共查询到20条相似文献,搜索用时 15 毫秒
1.
Hippocampal function varies along its septotemporal axis, with the septal (dorsal) pole more frequently involved in spatial learning and memory and the temporal (ventral) pole playing a greater role in emotional behaviors. One feature that varies across these subregions is adult neurogenesis. New neurons are more numerous in the septal hippocampus but are more active in the temporal hippocampus during water maze training. However, many other aspects of adult neurogenesis remain unexplored in the context of septal versus temporal subregions. In addition, the dentate gyrus contains another functionally important anatomical division along the transverse axis, with the suprapyramidal blade showing greater experience-related activity than the infrapyramidal blade. Here we ask whether new neurons differ in their rates of survival and maturation along the septotemporal and transverse axes. We found that neurogenesis is initially higher in the infrapyramidal than suprapyramidal blade, but these cells are less likely to survive, resulting in similar densities of neurons in the two blades by four weeks. Across the septotemporal axis, neurogenesis was higher in septal than temporal pole, while the survival rate of new neurons did not differ. Maturation was assessed by immunostaining for the neuronal marker, NeuN, which increases in expression level with maturation, and for the immediate-early gene, Arc, which suggests a neuron is capable of undergoing activity-dependent synaptic plasticity. Maturation occurred approximately 1–2 weeks earlier in the septal pole than in the temporal pole. This suggests that septal neurons may contribute to function sooner; however, the prolonged maturation of new temporal neurons may endow them with a longer window of plasticity during which their functions could be distinct from those of the mature granule cell population. These data point to subregional differences in new neuron maturation and suggest that changes in neurogenesis could alter different hippocampus-dependent behaviors with different time courses. 相似文献
2.
Electroconvulsive Shock Reduces Inositol 1,4,5-Trisphosphate 3-Kinase mRNA Expression in Rat Dentate Gyrus 总被引:1,自引:1,他引:1
Hyun Kim Jae Pil Ko Ung Gu Kang †Joo-Bae Park ‡Hyung-Lae Kim §Young Han Lee Yong Sik Kim 《Journal of neurochemistry》1994,63(5):1991-1994
Abstract: We investigated the expression of inositol 1,4,5-trisphosphate (InsP3 ) 3-kinase mRNA after a single electroconvulsive shock (ECS) with in situ hybridization histochemistry in rat brain. At 6 h after ECS, the expression was markedly decreased in the dentate gyrus, and the decrease was maintained until 9 h with a slight recovery. The InsP3 3-kinase mRNA content returned to basal levels after 12 h. We could not detect any apparent changes in the expression of InsP3 3-kinase mRNA in the CA1–CA3 areas of hippocampus, the striatum, and the cerebral cortex at any time point examined. In the temporal pattern, the reduction of the expression in the dentate gyrus was preceded by the induction of c- fos after ECS. These observations suggest that the InsP3 3-kinase might be one of the genes whose expression can be altered by ECS. 相似文献
3.
Micka?l Antoine Joseph Nicolas Fraize Jennifer Ansoud-Lerouge Emilie Sapin Christelle Peyron Sébastien Arthaud Paul-Antoine Libourel Régis Parmentier Paul Antoine Salin Ga?l Malleret 《PloS one》2015,10(11)
How does the brain discriminate essential information aimed to be stored permanently from information required only temporarily, and that needs to be cleared away for not saturating our precious memory space? Reference Memory (RM) refers to the long-term storage of invariable information whereas Working Memory (WM) depends on the short-term storage of trial-unique information. Previous work has revealed that WM tasks are very sensitive to proactive interference. In order to prevent such interference, irrelevant old memories must be forgotten to give new ones the opportunity to be stabilized. However, unlike memory, physiological processes underlying this adaptive form of forgetting are still poorly understood. Here, we precisely ask what specific brain structure(s) could be responsible for such process to occur. To answer this question, we trained rats in a radial maze using three paradigms, a RM task and two WM tasks involving or not the processing of interference but strictly identical in terms of locomotion or motivation. We showed that an inhibition of the expression of Zif268 and c-Fos, two indirect markers of neuronal activity and synaptic plasticity, was observed in the dentate gyrus of the dorsal hippocampus when processing such interfering previously stored information. Conversely, we showed that inactivating the dentate gyrus impairs both RM and WM, but improves the processing of interference. Altogether, these results strongly suggest for the first time that the dentate gyrus could be a key structure involved in adaptive forgetting. 相似文献
4.
