首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Statins are potent, cholesterol-lowering agents with newly appreciated, broad anti-inflammatory properties, largely based upon their ability to block the prenylation of Rho GTPases, including RhoA. Because phagocytosis of apoptotic cells (efferocytosis) is a pivotal regulator of inflammation, which is inhibited by RhoA, we sought to determine whether statins enhanced efferocytosis. The effect of lovastatin on efferocytosis was investigated in primary human macrophages, in the murine lung, and in human alveolar macrophages taken from patients with chronic obstructive pulmonary disease. In this study, we show that lovastatin increased efferocytosis in vitro in an 3-hydroxyl-3-methylglutaryl coenzyme A (HMG-CoA) reductase-dependent manner. Lovastatin acted by inhibiting both geranylgeranylation and farnesylation, and not by altering expression of key uptake receptors or by increasing binding of apoptotic cells to phagocytes. Lovastatin appeared to exert its positive effect on efferocytosis by inhibiting RhoA, because it 1) decreased membrane localization of RhoA, to a greater extent than Rac-1, and 2) prevented impaired efferocytosis by lysophosphatidic acid, a potent inducer of RhoA. Finally, lovastatin increased efferocytosis in the naive murine lung and ex vivo in chronic obstructive pulmonary disease alveolar macrophages in an HMG-CoA reductase-dependent manner. These findings indicate that statins enhance efferocytosis in vitro and in vivo, and suggest that they may play an important therapeutic role in diseases where efferocytosis is impaired and inflammation is dysregulated.  相似文献   

2.
Apoptotic cell removal (efferocytosis) is an essential process in the regulation of inflammation and tissue repair. We have shown that monocyte chemoattractant protein-1/CC chemokine ligand 2 (MCP-1/CCL2) enhances efferocytosis by alveolar macrophages in murine bacterial pneumonia. However, the mechanism by which MCP-1 exerts this effect remains to be determined. Here we explored that hypothesis that MCP-1 enhances efferocytosis through a Rac1/phosphatidylinositol 3-kinase (PI3-kinase)-dependent mechanism.We assessed phagocytosis of apoptotic cells by MCP-1 treated murine macrophages in vitro and in vivo. Rac activity in macrophages was measured using a Rac pull down assay and an ELISA based assay (GLISA). The downstream Rac1 activation pathway was studied using a specific Rac1 inhibitor and PI3-kinase inhibitor in in vitro assays.MCP-1 enhanced efferocytosis of apoptotic cells by murine alveolar macrophages (AMs), peritoneal macrophages (PMs), the J774 macrophage cell line (J774s) in vitro, and murine AMs in vivo. Rac1 activation was demonstrated in these cell lines. The effect of MCP-1 on efferocytosis was completely negated by the Rac1 inhibitor and PI3-kinase inhibitor.We demonstrated that MCP-1 enhances efferocytosis in a Rac1-PI3 kinase-dependent manner. Therefore, MCP-1-Rac1-PI3K interaction plays a critical role in resolution of acute lung inflammation.  相似文献   

3.
The small G protein RhoA plays a major role in several vascular processes and cardiovascular disorders. Here we analyze the mechanisms of RhoA regulation by serotonin (5-HT) in arterial smooth muscle. 5-HT (0.1-10 microM) induced activation of RhoA followed by RhoA depletion at 24-72 h. Inhibition of 5-HT1 receptors reduced the early phase of RhoA activation but had no effect on 5-HT-induced delayed RhoA activation and depletion, which were suppressed by the 5-HT transporter inhibitor fluoxetine and the transglutaminase inhibitor monodansylcadaverin and in type 2 transglutaminase-deficient smooth muscle cells. Coimmunoprecipitations demonstrated that 5-HT associated with RhoA both in vitro and in vivo. This association was calcium-dependent and inhibited by fluoxetine and monodansylcadaverin. 5-HT promotes the association of RhoA with the E3 ubiquitin ligase Smurf1, and 5-HT-induced RhoA depletion was inhibited by the proteasome inhibitor MG132 and the RhoA inhibitor Tat-C3. Simvastatin, the Rho kinase inhibitor Y-27632, small interfering RNA-mediated RhoA gene silencing, and long-term 5-HT stimulation induced Akt activation. In contrast, inhibition of 5-HT-mediated RhoA degradation by MG132 prevented 5-HT-induced Akt activation. Long-term 5-HT stimulation also led to the inhibition of the RhoA/Rho kinase component of arterial contraction. Our data provide evidence that 5-HT, internalized through the 5-HT transporter, is transamidated to RhoA by transglutaminase. Transamidation of RhoA leads to RhoA activation and enhanced proteasomal degradation, which in turn is responsible for Akt activation and contraction inhibition. The observation of transamidation of 5-HT to RhoA in pulmonary artery of hypoxic rats suggests that this process could participate in pulmonary artery remodeling and hypertension.  相似文献   

