首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chlorarachniophytes are enigmatic marine unicellular algae that acquired photosynthesis by secondary endosymbiosis. Chlorarachniophytes are unusual in that the nucleus of the engulfed algal cell (a green alga) persists in a miniaturized form, termed a nucleomorph. The nucleomorph genome of the model chlorarachniophyte, Bigelowiella natans CCMP621, is 373 kilobase pairs (kbp) in size, the smallest nuclear genome characterized to date. The B. natans nucleomorph genome is composed of three chromosomes, each with canonical eukaryotic telomeres and sub-telomeric ribosomal DNA (rDNA) operons transcribed away from the chromosome end. Here we present the complete rDNA operon and telomeric region from the nucleomorph genome of Lotharella oceanica CCMP622, a newly characterized chlorarachniophyte strain with a genome ~610 kbp in size, significantly larger than all other known chlorarachniophytes. We show that the L. oceanica rDNA operon is in the opposite chromosomal orientation to that of B. natans. Furthermore, we determined the rDNA operon orientation of five additional chlorarachniophyte strains, the majority of which possess the same arrangement as L. oceanica, with the exception of Chlorarachnion reptans and those very closely related to B. natans. It is thus possible that the ancestral rDNA operon orientation of the chlorarachniophyte nucleomorph genome might have been the same as in the independently evolved, red algal-derived, nucleomorph genomes of cryptophytes. A U2 small nuclear RNA gene was found adjacent to the telomere in Gymnochlora stellata CCMP2057 and Chlorarachnion sp. CCMP2014. This feature may represent a useful evolutionary character for inferring the relationships among extant lineages.  相似文献   

2.
Chlorarachniophytes are flagellated and/or reticulopod-forming marine algae with chlorophyll a- and b-containing plastids of secondary endosymbiotic origin. They are one of only two algal groups known to possess a "nucleomorph" (i.e. the remnant nucleus of the eukaryotic endosymbiont that donated the plastid). Apart from the recently sequenced nucleomorph genome of Bigelowiella natans, little is known about the size, structure, and composition of chlorarachniophyte nucleomorph genomes. Toward the goal of better understanding nucleomorph genome diversity, as well as establishing a phylogenetic framework with which to interpret variation in chlorarachniophyte morphology, ultrastructure, and life cycle, we are studying a wide range of chlorarachniophyte strains from public culture collections and natural habitats. We have obtained 22 new chlorarachniophyte nuclear and nucleomorph 18S rRNA gene (18S rDNA) sequences and nucleomorph genome size estimates for 14 different strains. Consistent with previous studies, all of the chlorarachniophytes examined appear to possess three nucleomorph chromosomes. However, our results suggest considerable variation in nucleomorph genome size and structure, with individual chromosome sizes ranging from approximately 90 to approximately 210 kbp, and total genome sizes between approximately 330 kbp in Lotharella amoebiformis and approximately 610 kbp in unidentified chlorarachniophyte strain CCMP622. The significance of these phylogenetic and nucleomorph karyotype data is discussed.  相似文献   

3.
基因组序列k-mer的非随机使用规律及包含的生物学意义一直是人们关注的问题,目前还没有根本性进展。本文以七个物种的全部基因序列为样本,得到各物种基因组序列的8-mer频谱分布。发现狗和牛的频谱有三个峰,而斑马鱼、青鳉鱼、秀丽线虫和酿酒酵母的频谱只有一个峰,鸡的频谱分布形状介于两者之间。将8-mer集合按照XY二核苷含量分类,结果显示只有CG二核苷分类下0CG、1CG和2CG三类子集的频谱形成各自独立的单峰分布。对照随机序列,发现0CG模体是随机进化的,1CG和2CG模体是定向进化的,它们的使用频次远小于随机频次,且这种独立进化分离规律具有物种普适性。三个CG子集频谱之间的距离是产生单峰或多峰现象的根本原因。将七个物种基因组序列标准化到109bp,比较发现1CG和2CG子集频谱与物种进化显著相关,0CG子集频谱与物种进化无显著关系。可以认为三种CG模体各自执行着不同的生物学功能。基因组序列8-mer的独立分离规律为揭示基因组结构、基因组进化以及模体的生物功能提供了一种新的思维方式。  相似文献   

4.