5.
6.
Michael S. Madejczyk Christine E. Baer William E. Dennis Valerie C. Minarchick Stephen S. Leonard David A. Jackson Jonathan D. Stallings John A. Lewis 《PloS one》2015,10(5)
U.S. Service Members and civilians are at risk of exposure to a variety of environmental health hazards throughout their normal duty activities and in industrial occupations. Metals are widely used in large quantities in a number of industrial processes and are a common environmental toxicant, which increases the possibility of being exposed at toxic levels. While metal toxicity has been widely studied, the exact mechanisms of toxicity remain unclear. In order to further elucidate these mechanisms and identify candidate biomarkers, rats were exposed via a single intraperitoneal injection to three concentrations of CdCl2 and Na2Cr2O7, with livers harvested at 1, 3, or 7 days after exposure. Cd and Cr accumulated in the liver at 1 day post exposure. Cd levels remained elevated over the length of the experiment, while Cr levels declined. Metal exposures induced ROS, including hydroxyl radical (•OH), resulting in DNA strand breaks and lipid peroxidation. Interestingly, ROS and cellular damage appeared to increase with time post-exposure in both metals, despite declines in Cr levels. Differentially expressed genes were identified via microarray analysis. Both metals perturbed gene expression in pathways related to oxidative stress, metabolism, DNA damage, cell cycle, and inflammatory response. This work provides insight into the temporal effects and mechanistic pathways involved in acute metal intoxication, leading to the identification of candidate biomarkers. 相似文献
7.
In addition to their classical roles in neuronal growth, survival and differentiation, neurotrophins are also rapid regulators of excitability, synaptic transmission and activity-dependent synaptic plasticity. We have recently shown that mature BDNF (Brain Derived Neurotrophic Factor), but not proBDNF, modulates the excitability of interneurons in dentate gyrus within minutes. Here, we used brain slice patch-clamp recordings to study the mechanisms through which BDNF modulates the firing of interneurons in rat dentate gyrus by binding to TrkB receptors. Bath application of BDNF (15 ng/ml) under current-clamp decreased the firing frequency (by 80%) and input resistance, blocking the delayed firing observed at near-threshold voltage ranges, with no changes in resting membrane potential or action potential waveform. Using TEA (tetraethylammonium), or XE991(a Kv7/KCNQ channel antagonist), the effect of BDNF was abolished, whereas application of retigabine (a Kv7/KCNQ channel opener) mimicked the effect of BDNF, suggesting that the M-current could be implicated in the modulation of the firing. In voltage-clamp experiments, BDNF increased the M-like current amplitude with no change in holding current. This effect was again blocked by XE991 and mimicked by retigabine, the latter accompanied with a change in holding current. In agreement with the electrophysiology, parvalbumin-positive interneurons co-expressed TrkB receptors and Kv7.2/KCNQ2 channels. In conclusion, BDNF depresses the excitability of interneurons by activating an M-like current and possibly blocking Kv1 channels, thereby controlling interneuron resting membrane potential and excitability. 相似文献
8.
