共查询到20条相似文献,搜索用时 0 毫秒
1.
Junqin Li Lihua Dong Dapeng Wei Xiaodong Wang Shuo Zhang Hua Li 《International journal of biological sciences》2014,10(2):171-180
This study aimed to investigate the role of fatty acid synthase (FASN) in the epithelial-mesenchymal transition (EMT) of breast cancer cells. MCF-7 cells and MCF-7 cells overexpressing mitogen-activated protein kinase 5 (MCF-7-MEK5) were used in this study. MCF-7-MEK5 cells showed stable EMT characterized by increased vimentin and decreased E-cadherin expression. An In vivo animal model was established using the orthotopic injection of MCF-7 or MCF-7-MEK5 cells. Real-time quantitative PCR and western blotting were used to detect the expression levels of FASN and its downstream proteins liver fatty acid-binding protein (L-FABP) and VEGF/VEGFR-2 in both in vitro and in vivo models (nude mouse tumor tissues). In MCF-7-MEK5 cells, significantly increased expression of FASN was associated with increased levels of L-FABP and VEGF/VEGFR-2. Cerulenin inhibited MCF-7-MEK5 cell migration and EMT, and reduced FASN expression and down-stream proteins L-FABP, VEGF, and VEGFR-2. MCF-7-MEK5 cells showed higher sensitivity to Cerulenin than MCF-7 cells. Immunofluorescence revealed an increase of co-localization of FASN with VEGF on the cell membrane and with L-FABP within MCF-7-MEK5 cells. Immunohistochemistry further showed that increased percentage of FASN-positive cells in the tumor tissue was associated with increased percentages of L-FABP- and VEGF-positive cells and the Cerulenin treatment could reverse the effect. Altogether, our results suggest that FASN is essential to EMT possibly through regulating L-FABP, VEGF and VEGFR-2. This study provides a theoretical basis and potential strategy for effective suppression of malignant cells with EMT. 相似文献
2.
Sofia Agelaki Antonia Kalykaki Harris Markomanolaki Maria A. Papadaki Galatea Kallergi Dora Hatzidaki Kostas Kalbakis Dimitrios Mavroudis Vassilis Georgoulias 《PloS one》2015,10(6)
Background
To evaluate the efficacy of lapatinib, a dual EGFR and HER2 tyrosine kinase inhibitor, in therapy-resistant HER2-positive CTCs in metastatic breast cancer (MBC).Patients and Methods
Patients with MBC and HER2-positive CTCs despite disease stabilization or response to prior therapy, received lapatinib 1500 mg daily in monthly cycles, till disease progression or CTC increase. CTC monitoring was performed by immunofluorescent microscopy using cytospins of peripheral blood mononuclear cells (PBMCs) double stained for HER2 or EGFR and cytokeratin.Results
A total of 120 cycles were administered in 22 patients; median age was 62.5 years, 15 (68.2%) patients were post-menopausal and 20 (90.1%) had HER2-negative primary tumors. At the end of the second course, HER2-positive CTC counts decreased in 76.2% of patients; the median number of HER2-positive CTCs/patient also declined significantly (p = 0.013), however the decrease was significant only among patients presenting disease stabilization (p = 0.018) but not among those with disease progression during lapatinib treatment. No objective responses were observed. All CTC-positive patients harbored EGFR-positive CTCs on progression compared to 62.5% at baseline (p = 0.054). The ratio of EGFR-positive CTCs/total CTCs detected in all patients increased from 17.1% at baseline to 37.6% on progression, whereas the mean percentage of HER2-negative CTCs/patient increased from 2.4% to 30.6% (p = 0.03).Conclusions
The above results indicate that lapatinib is effective in decreasing HER2-positive CTCs in patients with MBC irrespectively of the HER2 status of the primary tumor and imply the feasibility of monitoring the molecular changes on CTCs during treatment with targeted agents.Trial Registration
Clinical trial.gov NCT00694252 相似文献3.