Background

Whales have captivated the human imagination for millennia. These incredible cetaceans are the only mammals that have adapted to life in the open oceans and have been a source of human food, fuel and tools around the globe. The transition from land to water has led to various aquatic specializations related to hairless skin and ability to regulate their body temperature in cold water.

Results

We present four common minke whale (Balaenoptera acutorostrata) genomes with depth of ×13 ~ ×17 coverage and perform resequencing technology without a reference sequence. Our results indicated the time to the most recent common ancestors of common minke whales to be about 2.3574 (95% HPD, 1.1521 – 3.9212) million years ago. Further, we found that genes associated with epilation and tooth-development showed signatures of positive selection, supporting the morphological uniqueness of whales.

Conclusions

This whole-genome sequencing offers a chance to better understand the evolutionary journey of one of the largest mammals on earth.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1213-1) contains supplementary material, which is available to authorized users.  相似文献   

5.
Large scale changes in nuclear DNA amount accompany the evolution of species of higher plants. Much of the nuclear DNA accrued during the evolution of species does not encode genetic information and is selectively neutral. Nonetheless, the pattern of distribution of the excess DNA within and between chromosome complements suggests that there are rigid constraints underlying evolutionary changes in genome organisation. A five-fold increase in the amount of nuclear DNA has occurred in the evolution ofLathyrus species. Not withstanding this massive DNA variation, species show consistently similar patterns in base sequence proliferation, divergence and DNA distribution within and between chromosome complements. Within chromosome complements, the excess DNA is distributed evenly in all chromosomes irrespective of the large differences in chromosome size and, between complements, DNA distribution is discontinuous; species cluster into DNA groups with remarkably regular intervals. Similar constraints govern the frequency and distribution of chiasmata in the chromosome complements. Between species chiasma frequency and nuclear DNA amounts are not correlated but within complements it is positively correlated with the amount of DNA contained in each chromosome.  相似文献   

6.
Red algae (Rhodophyta) putatively diverged from the eukaryote tree of life >1.2 billion years ago and are the source of plastids in the ecologically important diatoms, haptophytes, and dinoflagellates. In general, red algae contain the largest plastid gene inventory among all such organelles derived from primary, secondary, or additional rounds of endosymbiosis. In contrast, their nuclear gene inventory is reduced when compared to their putative sister lineage, the Viridiplantae, and other photosynthetic lineages. The latter is thought to have resulted from a phase of genome reduction that occurred in the stem lineage of Rhodophyta. A recent comparative analysis of a taxonomically broad collection of red algal and Viridiplantae plastid genomes demonstrates that the red algal ancestor encoded ~1.5× more plastid genes than Viridiplantae. This difference is primarily explained by more extensive endosymbiotic gene transfer (EGT) in the stem lineage of Viridiplantae, when compared to red algae. We postulate that limited EGT in Rhodophytes resulted from the countervailing force of ancient, and likely recurrent, nuclear genome reduction. In other words, the propensity for nuclear gene loss led to the retention of red algal plastid genes that would otherwise have undergone intracellular gene transfer to the nucleus. This hypothesis recognizes the primacy of nuclear genome evolution over that of plastids, which have no inherent control of their gene inventory and can change dramatically (e.g., secondarily non‐photosynthetic eukaryotes, dinoflagellates) in response to selection acting on the host lineage.  相似文献   

7.
The nuclear genome of eukaryotes contains large amounts of cytoplasmic organelle DNA (nuclear integrants of organelle DNA [norgs]). The recent sequencing of many mitochondrial and chloroplast genomes has enabled investigation of the potential role of norgs in endosymbiotic evolution. In this article, we describe a new polymerase chain reaction-based method that allows the identification and evolutionary study of recent and older norgs in a range of eukaryotes. We tested this method in the genus Nicotiana and obtained sequences from seven nuclear integrants of plastid DNA (nupts) totaling 25 kb in length. These nupts were estimated to have been transferred 0.033 to 5.81 million years ago. The spectrum of mutations present in the potential protein-coding sequences compared with the noncoding sequences of each nupt revealed that nupts evolve in a nuclear-specific manner and are under neutral evolution. Indels were more frequent in noncoding regions than in potential coding sequences of former chloroplastic DNA, most probably due to the presence of a higher number of homopolymeric sequences. Unexpectedly, some potential protein-coding sequences within the nupts still contained intact open reading frames for up to 5.81 million years. These results suggest that chloroplast genes transferred to the nucleus have in some cases several millions of years to acquire nuclear regulatory elements and become functional. The different factors influencing this time frame and the potential role of nupts in endosymbiotic gene transfer are discussed.  相似文献   