Benjamin A. Samuels E. David Leonardo Alex Dranovsky Amanda Williams Erik Wong Addie May I. Nesbitt Richard D. McCurdy Rene Hen Mark Alter 《PloS one》2014,9(1)
Background
Selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine are the most common form of medication treatment for major depression. However, approximately 50% of depressed patients fail to achieve an effective treatment response. Understanding how gene expression systems respond to treatments may be critical for understanding antidepressant resistance.Methods
We take a novel approach to this problem by demonstrating that the gene expression system of the dentate gyrus responds to fluoxetine (FLX), a commonly used antidepressant medication, in a stereotyped-manner involving changes in the expression levels of thousands of genes. The aggregate behavior of this large-scale systemic response was quantified with principal components analysis (PCA) yielding a single quantitative measure of the global gene expression system state.Results
Quantitative measures of system state were highly correlated with variability in levels of antidepressant-sensitive behaviors in a mouse model of depression treated with fluoxetine. Analysis of dorsal and ventral dentate samples in the same mice indicated that system state co-varied across these regions despite their reported functional differences. Aggregate measures of gene expression system state were very robust and remained unchanged when different microarray data processing algorithms were used and even when completely different sets of gene expression levels were used for their calculation.Conclusions
System state measures provide a robust method to quantify and relate global gene expression system state variability to behavior and treatment. State variability also suggests that the diversity of reported changes in gene expression levels in response to treatments such as fluoxetine may represent different perspectives on unified but noisy global gene expression system state level responses. Studying regulation of gene expression systems at the state level may be useful in guiding new approaches to augmentation of traditional antidepressant treatments. 相似文献9.
Kohei Yamada Shinsuke Matsuzaki Tsuyoshi Hattori Ryusuke Kuwahara Manabu Taniguchi Hitoshi Hashimoto Norihito Shintani Akemichi Baba Natsuko Kumamoto Kazuo Yamada Takeo Yoshikawa Taiichi Katayama Masaya Tohyama 《PloS one》2010,5(1)
Pituitary adenylate cyclase-activating polypeptide (PACAP) is involved in multiple brain functions. To clarify the cause of abnormal behavior in PACAP deficient-mice, we attempted the identification of genes whose expression was altered in the dentate gyrus of PACAP-deficient mice using the differential display method. Expression of stathmin1 was up-regulated in the dentate gyrus at both the mRNA and protein levels. PACAP stimulation inhibited stathmin1 expression in PC12 cells, while increased stathmin1expression in neurons of the subgranular zone and in primary cultured hippocampal neurons induced abnormal arborization of axons. We also investigated the pathways involved in PACAP deficiency. Ascl1 binds to E10 box of the stathmin1 promoter and increases stathmin1 expression. Inhibitory bHLH proteins (Hes1 and Id3) were rapidly up-regulated by PACAP stimulation, and Hes1 could suppress Ascl1 expression and Id3 could inhibit Ascl1 signaling. We also detected an increase of stathmin1 expression in the brains of schizophrenic patients. These results suggest that up-regulation of stathmin1 in the dentate gyrus, secondary to PACAP deficiency, may create abnormal neuronal circuits that cause abnormal behavior. 相似文献
10.
In Koo Hwang Il Yong Kim Eun Jung Joo Jae Hoon Shin Ji Won Choi Moo-Ho Won Yeo Sung Yoon Je Kyung Seong 《Neurochemical research》2010,35(4):645-650
In this study, we observed the effects of metformin, one of the most widely prescribed drugs for the treatment of type 2 diabetes,
on cell proliferation and neuroblast differentiation in the subgranular zone of the hippocampal dentate gyrus (SZDG) in Zucker
diabetic fatty (ZDF) rats, which are a model for type 2 diabetes. For this, metformin was administered orally once a day to
14-week-old ZDF rats for 2 weeks and the animals were sacrificed at 16 weeks of age. During this period, blood glucose levels
were higher in the vehicle-treated ZDF rats than in the Zucker lean control (ZLC) rats. Metformin treatment significantly
decreased the blood glucose levels from 15.5 weeks of age. In the SZDG, Ki67 (a marker for cell proliferation)- and doublecortin
(DCX, a marker for differentiated neuroblasts)-immunoreactive cells were much lower in the vehicle-treated ZDF rats than in
the ZLC rats. In the metformin-treated ZDF group, Ki67- and DCX-immunoreactive cells were significantly increased in the SZDG
compared to those in the vehicle-treated ZDF group. These results suggest that diabetes significantly reduces cell proliferation
and neuroblast differentiation in the SZDG and that metformin treatment normalizes the reduction of cell proliferation and
neuroblast differentiation in the SZDG in diabetic rats. 相似文献
11.
