GSK-3 are largely unknown. In this study, we examined the impact of GSK-3 on AMPA receptor (AMPAR) channels, the major mediator of excitatory transmission, in cortical neurons. Application of GSK-3 inhibitors or knockdown of GSK-3 caused a significant reduction of the amplitude of miniature excitatory postsynaptic current (mEPSC), a readout of the unitary strength of synaptic AMPARs. Treatment with GSK-3 inhibitors also decreased surface and synaptic GluR1 clusters on dendrites and increased internalized GluR1 in cortical cultures. Rab5, the small GTPase controlling the transport from plasma membrane to early endosomes, was activated by GSK-3 inhibitors. Knockdown of Rab5 prevented GSK-3 inhibitors from regulating mEPSC amplitude. Guanyl nucleotide dissociation inhibitor (GDI), which regulates the cycle of Rab5 between membrane and cytosol, formed an increased complex with Rab5 after treatment with GSK-3 inhibitors. Blocking the function of GDI occluded the effect of GSK-3 inhibitors on mEPSC amplitude. In cells transfected with the non-phosphorylatable GDI mutant, GDI(S45A), GSK-3 inhibitors lost the capability to regulate GDI-Rab5 complex, mEPSC amplitude, and AMPAR surface expression. These results suggest that GSK-3, via altering the GDI-Rab5 complex, regulates Rab5-mediated endocytosis of AMPARs. It provides a potential mechanism underlying the role of GSK-3 in synaptic transmission and plasticity.  相似文献   

10.
Amyloid-β and tau protein are the two most prominent factors in the pathology of Alzheimer disease. Recent studies indicate that phosphorylated tau might affect synaptic function. We now show that endogenous tau is found at postsynaptic sites where it interacts with the PSD95-NMDA receptor complex. NMDA receptor activation leads to a selective phosphorylation of specific sites in tau, regulating the interaction of tau with Fyn and the PSD95-NMDA receptor complex. Based on our results, we propose that the physiologically occurring phosphorylation of tau could serve as a regulatory mechanism to prevent NMDA receptor overexcitation.  相似文献   

11.
AMPA receptors (AMPARs) are glutamate-gated ion channels ubiquitous in the vertebrate central nervous system, where they mediate fast excitatory neurotransmission and act as molecular determinants of memory formation and learning. Together with detailed analyses of individual AMPAR domains, structural studies of full-length AMPARs by electron microscopy and x-ray crystallography have provided important insights into channel assembly and function. However, the correlation between the structure and functional states of the channel remains ambiguous particularly because these functional states can be assessed only with the receptor bound within an intact lipid bilayer. To provide a basis for investigating AMPAR structure in a membrane environment, we developed an optimized reconstitution protocol using a receptor whose structure has previously been characterized by electron microscopy. Single-channel recordings of reconstituted homomeric GluA2flop receptors recapitulate key electrophysiological parameters of the channels expressed in native cellular membranes. Atomic force microscopy studies of the reconstituted samples provide high-resolution images of membrane-embedded full-length AMPARs at densities comparable to those in postsynaptic membranes. The data demonstrate the effect of protein density on conformational flexibility and dimensions of the receptors and provide the first structural characterization of functional membrane-embedded AMPARs, thus laying the foundation for correlated structure-function analyses of the predominant mediators of excitatory synaptic signals in the brain.  相似文献   

12.
Oligodendrocytes, the myelinating cells of the CNS, are highly vulnerable to glutamate excitotoxicity, a mechanism involved in tissue damage in multiple sclerosis. Thus, understanding oligodendrocyte death at the molecular level is important to develop new therapeutic approaches to treat the disease. Here, using microarray analysis and quantitative PCR, we observed that dual-specific phosphatase-6 (Dusp6), an extracellular regulated kinase-specific phosphatase, is up-regulated in oligodendrocyte cultures as well as in optic nerves after AMPA receptor activation. In turn, Dusp6 is overexpressed in optic nerves from multiple sclerosis patients before the appearance of evident damage in this structure. We further analyzed the role of Dusp6 and ERK signaling in excitotoxic oligodendrocyte death and observed that AMPA receptor activation induces a rapid increase in ERK1/2 phosphorylation. Blocking Dusp6 expression, which enhances ERK1/2 phosphorylation, significantly diminished AMPA receptor-induced oligodendrocyte death. In contrast, MAPK/ERK pathway inhibition with UO126 significantly potentiates excitotoxic oligodendrocyte death and increases cytochrome c release, mitochondrial depolarization, and mitochondrial calcium overload produced by AMPA receptor stimulation. Upstream analysis demonstrated that MAPK/ERK signaling alters AMPA receptor properties. Indeed, Dusp6 overexpression as well as incubation with UO126 produced an increase in AMPA receptor-induced inward currents and cytosolic calcium overload. Together, these data suggest that levels of phosphorylated ERK, controlled by Dusp6 phosphatase, regulate glutamate receptor permeability and oligodendroglial excitotoxicity. Therefore, targeting Dusp6 may be a useful strategy to prevent oligodendrocyte death in multiple sclerosis and other diseases involving CNS white matter.  相似文献   