4.
The neurotransmitter 5-hydroxytryptamine (5-HT), commonly known as serotonin, is stored at peripheral sites in mast cells and released from this peripheral source upon IgE cross-linking. In this study, we investigated the expression of serotoninergic receptors (5-HTR), the signaling pathway, and biological activity of 5-HT on human dendritic cells (DC), showing that immature and mature DC expressed mRNA for different serotoninergic receptors. Thereby, the mRNA of 5-HTR(1B), 5-HTR(1E), 5-HTR(2A), 5-HTR(2B), one splicing variant of the 5-HTR(3), 5-HTR(4), and 5-HTR(7) receptors were detected. Immature DC preferentially expressed mRNA for the heptahelical 5-HTR(1B), 5-HTR(1E), and 5-HTR(2B) receptors, while mature DC mostly expressed 5-HTR(4) and 5-HTR(7). The mRNA expression level of the ligand-gated cation channel 5-HTR(3) and the heptahelical 5-HTR(2A) did not significantly change during maturation. Isotype-selective receptor agonists allowed us to show that 5-HT stimulated 5-HTR(3)-dependent Ca(2+) influx in immature and mature DC. Moreover, we revealed that 5-HTR(1) and 5-HTR(2) receptor stimulation induced intracellular Ca(2+) mobilization via G(i/o) proteins in immature, but not mature, DC. Activation of 5-HTR(4) and 5-HTR(7) induced cAMP elevation in mature DC. Functional studies indicated that activation of 5-HTR(4) and 5-HTR(7) enhanced the release of the cytokines IL-1beta and IL-8, while reducing the secretion of IL-12 and TNF-alpha in mature DC. In summary, our study shows that 5-HT stimulated, in a maturation-dependent manner, different signaling pathways in DC. These data point to a role for 5-HT in regulating the immune response at peripheral sites.  相似文献   

5.
Serotonin (5-hydroxytryptamine, 5-HT) is mitogenic for several cell types including pulmonary arterial smooth muscle cells (PASMC), and is associated with the abnormal vascular smooth muscle remodeling that occurs in pulmonary arterial hypertension. RhoA/Rho kinase (ROCK) function is required for 5-HT-induced PASMC mitogenesis, and 5-HT activates RhoA; however, the signaling steps are poorly defined. Rho guanine nucleotide exchange factors (Rho GEFs) transduce extracellular signals to Rho, and we found that 5-HT treatment of PASMC led to increased membrane-associated Lbc Rho GEF, suggesting modulation by 5-HT. Lbc knockdown by siRNA attenuated 5-HT-induced thymidine uptake in PASMC, indicating a role in PASMC mitogenesis. 5-HT triggered Rho-dependent serum response factor-mediated reporter activation in PASMC, and this was reduced by Lbc depletion. Lbc knockdown reduced 5-HT-induced RhoA/ROCK activation, but not p42/44 ERK MAP kinase activation, suggesting that Lbc is an intermediary between 5-HT and RhoA/ROCK, but not ERK. 5-HT stimulation of PASMC led to increased association between Lbc, RhoA, and the α-catulin scaffold. Furthermore, α-catulin knockdown attenuated 5-HT-induced PASMC thymidine uptake. 5-HT-induced PASMC mitogenesis was reduced by dominant-negative Gq protein, suggesting cooperation with Lbc/α-catulin. These results for the first time define a Rho GEF involved in vascular smooth muscle cell growth and serotonin signaling, and suggest that Lbc Rho GEF family members play distinct roles. Thus, the Lbc/α-catulin axis participates in 5-HT-induced PASMC mitogenesis and RhoA/ROCK signaling, and may be an interventional target in diseases involving vascular smooth muscle remodeling.  相似文献   