Yu Ji Cho Jae Yoon Han Sang Gab Lee Byeong Tak Jeon Wan Sung Choi Young Sil Hwang Gu Seob Roh Jong Deog Lee 《Comparative medicine》2009,59(4):350-356
Angiogenic factors such as vascular endothelial growth factor (VEGF) are implicated in pulmonary hypertension (PH). However, the pathway of angiogenic factor-mediated pathologic angiogenesis in PH remains unclear. In this study, we evaluated the temporal expression of angiopoietin (Ang) 1, Ang2, and their receptor (Tie2) as well as VEGF, endothelial nitric oxide synthase (eNOS), inducible NOS (iNOS), and heme oxygenase 1 (HO1) in the monocrotaline-induced PH model. Histologic evaluation showed pathologic vascular remodeling in the arteries of lung sections 1 wk after monocrotaline treatment. Protein levels of Ang1, Ang2, eNOS, iNOS, HO1, and VEGF were increased 1 wk after monocrotaline treatment but Tie2 protein levels were decreased 2 wk afterward. These results suggest that Ang2 mediates vascular remodeling in PH by decreasing Tie2 expression. Therefore, the Ang–Tie2 system may play a role in the pathophysiology of PH.Abbreviations: Ang, angiopoietin; eNOS, endothelial nitric oxide synthase; HO1, heme oxygenase 1; iNOS, inducible nitric oxide synthase; PH, pulmonary hypertension; VEGF, vascular endothelial growth factorPulmonary hypertension (PH) is a disease characterized by pathologic angiogenesis caused by diffuse smooth muscle cell hyperplasia and hypertrophy of the distal pulmonary vasculature, resulting in obliteration of small pulmonary arterioles.13 Vascular remodeling is governed by the interaction of several angiogenic factors on endothelial and smooth muscle cells. Vascular remodeling requires complex, multistep signaling pathways and a high degree of spatial and temporal coordination among endothelial and smooth muscle cells.29 However, the precise mechanisms of vascular remodeling at the cellular and molecular levels are not completely defined.The angiopoietin (Ang) family and vascular endothelial growth factor (VEGF) are 2 types of vascular regulatory molecules that have been the subject of intense investigation in both physiologic and pathologic generation of blood vessels.2,38 Members of the Ang family have opposing effects on receptor activation, with Ang1 stimulating Tie2 and Ang2 antagonizing this stimulation.3,8,22 In particular, Ang1 plays an important role in the assembly of newly formed vasculature and in the maintenance of vascular integrity.7,14,36 In contrast, Ang2 antagonizes the activation of Tie2 by Ang1 and causes endothelial cell apoptosis and vascular regression.22 The functions of Ang2 appear to be more complex than those of Ang1, in that Ang2 binds to the Tie2 receptor, blocking Ang1–Tie2 signaling and acting as a vessel-destabilizing factor.26 However, prolonged exposure of endothelial cells to Ang2 activates Tie2 signaling.16 Thus, the precise roles of Ang2 during the development of PH are not well understood. Tie2 is a receptor tyrosine kinase that is expressed principally on vascular endothelium and that plays a role in integrity and survival of endothelial cells.27,30 Disrupting Tie2 function in mice results in embryonic lethality with defects in embryonic vasculature.11Neither Ang1 nor Ang2 alone can trigger an angiogenic response, but both enhance angiogenesis or induce vascular remodeling, depending on the presence of VEGF or other angiogenic factors. Nitric oxide is produced by endothelial cells through the action of nitric oxide synthase (NOS). Northern blot analysis of hypoxic rat lungs showed significantly increased mRNA levels for both endothelial NOS (eNOS) and inducible NOS (iNOS).18 Increased NOS activity coincided with the beginning of the vascular remodeling process during chronic hypoxia.37 Hypoxia and nitric oxide stimulate VEGF production and induce HO1 expression in vascular tissue.10 In addition, several studies have shown that VEGF works in conjunction with other angiogenic factors to produce a stable and functional microvasculature.21,35The purpose of the present study was to demonstrate the temporal changes of several angiogenic factors during the development of PH induced by treatment of rats with monocrotaline. This research was focused on the Ang–Tie2 system and other angiogenic factors and suggested that this system plays an important role in modulating vascular remodeling during PH. 相似文献
12.