Adriana Blancafort Ariadna Giró-Perafita Glòria Oliveras Sònia Palomeras Carlos Turrado òscar Campuzano Dolors Carrión-Salip Anna Massaguer Ramon Brugada Marta Palafox Jorge Gómez-Miragaya Eva González-Suárez Teresa Puig 《PloS one》2015,10(6)
Blocking the enzyme Fatty Acid Synthase (FASN) leads to apoptosis of HER2-positive breast carcinoma cells. The hypothesis is that blocking FASN, in combination with anti-HER2 signaling agents, would be an effective antitumor strategy in preclinical HER2+ breast cancer models of trastuzumab and lapatinib resistance. We developed and molecularly characterized in vitro HER2+ models of resistance to trastuzumab (SKTR), lapatinib (SKLR) and both (SKLTR). The cellular interactions of combining anti-FASN polyphenolic compounds (EGCG and the synthetic G28UCM) with anti-HER2 signaling drugs (trastuzumab plus pertuzumab and temsirolimus) were analyzed. Tumor growth inhibition after treatment with EGCG, pertuzumab, temsirolimus or the combination was evaluated in two in vivo orthoxenopatients: one derived from a HER2+ patient and another from a patient who relapsed on trastuzumab and lapatinib-based therapy. SKTR, SKLR and SKLTR showed hyperactivation of EGFR and p-ERK1/2 and PI3KCA mutations. Dual-resistant cells (SKLTR) also showed hyperactivation of HER4 and recovered levels of p-AKT compared with mono-resistant cells. mTOR, p-mTOR and FASN expression remained stable in SKTR, SKLR and SKLTR. In vitro, anti-FASN compounds plus pertuzumab showed synergistic interactions in lapatinib- and dual- resistant cells and improved the results of pertuzumab plus trastuzumab co-treatment. FASN inhibitors combined with temsirolimus displayed the strongest synergistic interactions in resistant cells. In vivo, both orthoxenopatients showed strong response to the antitumor activity of the combination of EGCG with pertuzumab or temsirolimus, without signs of toxicity. We showed that the simultaneous blockade of FASN and HER2 pathways is effective in cells and in breast cancer models refractory to anti-HER2 therapies. 相似文献
4.
目的:对比分析人类表皮生长因子受体2(HER-2)阳性和阴性乳腺癌X线特征,探讨乳腺癌X线征象与HER-2基因之间的相关性。方法:回顾性分析经手术病理确诊的1153例女性乳腺癌患者的X线表现,根据免疫组织化学结果分为HER-2阳性组(314例)和HER-2阴性组(839例)。对比分析两组乳腺癌肿块和钙化的X线特征,肿块主要分析形态、边界及边缘,钙化主要分析形状及分布形式,并对各项分析结果进行X2检验,P〈0.05为差异性有统计学意义。结果:HER-2阳性组乳腺癌较阴性组多表现为钙化(X2=42.528,P=0.001),HER-2阴性组乳腺癌X线表现多为单纯肿块(389/839,X2=16.374,P=0.001)。星芒状肿块在HER-2阴性组比例较高(57/514,X2=5.912,P=0.015),两组类圆形(P=0.480)、分叶状(P=0.111)、不规则形肿块(P=0.152)分布比例则无明显统计学差异。HER-2阳性组乳腺癌肿块边界多模糊不清(X2=8.319,P=0.004),阴性组肿块边界多为部分清楚(X2=5.818,P=0.016)。HER-2阳性组乳腺癌钙化形态多表现为沙砾状(X2=8.955,P=0.001)、多形性和不定形(X2=7.137,P=0.001),分布形式无明显统计学差异。结论:HER-2阳性乳腺癌X线表现钙化居多,且多为沙砾状、多形性和不定形钙化,肿块边界多模糊不清;HER-2阴性乳腺癌多表现为单纯肿块,边界多为部分清楚,星芒状肿块多见。 相似文献
5.
Weihua Liu Jinmei Xu Shaoping Wu Yilun Liu Xiaoping Yu Juan Chen Xi Tang Zhi Wang Xiaohu Zhu Xin Li 《PloS one》2013,8(12)
Overexpressed Human epidermal growth factor receptor 2 (HER2) drives the biology of 20% breast cancer and is a prediction of a poor prognosis for patients. HER2-targeted therapies significantly improve outcomes for HER2-positive patients. Traditional Chinese herbs/medicines have been used to treat breast cancer patients including HER2-positive patients in Asia for decades. Although the traditional medicines demonstrate efficacy in clinics for HER2-positive patients, the mechanism is largely unknown. In this article, we screened a 10,000 natural product library in 6 different cell lines representing breast cancer, and assessed the ability of each drug to cause cytotoxicity through a high-throughput screening approach. We have identified eight natural compounds that selectively inhibit the proliferation of HER2-positive cells. Two of the hit compounds, peonidin-3-glucoside and cyaniding-3-glucoside, are both extracts from black rice. They inhibit the phospho-HER2 and phospho-AKT and were confirmed to induce HER2-psotive breast cancer cells apoptosis both in vitro and in vivo. Peonidin-3-glucoside and cyaniding-3-glucoside treatments significantly reduced the tumor size and volume in vivo compared to the control group. There is no significant difference of antitumorgenic effects between peonidin-3-glucoside and cyaniding-3-glucoside treatments. 相似文献
6.