6.
The blood–brain barrier (BBB) is composed of brain capillary endothelial cells and has an important role in maintaining homeostasis of the brain separating the blood from the parenchyma of the central nervous system (CNS). It is widely known that disruption of the BBB occurs in various neurodegenerative diseases, including Alzheimer's disease (AD). Annexin A1 (ANXA1), an anti‐inflammatory messenger, is expressed in brain endothelial cells and regulates the BBB integrity. However, its role and mechanism for protecting BBB in AD have not been identified. We found that β‐Amyloid 1‐42 (Aβ42)‐induced BBB disruption was rescued by human recombinant ANXA1 (hrANXA1) in the murine brain endothelial cell line bEnd.3. Also, ANXA1 was decreased in the bEnd.3 cells, the capillaries of 5XFAD mice, and the human serum of patients with AD. To find out the mechanism by which ANXA1 recovers the BBB integrity in AD, the RhoA‐ROCK signaling pathway was examined in both Aβ42‐treated bEnd.3 cells and the capillaries of 5XFAD mice as RhoA was activated in both cases. RhoA inhibitors alleviated Aβ42‐induced BBB disruption and constitutively overexpressed RhoA‐GTP (active form of RhoA) attenuated the protective effect of ANXA1. When pericytes were cocultured with bEnd.3 cells, Aβ42‐induced RhoA activation of bEnd.3 cells was inhibited by the secretion of ANXA1 from pericytes. Taken together, our results suggest that ANXA1 restores Aβ42‐induced BBB disruption through inhibition of RhoA‐ROCK signaling pathway and we propose ANXA1 as a therapeutic reagent, protecting against the breakdown of the BBB in AD.  相似文献   

7.
BackgroundAlthough mechanical barriers and modern surgical techniques have been developed to prevent postoperative adhesion formation, high incidence of adhesions still represents an important challenge in abdominal surgery. So far, there has been no available therapeutic drug in clinical practice.PurposeIn this study, we explored the efficacy of sodium aescinate (AESS) treatment against postoperative peritoneal adhesions, the potential molecular mechanism was also investigated.Study design and methodsSixty male Sprague-Dawley rats were randomly divided into 6 groups for the study: the blank, vehicle, positive control and three AESS administration groups (0.5, 1 and 2 mg/kg/d, intravenous administration for 7 days). Adhesions were induced by discretely ligating peritoneal sidewall. An IL-1β-induced HMrSV5 cell model was also performed to explore possible functional mechanism.ResultsThe results indicated that the incidence and severity of peritoneal adhesions were significantly lower in the AESS-treated groups than that in the vehicle and positive control group. AESS-treated groups showed that the secretion, activity, and expression of tPA in rat peritoneum were notably increased. The FIB levels in rat plasma were decreased. The immunohistochemical staining analysis demonstrated that collagen I and α-SMA deposition were significantly attenuated in AESS-treated peritoneal tissues. Besides, we found that AESS treatment reduced the protein levels of p-MYPT1. To further explore the mechanisms of AESS, both activator and inhibitors of RhoA/ROCK pathway were employed in this study. It was found that AESS-induced up-regulation of tPA was reversed by activator of ROCK, but the effects of ROCK inhibitors were consistent with AESS.ConclusionTaken together, the findings of in vivo and in vitro experiments proved that AESS could significantly suppress postoperative peritoneal adhesion formation through inhibiting the RhoA/ROCK signaling pathway. Our researches provide important pharmacological basis for AESS development as a potential therapeutic agent on peritoneal adhesions.  相似文献   

8.
Defective clearance of apoptotic cells has been shown in systemic lupus erythematosus (SLE) and is postulated to enhance autoimmune responses by increasing access to intracellular autoantigens. Until now, research has emphasized inherited rather than acquired impairment of apoptotic cell engulfment in the pathogenesis of SLE. In this study, we confirm previous results that efficient removal of apoptotic cells (efferocytosis) is bolstered in the presence of wild-type mouse serum, through the C3 deposition on the apoptotic cell surface. In contrast, sera from three mouse models of SLE, Mer(KD), MRL(lpr), and New Zealand Black/WF1 did not support and in fact actively inhibited apoptotic cell uptake. IgG autoantibodies were responsible for the inhibition, through the blockade of C3 recognition by macrophages. Consistent with this, IgG removal reversed the inhibitory activity within autoimmune serum, and purified autoimmune IgG blocked both the detection of C3 on apoptotic cells and C3-dependent efferocytosis. Sera from SLE patients demonstrated elevated anti-C3b IgG that blocked detection of C3 on apoptotic cells, activity that was not found in healthy controls or patients with rheumatoid arthritis, nor in mice prior to the onset of autoimmunity. We propose that the suppression of apoptotic cell disposal by Abs against deposited C3 may contribute to increasing severity and/or exacerbations in SLE.  相似文献   