13.
Adrenal steroids are important for maintaining neuronal maturation in the adult rats. Two weeks after bilateral adrenalectomy (ADX), hippocampal MAP-2 (microtubule associated protein-2) and calbindin immunoreactivity (IR) decreased in the molecular layer of the superior blade of the dentate gyrus. The molecular and granular cell layer at the lateral tip of the superior blade decreased in width by 32% and 50%, respectively. The granule neurons showed reduced staining with Nissl and an anti-calbindin antibody. These changes suggested a loss of the mature neuronal morphology. In this same localized regions, two glial proteins, glial fibrillary acidic protein (GFAP) and S-100 showed dramatically reduced immunoreactivity. These effects induced by ADX were reduced within 72 hrs by ipsapirone (1 mg/kg), a 5HT1A receptor agonist. Loss of adult neuronal morphology by ADX, and reversal by the 5HT1A agonist, may be evidence of the trophic importance of the 5HT1A receptor in granule neurons of hippocampus. 相似文献
14.
Choi JH Chung JY Yoo DY Hwang IK Yoo KY Lee CH Yan BC Ahn JO Youn HY Won MH 《Cellular and molecular neurobiology》2011,31(8):1271-1280
Mesenchymal stem cells (MSC) have emerged as a new therapeutic tool for a number of clinical applications, because they have
multipotency and paracrine effects via various factors. In the present study, we investigated the effects of adipose-derived
MSC (Ad-MSC) transplantation via intrathecal injection through the cisterna magna on cell proliferation and differentiation
of endogenous stem cells in the hippocampal dentate gyrus (DG) using Ki-67 (a marker for proliferating cells), and doublecortin
(DCX, a marker for neuroblasts). The transplanted Ad-MSC were detected in the meninges, not in the hippocampal parenchyma.
However, the number of Ki-67-immunoreactive cells was significantly increased by 83% in the DG 2 days after single Ad-MSC
injection, and by 67% at 23 days after repeated Ad-MSC treatment compared with that in the vehicle-treated group after Ad-MSC
transplantation. On the other hand, the number of DCX-immunoreactive cells in the DG was not changed at 2 days after single
Ad-MSC injection; however, it was significantly increased by 62% 9 days after single Ad-MSC injection. At 23 days after repeated
Ad-MSC application, the number of DCX-immunoreactive cells was much more increased (223% of the vehicle-treated group). At
this time point, DCX protein levels were also significantly increased compared with those in the vehicle-treated group. These
results suggest that the intrathecal injection of Ad-MSC could enhance endogenous cell proliferation, and the repeated Ad-MSC
injection could be more efficient for an enhancement of endogenous cell proliferation and differentiation in the brain. 相似文献
15.
The aim of this study was to characterize changes in miRNA expression in the epileptic dentate gyrus. Status epilepticus evoked by amygdala stimulation was used to induce epilepsy in rats. The dentate gyri were isolated at 7 d, 14 d, 30 d and 90 d after stimulation (n=5). Sham-operated time-matched controls were prepared for each time point (n=5). The miRNA expression was evaluated using Exiqon microarrays. Additionally, mRNA from the same animals was profiled using Affymetrix microarrays. We detected miRNA expression signatures that differentiate between control and epileptic animals. Significant changes in miRNA expression between stimulated and sham operated animals were observed at 7 and 30 d following stimulation. Moreover, we found that there are ensembles of miRNAs that change expression levels over time. Analysis of the mRNA expression from the same animals revealed that the expression of several mRNAs that are potential targets for miRNA with altered expression level is regulated in the expected direction. The functional characterization of miRNAs and their potential mRNA targets indicate that miRNA can participate in several molecular events that occur in epileptic tissue, including immune response and neuronal plasticity. This is the first report on changes in the expression of miRNA and the potential functional impact of these changes in the dentate gyrus of epileptic animals. Complex changes in the expression of miRNAs suggest an important role for miRNA in the molecular mechanisms of epilepsy. 相似文献
16.