8.
Essentially all of the sequences in the pea (Pisum sativum) genome which reassociate with single copy kinetics at standard (Tm -25°C) criterion follow repetitive kinetics at lower temperatures (about Tm-35°C). Analysis of thermal stability profiles for presumptive single copy duplexes show that they contain substantial mismatch even when formed at standard criterion. Thus most of the sequences in the pea genome which are conventionally defined as single copy are actually fossil repeats — that is, they are members of extensively diverged (mutuated) and thus presumably ancient families of repeated sequences. Coding sequences as represented by a cDNA probe prepared from poly-somal poly(A) + mRNA reassociate with single copy kinetics regardless of criterion and do not form mismatched duplexes. The coding regions thus appear to be composed of true single copy sequences but they cannot represent more than a few percent of the pea genome. Ancient diverged repeats are present, but not a prominent feature of the smaller mung bean (Vigna radiata) genome. An extension of a simple evolutionary model is proposed in which these and other differences in genome organization are considered to reflect different rates of sequence amplification or genome turnover during evolution. The model accounts for some of the differences between typical plant and animal genomes.  相似文献   

9.
A theory of an early stage of genome evolution by combinatorial fusion of circular DNA units is suggested, based on protein sequence fossil evidence. The evidence includes preference of protein sequence lengths for certain sizes—multiples of 123 as for eukaryotes and multiples of 152 as for prokaryotes. At the DNA level these sizes correspond to 350–450 base pairs—the known optimal range for DNA ring closure. The methionine residues repeatedly appear along the sequences with the same period of about 120 as (in eukaryotes), presumably marking the sites of insertion of the early genes—rings of protein-coding DNA. No torsional constraint in this DNA results in very sharp estimate of the helical periodicity of the early DNA, indistinguishable from the experimental mean value for extant DNA. According to the combinatorial fusion theory, based on the above evidence, in the pregenomic, prerecombinational stage the genes and the noncoding sequences existed in form of autonomously replicating DNA rings of close to standard size, randomly segregating between dividing cells, like modern plasmids do. In the recombinational early genomic stage the rings started to fuse, forming larger DNA molecules consisting of several unit genes connected in various combinations and forming long protein-coding sequences (combinatorial fusion). This process, which involved, perhaps, noncoding sequences as well, eventually resulted in the formation of large genomes. The dispersed circular DNA—or, rather, evolutionarily advanced derivatives thereof—may still exist in the form of various mobile DNA elements.  相似文献   

10.
Summary The mitochondrial genome of yeast (S. cerevisiae orS. carlsbergensis) appears to be formed by 60–70 genetic units, each one of which is formed by (1) a GC-rich sequence, possibly having a regulatory role; (2) a gene, and (3) an AT-rich spacer, which probably is not transcribed. Recombination in this genome appears to underlie a number of important phenomena. The organization of the mitochondrial genome of yeast and these recombinational events are discussed in relationship with the organization and evolution of the nuclear genome of eukaryotes.  相似文献   

11.
《Fungal Biology Reviews》2020,34(3):136-143
The interaction of pathogens with their hosts creates strong reciprocal selection pressures. Pathogens often deploy an arsenal of small proteins called effectors that manipulate the plant immune system and promote disease. In the post-genomics era, a major interest has been to understand what shapes the localization of effector genes in pathogen genomes. The two-speed genome model originated with the discovery of repeat-rich and gene-sparse genome compartments with an over-representation of effector-like genes in a subset of plant pathogens. These highly polymorphic genome compartments are thought to create unique niches for effector genes and facilitate rapid adaptation. Research over the past decade has revealed a number of twists to the two-speed genome model and raised questions about the universality among plant pathogens. Here, we critically review the foundations of the two-speed model by presenting recent work on epigenetics, transposable element dynamics, and population genetics. Numerous examples have demonstrated that the location of effector genes in rapidly evolving compartments has created key adaptations. However, recent evidence suggests that the two-speed genome is unlikely to have evolved to specifically benefit the plant pathogen lifestyle. We propose that fundamental drivers of eukaryotic genome evolution have shaped both pathogen and non-pathogen genomes alike. An evolutionary genomics perspective on the two-speed genome model will open up fruitful new research avenues.  相似文献   