9.
Endometriosis is a benign gynaecological disease appearing with pelvic pain, rising dysmenorrhoea and infertility seriously impacting on 10% of reproductive‐age females. This research attempts to demonstrate the function and molecular mechanism of RhoA/ROCK pathway on epithelial‐mesenchymal transition (EMT) and proliferation in endometriosis. The expression of Rho family was abnormally changed in endometriotic lesions; in particular, RhoA and ROCK1/2 were significantly elevated. Overexpression of RhoA in human eutopic endometrial epithelial cells (eutopic EECs) enhanced the cell mobility, epithelial‐mesenchymal transition (EMT) and proliferation, and RhoA knockdown exhibited the opposite function. Oestrogen up‐regulated the RhoA activity and expression of RhoA and ROCK1/2. RhoA overexpression reinforced the effect of oestrogen on promoting EMT and proliferation, and RhoA knockdown impaired the effect of oestrogen. oestrogen receptor α (ERα) was involved with the regulation of oestrogen on EMT and proliferation and up‐regulated RhoA activity and expression of RhoA and ROCK1/2. The function of ERα was modulated by the change in RhoA expression. Furthermore, phosphorylated ERK that was enhanced by oestrogen and ERα promoted the protein expression of RhoA/ROCK pathway. Endometriosis mouse model revealed that oestrogen enhanced the size and weight of endometriotic lesions. The expression of RhoA and phosphorylated ERK in mouse endometriotic lesions was significantly elevated by oestrogen. We conclude that abnormal activated RhoA/ROCK pathway in endometriosis is responsible for the function of oestrogen/ERα/ERK signalling, which promoted EMT and proliferation and resulted in the development of endometriosis.  相似文献   

10.
We examined the contractile reactivity to 5-hydroxytryptamine (5-HT) in isolated human saphenous vein (SV), as a vascular conduit in coronary artery bypass grafting (CABG), harvested from patients with diabetes mellitus (DM) and non-DM (NDM). Vascular rings of endothelium-denuded SV were used for functional and biochemical experiments. The vasoconstrictions caused by 5-HT were significantly greater (hyperreactivity) in the DM group than in the NDM group. RhoA/ROCK pathway is activated by various G-protein-coupled receptor agonists and consequently induces phosphorylation of myosin phosphatase target subunit 1 (MYPT1), a subunit of myosin light chain phosphatase (MLCP), which inhibits MLCP activity. In the resting state of the vessels, total tissue protein levels of 5-HT2A receptor, 5-HT1B receptor, RhoA, ROCK1, and ROCK2 did not differ between NDM and DM groups. However, the total protein level of MYPT1 was significantly lower in the DM group than in the NDM group. Furthermore, the ratio of P(Thr696)-MYPT1 to total MYPT1 was significantly higher in the DM group than in the NDM group. These results suggest that the hyperreactivity to 5-HT in the SV smooth muscle of patients with DM is due to not only enhanced phosphorylation of MLCP but also defective protein level of MLCP. Thus, we reveal for the first time that the defective protein level of MLCP in the DM group can partially explain the poor patency of SV graft harvested from patients with DM.  相似文献   

11.
RhoA GTPase dysregulation is frequently reported in various tumours and haematologic malignancies. RhoA, regulating Rho-associated coiled-coil-forming kinase 1 (ROCK1), modulates multiple cell functions, including malignant transformation, metastasis and cell death. Therefore, RhoA/ROCK1 could be an ideal candidate target in cancer treatment. However, the roles of RhoA/ROCK1 axis in apoptosis of leukaemia cells remain elusive. In this study, we explored the effects of RhoA/ROCK1 cascade on selenite-induced apoptosis of leukaemia cells and the underlying mechanism. We found selenite deactivated RhoA/ROCK1 and decreased the association between RhoA and ROCK1 in leukaemia NB4 and Jurkat cells. The inhibited RhoA/ROCK1 signalling enhanced the phosphorylation of Erk1/2 in a Mek1/2-independent manner. Erk1/2 promoted apoptosis of leukaemia cells after it was activated. Intriguingly, it was shown that both RhoA and ROCK1 were present in the multimolecular complex containing Erk1/2. GST pull-down analysis showed ROCK1 had a direct interaction with GST-Erk2. In addition, selenite-induced apoptosis in an NB4 xenograft model was also found to be associated with the RhoA/ROCK1/Erk1/2 pathway. Our data demonstrate that the RhoA/ROCK1 signalling pathway has important roles in the determination of cell fates and the modulation of Erk1/2 activity at the Mek–Erk interplay level.  相似文献   