It has recently been reported that diabetes mellitus is strongly associated with neurodegenerative and functional disorders
of the central nervous system. In the present study, we investigated the changes in proliferating neurons in the dentate gyrus
of type II diabetic rats using doublecortin (DCX), a marker of progenitors differentiating into neurons. At 4 weeks after
birth, there were no differences in the blood glucose levels of Zucker diabetic fatty (ZDF) rats or Zucker lean control (ZLC)
rats. DCX-immunoreactive neurons were detectable in the subgranular zone of the dentate gyrus in both the ZDF and ZLC rats;
however, DCX immunoreactivity was higher in the ZLC rats than in the ZDF rats. At 12 weeks after birth, the blood glucose
level was significantly increased by 400 mg/dl in the ZDF rats, but the blood glucose level in the ZLC rats was only slightly
increased by 152.3 mg/dl. DCX immunoreactivity was significantly decreased in 12-week-old rats in comparison to 4-week-old
rats. Some DCX-immunoreactive neurons were detectable in the subgranular zone of the dentate gyrus in the ZLC rats. However,
only a few DCX-immunoreactive neurons were observed in the ZDF rats, and the DCX-immunoreactive neurons in the ZDF rats did
not show fully developed processes. These results suggest that DCX-immunoreactive neurons were significantly decreased in
an age-dependent manner and that DCX-immunoreactive neurons were also reduced in diabetic rats. In addition, the reduction
in DCX-immunoreactive neurons in age matched rats may be associated with type II diabetes. 相似文献
17.
Lee CH Yoo DY Park OK Park JH Yi SS Yoon YS Won MH Hwang IK 《Neurochemical research》2011,36(10):1767-1775
Newly generated neurons in the dentate gyrus differentiate into mature granule cells. In the present study, we observed the effects of adrenalectomy (ADX) and corticosterone replacement therapy (CRT) on cell death, cell proliferation and neuroblast differentiation in the subgranular zone of the hippocampal dentate gyrus (SZDG). For this, the animals received vehicle or CRT after ADX, and were sacrificed 5 or 42 days later. Plasma corticosterone levels were very low in the adrenalectomized groups, whereas CRT after ADX significant increased serum corticosterone levels at 42 days, not 5 days, after ADX. ADX induced some neuronal damage in the dentate gyrus at 5 days post-ADX. CRT did not significantly reduce the neuronal damage at 5 days post-ADX; however, neuronal damage was not shown at 42 post-ADX with CRT. Ki67 (a marker for cell proliferation) and doublecortin (DCX, a marker for neuronal differentiation) immunoreaction was detected in the SZDG. ADX transiently increased cell proliferation and neuroblast differentiation 5 days after ADX, not 42 days, after ADX, and the CRT 42 days after ADX prominently decreased cell proliferation and neuroblast differentiation in the dentate gyrus. These results suggest that adrenal corticosteroid hormone is not essential for cell proliferation and neuroblast differentiation in long-term period after ADX. 相似文献
18.