Strategies for successful primary treatment of HER2-positive breast cancer include use of the HER2 inhibitors trastuzumab or lapatinib in combination with standard chemotherapy. While successful, many patients develop resistance to these HER2 inhibitors indicating an unmet need. Consequently, current research efforts are geared toward understanding mechanisms of resistance and the signaling modalities that regulate these mechanisms. We have undertaken a study to examine whether signaling molecules downstream of epidermal growth factor receptor, which often act as compensatory signaling outlets to circumvent HER2 inhibition, can be co-targeted to overcome resistance. We identified JNK signaling as a potential area of intervention and now show that inhibiting JNK using the pan-JNK inhibitor, SP600125, is effective in the HER2-positive, resistant JIMT-1 xenograft mammary tumor model. We also investigate potential combination strategies to bolster the effects of JNK inhibition and find that co-targeting of JNK and the protein kinase HUNK can prohibit tumor growth of resistant HER2-positive mammary tumors in vivo. 相似文献
7.
Silvia von der Heyde Steve Wagner Alexander Czerny Manuel Nietert Fabian Ludewig Gabriela Salinas-Riester Dorit Arlt Tim Bei?barth 《PloS one》2015,10(2)
Intrinsic and acquired resistance to the monoclonal antibody drug trastuzumab is a major problem in the treatment of HER2-positive breast cancer. A deeper understanding of the underlying mechanisms could help to develop new agents. Our intention was to detect genes and single nucleotide polymorphisms (SNPs) affecting trastuzumab efficiency in cell culture. Three HER2-positive breast cancer cell lines with different resistance phenotypes were analyzed. We chose BT474 as model of trastuzumab sensitivity, HCC1954 as model of intrinsic resistance, and BTR50, derived from BT474, as model of acquired resistance. Based on RNA-Seq data, we performed differential expression analyses on these cell lines with and without trastuzumab treatment. Differentially expressed genes between the resistant cell lines and BT474 are expected to contribute to resistance. Differentially expressed genes between untreated and trastuzumab treated BT474 are expected to contribute to drug efficacy. To exclude false positives from the candidate gene set, we removed genes that were also differentially expressed between untreated and trastuzumab treated BTR50. We further searched for SNPs in the untreated cell lines which could contribute to trastuzumab resistance. The analysis resulted in 54 differentially expressed candidate genes that might be connected to trastuzumab efficiency. 90% of 40 selected candidates were validated by RT-qPCR. ALPP, CALCOCO1, CAV1, CYP1A2 and IGFBP3 were significantly higher expressed in the trastuzumab treated than in the untreated BT474 cell line. GDF15, IL8, LCN2, PTGS2 and 20 other genes were significantly higher expressed in HCC1954 than in BT474, while NCAM2, COLEC12, AFF3, TFF3, NRCAM, GREB1 and TFF1 were significantly lower expressed. Additionally, we inferred SNPs in HCC1954 for CAV1, PTGS2, IL8 and IGFBP3. The latter also had a variation in BTR50. 20% of the validated subset have already been mentioned in literature. For half of them we called and analyzed SNPs. These results contribute to a better understanding of trastuzumab action and resistance mechanisms. 相似文献
8.
《Saudi Journal of Biological Sciences》2022,29(3):1808-1812
Breast cancer is a common malignancy that poses a hazard to women's health. In 2021, around 2.3 million new cases are predicted to be discovered, with a mortality rate of 6.9% on average. Breast cancer accounts for 14.8% of malignancies among the Saudis with an 8.5% fatality rate. Breast cancers that are HER2 positive account for 15 to 20% of all breast cancers. We intended to investigate the genetic mutations and the clinicopathological aspects of HER2 positive breast cancer patients. We used TruSight Tumor 15 using Next-Generation Sequencing (NGS) to look at genetic changes in 126 Saudi women with stage I to IV breast cancer. c-MET (p = 0.001), c-KIT (p = 0.001), and PIK3CA (p = 0.0001), were shown to be substantially linked with HER2 positive patients. We also detected mutations in other genes, including BRAF, EGFR, and KRAS. Tumor size, grade, stage, and nodal status were all associated with increased levels of HER2 expression. Our results recommend that patients with HER2 positive breast cancer in Saudi Arabia have a high mutational burden, which may be related to trastuzumab resistance. We expect that in the future, targeting these mutations will be a promising therapeutic method for the treatment of breast cancer. 相似文献
9.