12.
In chronic obstructive pulmonary disease (COPD/emphysema) we have shown a reduced ability of lung and alveolar (AM) macrophages to phagocytose apoptotic cells (defective ‘efferocytosis’), associated with evidence of secondary cellular necrosis and a resultant inflammatory response in the airway. It is unknown whether this defect is present in cancer (no COPD) and if so, whether this results from soluble mediators produced by cancer cells.We investigated efferocytosis in AM (26 controls, 15 healthy smokers, 37 COPD, 20 COPD+ non small cell lung cancer (NSCLC) and 8 patients with NSCLC without COPD) and tumor and tumor-free lung tissue macrophages (21 NSCLC with/13 without COPD). To investigate the effects of soluble mediators produced by lung cancer cells we then treated AM or U937 macrophages with cancer cell line supernatant and assessed their efferocytosis ability. We qualitatively identified Arachidonic Acid (AA) metabolites in cancer cells by LC-ESI-MSMS, and assessed the effects of COX inhibition (using indomethacin) on efferocytosis.Decreased efferocytosis was noted in all cancer/COPD groups in all compartments. Conditioned media from cancer cell cultures decreased the efferocytosis ability of both AM and U937 macrophages with the most pronounced effects occurring with supernatant from SCLC (an aggressive lung cancer type). AA metabolites identified in cancer cells included PGE2. The inhibitory effect of PGE2 on efferocytosis, and the involvement of the COX-2 pathway were shown.Efferocytosis is decreased in COPD/emphysema and lung cancer; the latter at least partially a result of inhibition by soluble mediators produced by cancer cells that include PGE2.  相似文献   

13.
Our previous studies have shown that nutritional zinc restriction exacerbates airway inflammation accompanied by an increase in caspase-3 activation and an accumulation of apoptotic epithelial cells in the bronchioles of the mice. Normally, apoptotic cells are rapidly cleared by macrophage efferocytosis, limiting any secondary necrosis and inflammation. We therefore hypothesized that zinc deficiency is not only pro-apoptotic but also impairs macrophage efferocytosis. Impaired efferocytic clearance of apoptotic epithelial cells by alveolar macrophages occurs in chronic obstructive pulmonary disease (COPD), cigarette-smoking and other lung inflammatory diseases. We now show that zinc is a factor in impaired macrophage efferocytosis in COPD. Concentrations of zinc were significantly reduced in the supernatant of bronchoalveolar lavage fluid of patients with COPD who were current smokers, compared to healthy controls, smokers or COPD patients not actively smoking. Lavage zinc was positively correlated with AM efferocytosis and there was decreased efferocytosis in macrophages depleted of Zn in vitro by treatment with the membrane-permeable zinc chelator TPEN. Organ and cell Zn homeostasis are mediated by two families of membrane ZIP and ZnT proteins. Macrophages of mice null for ZIP1 had significantly lower intracellular zinc and efferocytosis capability, suggesting ZIP1 may play an important role. We investigated further using the human THP-1 derived macrophage cell line, with and without zinc chelation by TPEN to mimic zinc deficiency. There was no change in ZIP1 mRNA levels by TPEN but a significant 3-fold increase in expression of another influx transporter ZIP2, consistent with a role for ZIP2 in maintaining macrophage Zn levels. Both ZIP1 and ZIP2 proteins were localized to the plasma membrane and cytoplasm in normal human lung alveolar macrophages. We propose that zinc homeostasis in macrophages involves the coordinated action of ZIP1 and ZIP2 transporters responding differently to zinc deficiency signals and that these play important roles in macrophage efferocytosis.  相似文献   

