首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
To promote healing of many orthopedic injuries, tissue engineering approaches are being developed that combine growth factors such as Bone Morphogenetic Proteins (BMP) with biomaterial carriers. Although these technologies have shown great promise, they still face limitations. We describe a generalized approach to create target-specific modular peptides that bind growth factors to implantable biomaterials. These bifunctional peptide coatings provide a novel way to modulate biology on the surface of an implant.Using phage display techniques, we have identified peptides that bind with high affinity to BMP-2. The peptides that bind to BMP-2 fall into two different sequence clusters. The first cluster of peptide sequences contains the motif W-X-X-F-X-X-L (where X can be any amino acid) and the second cluster contains the motif F-P-L-K-G. We have synthesized bifunctional peptide linkers that contain BMP-2 and collagen-binding domains. Using a rat ectopic bone formation model, we have injected rhBMP-2 into a collagen matrix with or without a bifunctional BMP-2: collagen peptide (BC-1). The presence of BC-1 significantly increased osteogenic cellular activity, the area of bone formed, and bone maturity at the site of injection. Our results suggest that bifunctional peptides that can simultaneously bind to a growth factor and an implantable biomaterial can be used to control the delivery and release of growth factors at the site of implantation.  相似文献   

3.
人骨形态发生蛋白7(hBMP7)在毕赤酵母中的分泌表达   总被引:5,自引:0,他引:5  
依据酵母密码子使用偏好性,利用重叠延伸PCR(OE-PCR)介导的定点突变方法,对人骨形态发生蛋白-7(human Bone Morphogenetic Protein-7,hBMP7)成熟肽编码序列进行改造,将毕赤酵母低频使用的精氨酸密码子CGG或CGA突变为高频使用的同义密码子AGA,明显提高了hBMP7成熟肽在毕赤酵母中的表达量摇瓶培养表达量为25.45mg/L,是改造前序列的4.6倍;TricineSDS-PAGE及Western-blotting结果表明,rhBMP7成熟肽分子量为18kD,以单体形式存在,具有良好的免疫原性;利用梯度浓度G418筛选到一株高拷贝整合的转化子,该转化子摇瓶表达量为45.45mg/L,约为单拷贝转化子的2倍。表达上清经阳离子交换介质SPSepharoseR○FastFlow纯化后,目的蛋白纯度达到90%。纯化后的样品与I型胶原混合冻干后埋植于小鼠股部肌袋内,能异位诱导间充质细胞分化形成软骨细胞。  相似文献   

4.
5.
Applied Biochemistry and Microbiology - The biological properties of a new gene-activated osteoplastic material based on chitosan sponges impregnated with plasmids with the gene BMP-2 for bone...  相似文献   

6.
报告了人骨形态发生蛋白-2(BMP-2)成熟肽的基因克隆,及其在大肠杆菌中的表达。用AflⅡ酶剪除BMP-2cDNA中的信号肽及前肽部分的序列,将编码成熟肽的cDNA3′端0.36kb基因片段克隆于大肠杆菌表达载体pMX-1质粒的ATG下游,受控于PLPR启动子。重组子以大肠杆菌DH5α为宿主细胞进行温度诱导表达。工程菌经42℃6h诱导后,在SDS-PAGE上出现一条新蛋白带,分子量约为12kD,约占菌体总蛋白的20%。主要以包涵体形式存在的表达产物经初步纯化后,可获得纯度较高的重组人骨形态发生蛋白-2成熟肽(rhBMP-2m)。小鼠肌肉植入试验发现。rhBMP-2m植入后的不同时间,在局部出现间质细胞的聚集和增生、软骨细胞及软骨基质的生成和硬质骨的形成,证明rhBMP-2m具有明显的诱导新骨形成的作用。  相似文献   

7.
The role of homeobox genes in signaling of recombinant human bone morphogenetic protein-2 (rhBMP-2) was studied in osteoblast-like cells. Expression of several homeobox genes was decreased by rhBMP-2. The finding that this regulation of homeobox gene expression by rhBMP-2 was not dependent on protein synthesis suggests that homeobox proteins can act as direct intermediates in signal transduction of BMPs. Therefore, we studied the regulation of neural cell adhesion molecule (NCAM), which has previously been described as a target gene of both rhBMP-2 and homeobox proteins. We now show that in osteoblast-like cells, rhBMP-2 inhibits NCAM expression, while HOXC6 increases its expression, both acting via the same region of the promoter. As overexpression of HOXC6 could abolish effects of rhBMP-2 on NCAM promoter activity, these data show for the first time that members of the homeobox gene family may form direct functional intermediates in the signaling mechanism of the TGF-β superfamily.  相似文献   