12.
Tomato genomic libraries were screened for the presence of simple sequence repeats (SSRs) with seventeen synthetic oligonucleotide probes, consisting of 2- to 5-basepair motifs repeated in tandem. GAn and GTn sequences were found to occur most frequently in the tomato genome (every 1.2 Mb), followed by ATTn and GCCn (every 1.4 Mb and 1.5 Mb, respectively). In contrast, only ATn and GAn microsatellites (n > 7) were found to be frequent in the GenBank database, suggesting that other motifs may be preferentially located away from genes. Polymorphism of microsatellites was measured by PCR amplification of individual loci or by Southern hybridization, using a set of ten tomato cultivars. Surprisingly, only two of the nine microsatellite clones surveyed (five GTn, three GAn and one ATTn), showed length variation among these accessions. Polymorphism was also very limited betweenLycopersicon esculentum andL. pennelli, two distant species. Southern analysis using the seventeen oligonucleotide probes identified GATAn and GAAAn as useful motifs for the detection of multiple polymorphic fragments among tomato cultivars. To determine the structure of microsatellite loci, a GAn probe was used for hybridization at low stringency on a small insert genomic library, and randomly selected clones were analyzed. GAn based motifs of increasing complexity were found, indicating that simple dinucleotide sequences may have evolved into larger tandem repeats such as minisatellites as a result of basepair substitution, replication slippage, and possibly unequal crossing-over. Finally, we genetically mapped loci corresponding to two amplified microsatellites, as well as nine large hypervariable fragments detected by Southern hybridization with a GATA8 probe. All loci are located around putative tomato centromeres. This may contribute to understanding of the structure of centromeric regions in tomato.  相似文献   

13.

Background

Two Calyptogena clam intracellular obligate symbionts, Ca. Vesicomyosocius okutanii (Vok; C. okutanii symbiont) and Ca. Ruthia magnifica (Rma; C. magnifica symbiont), have small genomes (1.02 and 1.16 Mb, respectively) with low G+C contents (31.6% and 34.0%, respectively) and are thought to be in an ongoing stage of reductive genome evolution (RGE). They lack recA and some genes for DNA repair, including mutY. The loss of recA and mutY is thought to contribute to the stabilization of their genome architectures and GC bias, respectively. To understand how these genes were lost from the symbiont genomes, we surveyed these genes in the genomes from 10 other Calyptogena clam symbionts using the polymerase chain reaction (PCR).

Results

Phylogenetic trees reconstructed using concatenated 16S and 23S rRNA gene sequences showed that the symbionts formed two clades, clade I (symbionts of C. kawamurai, C. laubieri, C. kilmeri, C. okutanii and C. soyoae) and clade II (those of C. pacifica, C. fausta, C. nautilei, C. stearnsii, C. magnifica, C. fossajaponica and C. phaseoliformis). recA was detected by PCR with consensus primers for recA in the symbiont of C. phaseoliformis. A detailed homology search revealed a remnant recA in the Rma genome. Using PCR with a newly designed primer set, intact recA or its remnant was detected in clade II symbionts. In clade I symbionts, the recA coding region was found to be mostly deleted. In the Rma genome, a pseudogene of mutY was found. Using PCR with newly designed primer sets, mutY was not found in clade I symbionts but was found in clade II symbionts. The G+C content of 16S and 23S rRNA genes in symbionts lacking mutY was significantly lower than in those with mutY.

Conclusions

The extant Calyptogena clam symbionts in clade II were shown to have recA and mutY or their remnants, while those in clade I did not. The present results indicate that the extant symbionts are losing these genes in RGE, and that the loss of mutY contributed to the GC bias of the genomes during their evolution.  相似文献   