14.
To explore the underlying mechanism of lncRNA MALAT1 in the pathogenesis of diabetic cardiomyopathy (DCM). DCM models were confirmed in db/db mice. MiRNAs in myocardium were detected by miRNA sequencing. The interactions of miR-185-5p with MALAT1 and RhoA were validated by dual-luciferase reporter assays. Primary neonatal cardiomyocytes were cultured with 5.5 or 30 mmol/L D-glucose (HG) in the presence or absence of MALAT1-shRNA and fasudil, a ROCK inhibitor. MALAT1 and miR-185-5p expression were determined by real-time quantitative PCR. The apoptotic cardiomyocytes were evaluated using flow cytometry and TUNEL staining. SOD activity and MDA contents were measured. The ROCK activity, phosphorylation of Drp1S616, mitofusin 2 and apoptosis-related proteins were analysed by Western blotting. Mitochondrial membrane potential was examined by JC-1. MALAT1 was significantly up-regulated while miR-185-5p was down-regulated in myocardium of db/db mice and HG-induced cardiomyocytes. MALAT1 regulated RhoA/ROCK pathway via sponging miR-185-5p in cardiomyocytes in HG. Knockdown of MALAT1 and fasudil all inhibited HG-induced oxidative stress, and alleviated imbalance of mitochondrial dynamics and mitochondrial dysfunction, accompanied by reduced cardiomyocyte apoptosis. MALAT1 activated the RhoA/ROCK pathway via sponging miR-185-5p and mediated HG-induced oxidative stress, mitochondrial damage and apoptosis of cardiomyocytes in mice.  相似文献   

15.
Rho-kinase (ROCKs) belongs to the family of serine/threonine kinases and is an important downstream effector of the small GTP-binding protein RhoA. There are two isoforms of Rho-kinase, ROCK1 and ROCK2, and they have different functions with ROCK1 for circulating inflammatory cells and ROCK2 for vascular smooth muscle cells. It has been demonstrated that the RhoA/Rho-kinase pathway plays an important role in various fundamental cellular functions, including contraction, motility, proliferation, and apoptosis, leading to the development of cardiovascular disease. The important role of Rho-kinase in vivo has been demonstrated in the pathogenesis of vasospasm, arteriosclerosis, ischemia-reperfusion injury, hypertension, pulmonary hypertension, stroke, and heart failure. Furthermore, the beneficial effects of fasudil, a selective Rho-kinase inhibitor, have been demonstrated for the treatment of several cardiovascular diseases in humans. Thus the Rho-kinase pathway is an important new therapeutic target in cardiovascular medicine.  相似文献   

16.
Cell-cell contacts and interactions between pancreatic β-cells and/or other cell populations within islets are essential for cell survival, insulin secretion, and functional synchronization. Three-dimensional (3D) culture systems supply the ideal microenvironment for islet-like cluster formation and functional maintenance. However, the underlying mechanisms remain unclear. In this study, mouse insulinoma 6 (MIN6) cells were cultured in a rotating 3D culture system to form islet-like aggregates. Glucose-stimulated insulin secretion (GSIS) and the RhoA/ROCK pathway were investigated. In the 3D-cultured MIN6 cells, more endocrine-specific genes were up-regulated, and GSIS was increased to a greater extent than in cells grown in monolayers. RhoA/ROCK inactivation led to F-actin remodeling in the MIN6 cell aggregates and greater insulin exocytosis. The gap junction protein, connexin 36 (Cx36), was up-regulated in MIN6 cell aggregates and RhoA/ROCK-inactivated monolayer cells. GSIS dramatically decreased when Cx36 was knocked down by short interfering RNA and could not be reversed by RhoA/ROCK inactivation. Thus, the RhoA/ROCK signaling pathway is involved in insulin release through the up-regulation of Cx36 expression in 3D-cultured MIN6 cells.  相似文献   