8.
人骨形态发生蛋白12对人骨肉瘤细胞的生物学作用   总被引:2,自引:0,他引:2  
为研究人骨形态发生蛋白(human bone morphogenetic proteins,hBMP)12对人骨肉瘤细胞株MG63和U2OS的作用,分别用hBMP12重组腺病毒(AdBMP12)以及含重组hBMP12(recombinant hBMP12,rhBMP12)的条件培养液干预人骨肉瘤细胞MG63和U2OS,利用台盼蓝拒染法、TUNEL法、吖啶橙/溴乙啶(AO/EB)荧光双染法、Transwell小室和碱性磷酸酶活性测定法分别检测细胞增殖、凋亡、迁移以及成骨分化能力的变化.与相应对照组相比,AdBMP12和含rhBMP12的条件培养液的干预致两种骨肉瘤细胞株细胞存活率降低,并呈一定的时间依赖性;凋亡率均随时间延长而增加,并且两种检测方法的结果一致;不同时间点的细胞穿膜数均明显减低;碱性磷酸酶活性在干预3d后开始逐渐增加,至第9d仍可观测到.以上差异均有统计学意义(P<0.01).提示无论是以腺病毒介导基因转入还是重组蛋白直接作用方式,hBMP12都可以抑制人骨肉瘤细胞株MG63和U2OS的增殖和迁移,并诱导其凋亡和向成骨细胞分化.  相似文献   

9.
We evaluated whether dexamethasone augments the osteogenic capability of bone marrow-derived stromal cells (BMSCs) and muscle tissue-derived stromal cells (MuSCs), both of which are thought to contribute to ectopic bone formation induced by bone morphogenetic protein-2 (BMP-2), and determined the underlying mechanisms. Rat BMSCs and MuSCs were cultured in growth media with or without 10-7 M dexamethasone and then differentiated under osteogenic conditions with dexamethasone and BMP-2. The effects of dexamethasone on cell proliferation and osteogenic differentiation, and also on ectopic bone formation induced by BMP-2, were analyzed. Dexamethasone affected not only the proliferation rate but also the subpopulation composition of BMSCs and MuSCs, and subsequently augmented their osteogenic capacity during osteogenic differentiation. During osteogenic induction by BMP-2, dexamethasone also markedly affected cell proliferation in both BMSCs and MuSCs. In an in vivo ectopic bone formation model, bone formation in muscle-implanted scaffolds containing dexamethasone and BMP-2 was more than two fold higher than that in scaffolds containing BMP-2 alone. Our results suggest that dexamethasone potently enhances the osteogenic capability of BMP-2 and may thus decrease the quantity of BMP-2 required for clinical application, thereby reducing the complications caused by excessive doses of BMP-2.Highlights: 1. Dexamethasone induced selective proliferation of bone marrow- and muscle-derived cells with higher differentiation potential. 2. Dexamethasone enhanced the osteogenic capability of bone marrow- and muscle-derived cells by altering the subpopulation composition. 3. Dexamethasone augmented ectopic bone formation induced by bone morphogenetic protein-2.  相似文献   