14.
To clarify evolution and phylogenetic relationships of trypanosome alternative oxidase (AOX) molecules, AOX genes (cDNAs) of the African trypanosomes, Trypanosoma congolense and Trypanosoma evansi, were cloned by PCR. Both AOXs possess conserved consensus motifs (-E-, -EXXH-). The putative amino acid sequence of the AOX of T. evansi was exactly the same as that of T. brucei. A protein phylogeny of trypanosome AOXs revealed that three genetically and pathogenically distinct strains of T. congolense are closely related to each other. When all known AOX sequences collected from current databases were analyzed, the common ancestor of these three Trypanosoma species shared a sister-group position to T. brucei/T. evansi. Monophyly of Trypanosoma spp. was clearly supported (100% bootstrap value) with Trypanosoma vivax placed at the most basal position of the Trypanosoma clade. Monophyly of other eukaryotic lineages, terrestrial plants + red algae, Metazoa, diatoms, Alveolata, oomycetes, green algae, and Fungi, was reconstructed in the best AOX tree obtained from maximum likelihood analysis, although some of these clades were not strongly supported. The terrestrial plants + red algae clade showed the closest affinity with an alpha-proteobacterium, Novosphingobium aromaticivorans, and the common ancestor of these lineages, was separated from other eukaryotes. Although the root of the AOX subtree was not clearly determined, subsequent phylogenetic analysis of the composite tree for AOX and plastid terminal oxidase (PTOX) demonstrated that PTOX and related cyanobacterial sequences are of a monophyletic origin and their common ancestor is linked to AOX sequences.  相似文献   

15.
All mammalian transposable elements characterized to date appear to be nonrandomly distributed in the mammalian genome. While no element has been found to be exclusively restricted in its chromosomal location, LINE elements and some retrovirus-like elements are preferentially accumulated in G-banding regions of the chromosomes, and in some cases in the sex chromosomes, while SINE elements occur preferentially in R-banding regions. Four mechanisms are presented which may explain the nonrandom genomic distribution of mammalian transposons: i) sequence-specific insertion, ii) S-phase insertion, iii) ectopic excision, and iv) recombinational editing. Some of the available data are consistent with each of these four models, but no single model is sufficient to explain all of the existing data.  相似文献   

16.
近年来, 随着测序技术的发展, 石松类和蕨类植物的核基因组、质体基因组以及线粒体基因组研究发展迅速, 质体基因组研究工作更是呈爆发式增长。截至2019年3月1日, GenBank公布的石松类和蕨类植物的175个质体基因组中, 约3/4为最近两年新增。研究内容从早期对个别质体基因组结构和序列特征的简单报道, 逐渐发展到综合性的比较基因组学和系统发育基因组学研究。目前已发表的质体基因组覆盖了石松类和蕨类植物的所有目和大部分科, 这两大类群的质体基因组结构变异和系统发育的基本框架已逐渐清晰。这些研究为我们理解维管植物的早期演化提供了重要参考。本文对石松类和蕨类植物的质体基因组结构特征进行了系统梳理, 发现其结构变异主要包括大片段倒位、IR区边界变动、基因或内含子丢失等, 其中一些结构变异可作为较高分类阶元的共衍征。RNA编辑和长片段非编码序列插入普遍存在于石松类和蕨类植物的质体基因组中, 但其起源、演化机制和功能等仍不清楚。我们对质体基因组的应用、系统发育研究中质体和核基因组的优劣性, 以及系统发育基因组学的前景进行了评述。  相似文献   

17.

Background

Because they represent the earliest divergences of the Chlorophyta, the morphologically diverse unicellular green algae making up the prasinophytes hold the key to understanding the nature of the first viridiplants and the evolutionary patterns that accompanied the radiation of chlorophytes. Nuclear-encoded 18S rDNA phylogenies unveiled nine prasinophyte clades (clades I through IX) but their branching order is still uncertain. We present here the newly sequenced chloroplast genomes of Nephroselmis astigmatica (clade III) and of five picoplanktonic species from clade VI (Prasinococcus sp. CCMP 1194, Prasinophyceae sp. MBIC 106222 and Prasinoderma coloniale) and clade VII (Picocystis salinarum and Prasinophyceae sp. CCMP 1205). These chloroplast DNAs (cpDNAs) were compared with those of the six previously sampled prasinophytes (clades I, II, III and V) in order to gain information both on the relationships among prasinophyte lineages and on chloroplast genome evolution.

Results

Varying from 64.3 to 85.6 kb in size and encoding 100 to 115 conserved genes, the cpDNAs of the newly investigated picoplanktonic species are substantially smaller than those observed for larger-size prasinophytes, are economically packed and contain a reduced gene content. Although the Nephroselmis and Picocystis cpDNAs feature a large inverted repeat encoding the rRNA operon, gene partitioning among the single copy regions is remarkably different. Unexpectedly, we found that all three species from clade VI (Prasinococcales) harbor chloroplast genes not previously documented for chlorophytes (ndhJ, rbcR, rpl21, rps15, rps16 and ycf66) and that Picocystis contains a trans-spliced group II intron. The phylogenies inferred from cpDNA-encoded proteins are essentially congruent with 18S rDNA trees, resolving with robust support all six examined prasinophyte lineages, with the exception of the Pycnococcaceae.