13.
GluA1 (formerly GluR1) AMPA receptor subunit phosphorylation at Ser-831 is an early biochemical marker for long-term potentiation and learning. This site is a substrate for Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) and protein kinase C (PKC). By directing PKC to GluA1, A-kinase anchoring protein 79 (AKAP79) facilitates Ser-831 phosphorylation and makes PKC a more potent regulator of GluA1 than CaMKII. PKC and CaM bind to residues 31-52 of AKAP79 in a competitive manner. Here, we demonstrate that common CaMKII inhibitors alter PKC and CaM interactions with AKAP79(31-52). Most notably, the classical CaMKII inhibitors KN-93 and KN-62 potently enhanced the association of CaM to AKAP79(31-52) in the absence (apoCaM) but not the presence of Ca(2+). In contrast, apoCaM association to AKAP79(31-52) was unaffected by the control compound KN-92 or a mechanistically distinct CaMKII inhibitor (CaMKIINtide). In vitro studies demonstrated that KN-62 and KN-93, but not the other compounds, led to apoCaM-dependent displacement of PKC from AKAP79(31-52). In the absence of CaMKII activation, complementary cellular studies revealed that KN-62 and KN-93, but not KN-92 or CaMKIINtide, inhibited PKC-mediated phosphorylation of GluA1 in hippocampal neurons as well as AKAP79-dependent PKC-mediated augmentation of recombinant GluA1 currents. Buffering cellular CaM attenuated the ability of KN-62 and KN-93 to inhibit AKAP79-anchored PKC regulation of GluA1. Therefore, by favoring apoCaM binding to AKAP79, KN-62 and KN-93 derail the ability of AKAP79 to efficiently recruit PKC for regulation of GluA1. Thus, AKAP79 endows PKC with a pharmacological profile that overlaps with CaMKII.  相似文献   

14.
N-methyl-d-aspartate (NMDA) receptors are glutamate ionotropic receptors that play critical roles in synaptic transmission, plasticity, and excitotoxicity. The functional NMDA receptors, heterotetramers composed mainly of two NR1 and two NR2 subunits, likely pass endoplasmic reticulum quality control before they are released from the endoplasmic reticulum and trafficked to the cell surface. However, the mechanism underlying this process is not clear. Using truncated and mutated NMDA receptor subunits expressed in heterologous cells, we found that the M3 domains of both NR1 and NR2 subunits contain key amino acid residues that contribute to the regulation of the number of surface functional NMDA receptors. These key residues are critical neither for the interaction between the NR1 and NR2 subunits nor for the formation of the functional receptors, but rather they regulate the early trafficking of the receptors. We also found that the identified key amino acid residues within both NR1 and NR2 M3 domains contribute to the regulation of the surface expression of unassembled NR1 and NR2 subunits. Thus, our data identify the unique role of the membrane domains in the regulation of the number of surface NMDA receptors.  相似文献   

15.
The majority of excitatory neurotransmission in the CNS is mediated by tetrameric AMPA receptors. Channel activation begins with a series of interactions with an agonist that binds to the cleft between the two lobes of the ligand-binding domain of each subunit. Binding leads to a series of conformational transitions, including the closure of the two lobes of the binding domain around the ligand, culminating in ion channel opening. Although a great deal has been learned from crystal structures, determining the molecular details of channel activation, deactivation, and desensitization requires measures of dynamics and stabilities of hydrogen bonds that stabilize cleft closure. The use of hydrogen-deuterium exchange at low pH provides a measure of the variation of stability of specific hydrogen bonds among agonists of different efficacy. Here, we used NMR measurements of hydrogen-deuterium exchange to determine the stability of hydrogen bonds in the GluA2 (AMPA receptor) ligand-binding domain in the presence of several full and partial agonists. The results suggest that the stabilization of hydrogen bonds between the two lobes of the binding domain is weaker for partial than for full agonists, and efficacy is correlated with the stability of these hydrogen bonds. The closure of the lobes around the agonists leads to a destabilization of the hydrogen bonding in another portion of the lobe interface, and removing an electrostatic interaction in Lobe 2 can relieve the strain. These results provide new details of transitions in the binding domain that are associated with channel activation and desensitization.  相似文献   