10.
11.
12.
A continuous source of osteoblasts for normal bone maintenance, as well as remodeling and regeneration during fracture repair, is ensured by the mesenchymal osteoprogenitor stem cells of the bone marrow (BM). The differentiation and maturation of osteoprogenitor cells into osteoblasts are thought to be modulated by transforming growth factors-β (TGF-β1 and TGF-β2) and TGF-β-related bone morphogenetic proteins (BMPs). To define the responses of mesenchymal osteoprogenitor stem cells to several growth factors (GFs), we cultured Fischer 344 rat BM cells in a collagen gel medium containing 0.5% fetal bovine serum for prolonged periods of time. Under these conditions, survival of BM mesenchymal stem cells was dependent on the addition of GFs. Recombinant hTGF-β1-F2, a fusion protein engineered to contain an auxiliary collagen binding domain, demonstrated the ability to support survival colony formation and growth of the surviving cells, whereas commercial hTGF-β1 did not. Initially, cells were selected from a whole BM cell population and captured inside a collagen network, on the basis of their survival response to added exogenous GFs. After the 10-day selection period, the surviving cells in the rhTGF-β1-F2 test groups proliferated rapidly in response to serum factors (10% FBS), and maximal DNA synthesis levels were observed. Upon the addition of osteoinductive factors, osteogenic differentiation in vitro was evaluated by the induction of alkaline phosphatase (ALP) expression, the production of osteocalcin (OC), and the formation of mineralized matrix. Concomitant with a down-regulation of cell proliferation, osteoinduction is marked by increased ALP expression and the formation of colonies that are competent for mineralization. During the induction period, when cells organize into nodules and mineralize, the expression of OC was significantly elevated along with the onset of extracellular matrix mineralization. Differentiation of BM mesenchymal stem cells into putative bone cells as shown by increased ALP, OC synthesis, and in vitro mineralization required the presence of specific GFs, as well as dexamethasone (dex) and β-glycerophosphate (β-GP). Although rhTGF-β1-F2-selected cells exhibited the capacity to mineralize, maximal ALP activity and OC synthesis were observed in the presence of rhBMPs. We further report that a novel rhTGF-β1-F2 fusion protein, containing a von Willebrand's factor-derived collagen binding domain combined with a type I collage matrix, is able to capture, amplify, and stimulate the differentiation of a population of cells present in rat BM. When these cells are subsequently implanted in inactivated demineralized bone matrix (iDBM) and/or diffusion chambers into older rats they are able to produce bone and cartilage. The population of progenitor cells captured by rhTGF-β1-F2 is distinct from the committed progenitor cells captured by rhBMPs, which exhibit a considerably more differentiated phenotype.  相似文献   

13.
Bone morphogenetic protein-7 (BMP-7) is a secreted multifunctional growth factor of the TGF-β superfamily, which is predominantly known for its osteoinductive properties and emerging potential for treatment of kidney diseases. The mature 34–38 kDa disulfide-linked homodimer protein plays a key role in the differentiation of mesenchymal cells into bone and cartilage. In this study, the full-length sequence of hBMP-7 was amplified and, then, cloned, expressed, and purified from the conditioned medium of 293T cells stably transfected with a lentiviral vector. The mature protein dimer form was properly secreted and recognized by anti-BMP-7 antibodies, and the protein was shown to be glycosilated by treatment with exoglycosidase, followed by western blotting. Moreover, the activity of the purified protein was demonstrated both in vitro, by alkaline phosphatase activity in C2C12 cells, and in vivo by induction of ectopic bone formation in Balb/c Nude mice after 21 days, respectively. This recombinant protein platform may be very useful for expression of different human cytokines and other proteins for medical applications.  相似文献   

14.
15.
International Journal of Peptide Research and Therapeutics - Human bone morphogenetic protein-2 (BMP2) plays an important role in the development of bone and cartilage, which functions as bone...  相似文献   

16.
We examined the potential neurotrophic effects of bone morphogenetic protein (BMP)-2 on the survival and differentiation of neurons cultured from the rat developing striatum at embryonic day 16, a period during which the mRNAs for BMP-2 and its receptor subunits (types IA, IB, and II) were detected. BMP-2 exerted potent activity to promote the survival of striatal neurons and increased the number of surviving microtubule-associated protein-2-positive cells by 2.4-fold as compared with the control cultures after 4 days in vitro. Although basic fibroblast growth factor (bFGF) also showed relatively high activity to promote the survival of striatal neurons, transforming growth factor-beta1, -beta2, and -beta3, glial cell line-derived neurotrophic factor, or brain-derived neurotrophic factor promoted their survival weakly. Striatal neurons cultured in the presence of BMP-2 or bFGF possessed extensive neurite outgrowths, the majority of which were GABA-immunoreactive. Inhibition of glial cell proliferation by 5-fluorodeoxyuridine did not affect the capacity of BMP-2 to promote the survival of striatal GABAergic neurons. In contrast, the ability of bFGF to promote the survival of striatal neurons was inhibited significantly by the treatment of cells with 5-fluorodeoxyuridine. All these results suggest that BMP-2 exerts potent neurotrophic effects on the striatal GABAergic neurons in a glial cell-independent manner.  相似文献   

17.
重组人骨形态形成蛋白2在家蚕幼虫中表达及产物纯化   总被引:4,自引:0,他引:4  
将编码人BMP2cDNA基因插入昆虫杆状病毒转移载体pBacPAK1,与修饰的家蚕核形多角体病毒Bm-BacPAKDNA共转染家蚕细胞,通过同源重组得到含有在多角体蛋白基因启动子控制下的BMP2cDNA基因的重组病毒Bm-BacPAK-BMP2。用重组病毒感染家蚕幼虫,第五天BMP2表达率最高,每毫升蚕血淋巴中约10μg表达产物;表达产物在在体内被加工成C-端16kD片段,以二硫键连结成分子量为30kD的同源二聚体;经纯化获得90%以上纯度的成熟BMP2,与骨基质胶原结合后植入大鼠皮下,7天后在局部诱导生成软骨组织。  相似文献   