17.
We have demonstrated that ATP‐sensitive potassium (KATP) channel agonists attenuated fibrosis; however, the mechanism remained unclear. Since RhoA has been identified as a mediator of cardiac fibrosis, we sought to determine whether the anti‐fibrotic effects of KATP channel agonists were mediated via regulating macrophage phenotype and fibroblast differentiation by a RhoA/RhoA‐kinase‐dependent pathway. Wistar male rats after induction of myocardial infarction were randomized to either vehicle, nicorandil, an antagonist of KATP channel glibenclamide, an antagonist of ROCK fasudil, or a combination of nicorandil and glibenclamide or fasudil and glibenclamide starting 24 hrs after infarction. There were similar infarct sizes among the infarcted groups. At day 3 after infarction, post‐infarction was associated with increased RhoA/ROCK activation, which can be inhibited by administering nicorandil. Nicorandil significantly increased myocardial IL‐10 levels and the percentage of regulatory M2 macrophages assessed by immunohistochemical staining, Western blot, and RT‐PCR compared with vehicle. An IL‐10 receptor antibody increased myofibroblast infiltration compared with nicorandil alone. At day 28 after infarction, nicorandil was associated with attenuated cardiac fibrosis. These effects of nicorandil were functionally translated in improved echocardiographically derived cardiac performance. Fasudil showed similarly increased expression of M2 macrophages as nicorandil. The beneficial effects of nicorandil on fibroblast differentiation were blocked by adding glibenclamide. However, glibenclamide cannot abolish the attenuated fibrosis of fasudil, implying that RhoA/RhoA‐kinase is a downstream effector of KATP channel activation. Nicorandil polarized macrophages into M2 phenotype by inhibiting RhoA/RhoA‐kinase pathway, which leads to attenuated myofibroblast‐induced cardiac fibrosis after myocardial infarction.  相似文献   

18.
Accumulative indoxyl sulfate (IS) retained in chronic kidney disease (CKD) can potentiate vascular endothelial dysfunction, and herein, we aim at elucidating the underlying mechanisms from the perspective of possible association between reactive oxygen species (ROS) and RhoA/ROCK pathway. IS-treated nephrectomized rats are administered with antioxidants including NADPH oxidase inhibitor apocynin, SOD analog tempol, and mitochondrion-targeted SOD mimetic mito-TEMPO to scavenge ROS, or ROCK inhibitor fasudil to obstruct RhoA/ROCK pathway. First, we find in response to IS stimulation, antioxidants treatments suppress increased aortic ROCK activity and expression levels. Additionally, ROCK blockade prevent IS-induced increased NADPH oxidase expression (mainly p22phox and p47phox), mitochondrial and intracellular ROS (superoxide and hydrogen peroxide) generation, and decreased Cu/Zn-SOD expression in thoracic aortas. Apocynin, mito-TEMPO, and tempol also reverse these markers of oxidative stress. These results suggest that IS induces excessive ROS production and ROCK activation involving a circuitous relationship in which ROS activate ROCK and ROCK promotes ROS overproduction. Finally, ROS and ROCK depletion attenuate IS-induced decrease in nitric oxide (NO) production and eNOS expression levels, and alleviate impaired vasomotor responses including increased vasocontraction to phenylephrine and decreased vasorelaxation to acetylcholine, thereby preventing cardiovascular complications accompanied by CKD. Taken together, excessive ROS derived from NADPH oxidase and mitochondria coordinate with RhoA/ROCK activation in a form of positive reciprocal relationship to induce endothelial dysfunction through disturbing endothelium-dependent NO signaling upon IS stimulation in CKD status.  相似文献   

19.
As there is increasing evidence that Rho-Rho kinase (ROCK) pathway plays an important role in the proliferation and contraction in many tissues, we investigated the contractile role of a ROCK inhibitor, fasudil, and the distribution of RhoA, RhoB, RhoC, ROCK1, and ROCK2 in the rat prostate. Twelve-week-old Sprague-Dawley rat prostate was used in this study. Rat prostatic contractile responses induced by carbachol and norepinephrine were investigated in organ bath studies without or with 10(-7), 10(-6), and 10(-5) M of a non-selective ROCK inhibitor, fasudil. Immunoblot analysis and immunohistochemical staining were performed to investigate the participation levels of RhoA, RhoB, RhoC, ROCK1, and ROCK2. The E(max) values induced by carbachol and norepinephrine were similar in the rat prostate. Fasudil significantly inhibited carbachol- or norepinephrine-induced prostatic contractions in a dose-dependent manner. Fasudil 10(-5) M reduced the initial prostatic contraction (without fasudil) to 56.7 ± 5.9% for carbachol and to 45.7 ± 12.3% for norepinephrine. Amounts of RhoA, RhoB, RhoC, ROCK1, and ROCK2 were detected by immunoblot analysis in the prostate. Immunohistochemical study revealed that RhoA, RhoB, RhoC, ROCK1, and ROCK2 were all positive in the prostatic smooth muscle, while there were some differences of distributions of Immunoreactivities between these enzymes in the prostatic glandula. Our data indicated that rat prostate contains RhoA, RhoB, RhoC, ROCK1, and ROCK2, which play an important role in the autonomic nerve-mediated contractile responses in the prostate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号