16.
17.
Regulation of neuronal NMDA receptor (NMDAR) is critical in synaptic transmission and plasticity. Protein kinase C (PKC) promotes NMDAR trafficking to the cell surface via interaction with NMDAR-associated proteins (NAPs). Little is known, however, about the NAPs that are critical to PKC-induced NMDAR trafficking. Here, we showed that calcium/calmodulin-dependent protein kinase II (CaMKII) could be a NAP that mediates the potentiation of NMDAR trafficking by PKC. PKC activation promoted the level of autophosphorylated CaMKII and increased association with NMDARs, accompanied by functional NMDAR insertion, at postsynaptic sites. This potentiation, along with PKC-induced long term potentiation of the AMPA receptor-mediated response, was abolished by CaMKII antagonist or by disturbing the interaction between CaMKII and NR2A or NR2B. Further mutual occlusion experiments demonstrated that PKC and CaMKII share a common signaling pathway in the potentiation of NMDAR trafficking and long-term potentiation (LTP) induction. Our results revealed that PKC promotes NMDA receptor trafficking and induces synaptic plasticity through indirectly triggering CaMKII autophosphorylation and subsequent increased association with NMDARs.  相似文献   

18.
RAS-GRF1 is a guanine nucleotide exchange factor with the ability to activate RAS and RAC GTPases in response to elevated calcium levels. We previously showed that beginning at 1 month of age, RAS-GRF1 mediates NMDA-type glutamate receptor (NMDAR)-induction of long term depression in the CA1 region of the hippocampus of mice. Here we show that beginning at 2 months of age, when mice first acquire the ability to discriminate between closely related contexts, RAS-GRF1 begins to contribute to the induction of long term potentiation (LTP) in the CA1 hippocampus by mediating the action of calcium-permeable, AMPA-type glutamate receptors (CP-AMPARs). Surprisingly, LTP induction by CP-AMPARs through RAS-GRF1 occurs via activation of p38 MAP kinase rather than ERK MAP kinase, which has more frequently been linked to LTP. Moreover, contextual discrimination is blocked by knockdown of Ras-Grf1 expression specifically in the CA1 hippocampus, infusion of a p38 MAP kinase inhibitor into the CA1 hippocampus, or the injection of an inhibitor of CP-AMPARs. These findings implicate the CA1 hippocampus in the developmentally dependent capacity to distinguish closely related contexts through the appearance of a novel LTP-supporting signaling pathway.  相似文献   

19.
Glutamate is the major excitatory neurotransmitter of the central nervous system (CNS) and may induce cytotoxicity through persistent activation of glutamate receptors and oxidative stress. Its extracellular concentration is maintained at physiological concentrations by high affinity glutamate transporters of the solute carrier 1 family (SLC1). Glutamate is also present in islet of Langerhans where it is secreted by the α-cells and acts as a signaling molecule to modulate hormone secretion. Whether glutamate plays a role in islet cell viability is presently unknown. We demonstrate that chronic exposure to glutamate exerts a cytotoxic effect in clonal β-cell lines and human islet β-cells but not in α-cells. In human islets, glutamate-induced β-cell cytotoxicity was associated with increased oxidative stress and led to apoptosis and autophagy. We also provide evidence that the key regulator of extracellular islet glutamate concentration is the glial glutamate transporter 1 (GLT1). GLT1 localizes to the plasma membrane of β-cells, modulates hormone secretion, and prevents glutamate-induced cytotoxicity as shown by the fact that its down-regulation induced β-cell death, whereas GLT1 up-regulation promoted β-cell survival. In conclusion, the present study identifies GLT1 as a new player in glutamate homeostasis and signaling in the islet of Langerhans and demonstrates that β-cells critically depend on its activity to control extracellular glutamate levels and cellular integrity.  相似文献   

20.
N-Methyl-d-aspartate (NMDA) receptors are expressed at excitatory synapses throughout the brain and are essential for neuronal development and synaptic plasticity. Functional NMDA receptors are tetramers, typically composed of NR1 and NR2 subunits (NR2A–D). NR2A and NR2B are expressed in the forebrain and are thought to assemble as diheteromers (NR1/NR2A, NR1/NR2B) and triheteromers (NR1/NR2A/NR2B). NR2A and NR2B contain cytosolic domains that regulate distinct postendocytic sorting events, with NR2A sorting predominantly into the degradation pathway, and NR2B preferentially trafficking through the recycling pathway. However, the interplay between these two subunits remains an open question. We have now developed a novel approach based on the dimeric feature of the α- and β-chains of the human major histocompatibility complex class II molecule. We created chimeras of α- and β-chains with the NR2A and NR2B C termini and evaluated endocytosis of dimers. Like chimeric proteins containing only a single NR2A or NR2B C-terminal domain, major histocompatibility complex class II-NR2A homodimers sort predominantly to late endosomes, whereas NR2B homodimers traffic to recycling endosomes. Interestingly, NR2A/NR2B heterodimers traffic preferentially through the recycling pathway, and NR2B is dominant in regulating dimer trafficking in both heterologous cells and neurons. In addition, the recycling of NR2B-containing NMDARs in wild-type neurons is not significantly different from NR2A−/− neurons. These data support a dominant role for NR2B in regulating the trafficking of triheteromeric NMDARs in vivo. Furthermore, our molecular approach allows for the direct and selective evaluation of dimeric assemblies and can be used to define dominant trafficking domains in other multisubunit protein complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号