18.
Abstract: Microtubule-associated protein-2 (MAP-2) functions to maintain neuronal morphology by promoting the assembly of microtubules. MAP-2c is an alternately spliced form of MAP-2, containing the first 151 amino acids of high-molecular-weight (HMW) MAP-2 joined to the last 321 amino acids, eliminating 1,352 amino acids specific to HMW MAP-2. A polyclonal antibody generated to the splice site of human MAP-2c was used to determine its cellular localization. The MAP-2c antiserum was depleted of any HMW MAP-2 reactivity by absorption with HMW MAP-2 fusion protein. Western blot analysis of human fetal spinal cord homogenates demonstrated that the antibody is specific for human MAP-2c. MAP-2c immunoreactivity was found in the perinuclear cytoplasm and processes of anterior motor neurons and large processes of the posterior column in sections from 22–24-week human fetal spinal cord. Double-label confocal microscopy was performed using the MAP-2c polyclonal antibody and either a HMW MAP-2 or a neurofilament protein (highly phosphorylated 160- and 200-kDa protein) monoclonal antibody to identify these processes as dendrites or axons, respectively. HMW MAP-2 and MAP-2c colocalized in cell bodies and dendrites of anterior motor neurons, demonstrating for the first time the presence of native MAP-2c within dendrites. In addition, immunoelectron microscopy showed MAP-2c associated with microtubules in dendrites of motor neurons. MAP-2c and the neurofilament proteins were found in axons of the dorsal and ventral roots. The presence of MAP-2c within axons and dendrites suggests that MAP-2c contributes to neuronal plasticity during human fetal development.  相似文献   

19.
目的:以蚕丝蛋白支架(silk fibroin porous scaffolds SFPS)接种骨髓基质干细胞(bone marrow mesenchymal stem cells,BMMSCs)移植入SD大鼠脊髓半切损伤模型内,观察BMMSCs-SFPS复合生物支架对损伤脊髓的修复作用.方法:密度梯度离心法提取、贴壁法培养BMMSCs,取第三代对数生长期细胞,采用注射法制备BMMSCs-SFPS复合支架,复合14天进行生物相容性检测.40只SD大鼠复制脊髓半切损伤模型后随机分配为四组(n=10):A组BMMSCs-SFPS联合移植、B组单独移植BMMSCs、C组单独移植SFPS、D组为空白对照组,移植后分别于1、2、3、4周进行运动功能评分和术后4周进行HE染色观察、免疫荧光检测.结果:BMMSCs-SFPS复合支架体外培养14天后,扫描电镜可见BMMSCs附于SFPS支架内表面生长,细胞贴附良好并互有接触.移植入脊髓半切损伤模型后4周进行HE染色,结果显示A组脊髓空洞较其余三组小,免疫荧光检测结果示A组NF200、Nestin阳性表达高于B、C、D组,A组GFAP表达则明显低于其余三组.A组术后2~4周Basso-Beattie-Bresnahan (BBB)评分均高于同期B、C、D组,比较差异有统计学意义(P<0.01),D组评分明显低于同期其他3组,差异有统计学意义(P<0.05).结论:BMMSCs-SPFS具有良好生物相容性,复合支架保证BMMSCs的存活数量、能抑制胶质瘢痕.BMMSCS-SFPS复合生物支架能发挥协同作用,促进脊髓半切损伤的大鼠运动功能恢复.  相似文献   

20.
对表达人骨形成蛋白2A(BMP2A)的重组大肠杆菌YK537/pDHB2m在500ml摇瓶中进行了培养条件的摸索实验,继后用5L自控发酵罐进行分批培养和分批补料培养,以获取rhBMP2A。两种培养方式结果比较表明,在培养过程中保持30%~40%左右的溶解氧和限制性流加葡萄糖可以使BMP2A的含量达到278g/L,最终菌体密度为OD60053(相当于干菌212g/L),重组蛋白的表达量占菌体总蛋白的25%。该培养技术的关键是:(1)在培养过程中保持适当的溶解氧;(2)限制性流加葡萄糖;(3)42℃起始诱导的时间控制在对数生长中期,持续表达时间为4h;(4)细菌持续生长的比生长速率控制在03h1左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号