Conclusions

Our results underscore the high variability in genome architecture among prasinophyte lineages, highlighting the strong pressure to maintain a small and compact chloroplast genome in picoplanktonic species. The unique set of six chloroplast genes found in the Prasinococcales supports the ancestral status of this lineage within the prasinophytes. The widely diverging traits uncovered for the clade-VII members (Picocystis and Prasinophyceae sp. CCMP 1205) are consistent with their resolution as separate lineages in the chloroplast phylogeny.  相似文献   

18.
《遗传学报》2022,49(2):120-131
Melastomataceae has abundant morphological diversity with high economic and ornamental merit in Myrtales. The phylogenetic position of Myrtales is still contested. Here, we report the chromosome-level genome assembly of Melastoma dodecandrum in Melastomataceae. The assembled genome size is 299.81 Mb with a contig N50 value of 3.00 Mb. Genome evolution analysis indicated that M. dodecandrum, Eucalyptus grandis, and Punica granatum were clustered into a clade of Myrtales and formed a sister group with the ancestor of fabids and malvids. We found that M. dodecandrum experienced four whole-genome polyploidization events: the ancient event was shared with most eudicots, one event was shared with Myrtales, and the other two events were unique to M. dodecandrum. Moreover, we identified MADS-box genes and found that the AP1-like genes expanded, and AP3-like genes might have undergone subfunctionalization. The SUAR63-like genes and AG-like genes showed different expression patterns in stamens, which may be associated with heteranthery. In addition, we found that LAZY1-like genes were involved in the negative regulation of stem branching development, which may be related to its creeping features. Our study sheds new light on the evolution of Melastomataceae and Myrtales, which provides a comprehensive genetic resource for future research.  相似文献   

19.
Reductive evolution in mitochondria and obligate intracellular microbes has led to a significant reduction in their genome size and guanine plus cytosine content (GC). We show that genome shrinkage during reductive evolution in prokaryotes follows an exponential decay pattern and provide a method to predict the extent of this decay on an evolutionary timescale. We validated predictions by comparison with estimated extents of genome reduction known to have occurred in mitochondria and Buchnera aphidicola, through comparative genomics and by drawing on available fossil evidences. The model shows how the mitochondrial ancestor would have quickly shed most of its genome, shortly after its incorporation into the protoeukaryotic cell and prior to codivergence subsequent to the split of eukaryotic lineages. It also predicts that the primary rickettsial parasitic event would have occurred between 180 and 425 million years ago (MYA), an event of relatively recent evolutionary origin considering the fact that Rickettsia and mitochondria evolved from a common alphaproteobacterial ancestor. This suggests that the symbiotic events of Rickettsia and mitochondria originated at different time points. Moreover, our model results predict that the ancestor of Wigglesworthia glossinidia brevipalpis, dated around the time of origin of its symbiotic association with the tsetse fly (50-100 MYA), was likely to have been an endosymbiont itself, thus supporting an earlier proposition that Wigglesworthia, which is currently a maternally inherited primary endosymbiont, evolved from a secondary endosymbiont.  相似文献   

20.
We used complete sequence data from 30 complete Herpesviridae genomes to investigate phylogenetic relationships and patterns of genome evolution. The approach was to identify orthologous gene clusters among taxa and to generate a genomic matrix of gene content. We identified 17 genes with homologs in all 30 taxa and concatenated a subset of 10 of these genes for phylogenetic inference. We also constructed phylogenetic trees on the basis of gene content data. The amino acid and gene content phylogenies were largely concordant, but the amino acid data had much higher internal support. We mapped gene gain events onto the phylogenetic tree by assuming that genes were gained only once during the evolution of herpesviruses. Thirty genes were inferred to be present in the ancestor of all herpesvirus, a number smaller than previously hypothesized. Few genes of recent origin within herpesviruses could be identified as originating from transfer between virus and vertebrate hosts. Inferred rates of gene gain were heterogeneous, with both taxonomic and temporal biases. Nonetheless, the average rate of gene gain was approximately 3.5 x 10(-7) genes gained per year, which is an order of magnitude higher than the nucleotide mutation rate for these large DNA viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号