Hong-Liu Sun Shi-Hong Zhang Kai Zhong Zheng-Hao Xu Bo Feng Jie Yu Qi Fang Shuang Wang Deng-Chang Wu Jian-Min Zhang Zhong Chen 《PloS one》2013,8(6)
Reduction of glutamine synthetase (GS) function is closely related to established epilepsy, but little is known regarding its role in epileptogenesis. The present study aimed to elucidate the functional changes of GS in the brain and its involvement in epileptogenesis using the amygdala kindling model of epilepsy induced by daily electrical stimulation of basolateral amygdala in rats. Both expression and activity of GS in the ipsilateral dentate gyrus (DG) were upregulated when kindled seizures progressed to stage 4. A single dose of L-methionine sulfoximine (MSO, in 2 µl), a selective GS inhibitor, was administered into the ipsilateral DG on the third day following the first stage 3 seizure (just before GS was upregulated). It was found that low doses of MSO (5 or 10 µg) significantly and dose-dependently reduced the severity of and susceptibility to evoked seizures, whereas MSO at a high dose (20 µg) aggravated kindled seizures. In animals that seizure acquisition had been successfully suppressed with 10 µg MSO, GS upregulation reoccurred when seizures re-progressed to stage 4 and re-administration of 10 µg MSO consistently reduced the seizures. GLN at a dose of 1.5 µg abolished the alleviative effect of 10 µg MSO and deleterious effect of 20 µg MSO on kindled seizures. Moreover, appropriate artificial microRNA interference (1 and 1.5×106 TU/2 µl) of GS expression in the ipsilateral DG also inhibited seizure progression. In addition, a transient increase of GS expression and activity in the cortex was also observed during epileptogenesis evoked by pentylenetetrazole kindling. These results strongly suggest that a transient and region-specific upregulation of GS function occurs when epilepsy develops into a certain stage and eventually promotes the process of epileptogenesis. Inhibition of GS to an adequate degree and at an appropriate timing may be a potential therapeutic approach to interrupting epileptogenesis. 相似文献
19.
Presynaptic Changes in Long-Term Potentiation: Elevated Synaptosomal Calcium Concentration and Basal Phosphoinositide Turnover in Dentate Gyrus 总被引:1,自引:0,他引:1
In this report, two changes that occur in the presynaptic terminal following induction of long-term potentiation in the dentate gyrus are examined, and the results demonstrate that the same changes are stimulated by the putative retrograde messenger arachidonic acid. First, there is an increase in the concentration of intracellular calcium in synaptosomes prepared from potentiated tissue compared with control tissue. This effect on intracellular calcium concentration was mimicked in control tissue by treatment of synaptosomes with either arachidonic acid or inositol 1,4,5-trisphosphate in a dose-dependent but nonadditive manner. Second, there is an increase in phosphoinositide turnover in synaptosomes prepared from potentiated tissue compared with control tissue, and this change can also be mimicked in control tissue by exposure of synaptosomes to arachidonic acid. These findings are consistent with the hypothesis that the increase in glutamate release associated with long-term potentiation may be stimulated by arachidonic acid, as a result of an increase in intrasynaptosomal calcium concentration, perhaps occurring as a result of arachidonate-stimulated phosphoinositide metabolism. 相似文献
20.
Shu-Jen Chen Manisha A. Desai Eric Klann Danny G. Winder J. David Sweatt P. Jeffrey Conn 《Journal of neurochemistry》1992,59(5):1761-1769
Kindling is a use-dependent form of synaptic plasticity and a widely used model of epilepsy. Although kindling has been widely studied, the molecular mechanisms underlying induction of this phenomenon are not well understood. We determined the effect of amygdala kindling on protein kinase C (PKC) activity in various regions of rat brain. Kindling stimulation markedly elevated basal (Ca(2+)-independent) and Ca(2+)-stimulated phosphorylation of an endogenous PKC substrate (which we have termed P17) in homogenates of dentate gyrus, assayed 2 h after kindling stimulation. The increase in P17 phosphorylation appeared to be due at least in part to persistent PKC activation, as basal PKC activity assayed in vitro using an exogenous peptide substrate was increased in kindled dentate gyrus 2 h after the last kindling stimulation. A similar increase in basal PKC activity was observed in dentate gyrus 2 h after the first kindling stimulation. These results document a kindling-associated persistent PKC activation and suggest that the increased activity of PKC could play a role in the induction of the kindling effect. 相似文献