《Translational oncology》2020,13(9):100794
IntroductionIn early-stage HER2 positive breast cancer (BC) patients, tumor response to neoadjuvant chemotherapy (NACT) predict survival outcomes. Patients achieving less than pathological complete response (pCR) have a worse prognosis, however, this group is heterogeneous. Nowadays limited data on predictive/prognostic biomarkers in patients with residual cancer disease are available.MethodsUsing next-generation sequencing technology, we evaluated a panel of 21 cancer genes in a group of HER2 positive BC patients with residual disease after NACT. A control group of patients who achieved the pCR was selected too. The BC mutational profile was analyzed on both the tumor diagnostic biopsy and matched residual disease.ResultsOverall, the detection rate of mutations was 79% in the No-pCR group versus 90% in the pCR cohort and 98% in the residual BC. The most mutated genes were TP53 and PIK3CA. No correlations between single gene mutations and survival outcomes were found. In no-pCR cohort, 52% of patients had different mutational profile after NACT, 69% of them had an increased in the number of mutated genes. Mutational profile changes from diagnostic biopsy to residual BC were a negative prognostic factor in term of relapse free survival: recurrence probability in different gene profile sub-group was 42% vs 0% in the same profile one (P = .019).ConclusionsTreatment selective pressure on tumor cells due to NACT changed the gene mutational profile in more than half of BC patient with residual tumor disease. Treatment-induced gene mutations significantly increase the risk of relapse. Profiling primary and residual BC is a major step in order to further personalized adjuvant treatment strategy. 相似文献
10.
Chakrabhavi Dhananjaya Mohan V. Srinivasa Shobith Rangappa Lewis Mervin Surender Mohan Shardul Paricharak Sefer Baday Feng Li Muthu K. Shanmugam Arunachalam Chinnathambi M. E. Zayed Sulaiman Ali Alharbi Andreas Bender Gautam Sethi Basappa Kanchugarakoppal S. Rangappa 《PloS one》2016,11(4)
Overactivation of PI3K/Akt/mTOR is linked with carcinogenesis and serves a potential molecular therapeutic target in treatment of various cancers. Herein, we report the synthesis of trisubstituted-imidazoles and identified 2-chloro-3-(4, 5-diphenyl-1H-imidazol-2-yl) pyridine (CIP) as lead cytotoxic agent. Naïve Base classifier model of in silico target prediction revealed that CIP targets RAC-beta serine/threonine-protein kinase which comprises the Akt. Furthermore, CIP downregulated the phosphorylation of Akt, PDK and mTOR proteins and decreased expression of cyclin D1, Bcl-2, survivin, VEGF, procaspase-3 and increased cleavage of PARP. In addition, CIP significantly downregulated the CXCL12 induced motility of breast cancer cells and molecular docking calculations revealed that all compounds bind to Akt2 kinase with high docking scores compared to the library of previously reported Akt2 inhibitors. In summary, we report the synthesis and biological evaluation of imidazoles that induce apoptosis in breast cancer cells by negatively regulating PI3K/Akt/mTOR signaling pathway. 相似文献
11.
Saleha B. Vuyyuri Jacob Rinkinen Erin Worden Hyekyung Shim Sukchan Lee Keith R. Davis 《PloS one》2013,8(6)
Ascorbic acid (AA) exhibits significant anticancer activity at pharmacologic doses achievable by parenteral administration that have minimal effects on normal cells. Thus, AA has potential uses as a chemotherapeutic agent alone or in combination with other therapeutics that specifically target cancer-cell metabolism. We compared the effects of AA and combinations of AA with the glycolysis inhibitor 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3-PO) on the viability of three non-small cell lung cancer (NSCLC) cell lines to the effects on an immortalized lung epithelial cell line. AA concentrations of 0.5 to 5 mM caused a complete loss of viability in all NSCLC lines compared to a <10% loss of viability in the lung epithelial cell line. Combinations of AA and 3-PO synergistically enhanced cell death in all NSCLC cell lines at concentrations well below the IC50 concentrations for each compound alone. A synergistic interaction was not observed in combination treatments of lung epithelial cells and combination treatments that caused a complete loss of viability in NSCLC cells had modest effects on normal lung cell viability and reactive oxygen species (ROS) levels. Combination treatments induced dramatically higher ROS levels compared to treatment with AA and 3-PO alone in NSCLC cells and combination-induced cell death was inhibited by addition of catalase to the medium. Analyses of DNA fragmentation, poly (ADP-ribose) polymerase cleavage, annexin V-binding, and caspase activity demonstrated that AA-induced cell death is caused via the activation of apoptosis and that the combination treatments caused a synergistic induction of apoptosis. These results demonstrate the effectiveness of AA against NSCLC cells and that combinations of AA with 3-PO synergistically induce apoptosis via a ROS-dependent mechanism. These results support further evaluation of pharmacologic concentrations of AA as an adjuvant treatment for NSCLC and that combination of AA with glycolysis inhibitors may be a promising therapy for the treatment of NSCLC. 相似文献
12.
Wei Ren Yuehong Liu Shaoheng Wan Chang Fei Wei Wang Yingying Chen Zhihui Zhang Ting Wang Jinshu Wang Lan Zhou Yaguang Weng Tongchuan He Yan Zhang 《PloS one》2014,9(5)
Bone morphogenetic protein 9 (BMP9), a member of TGF-β superfamily, is reported to inhibit the growth and migration of prostate cancer, osteosarcoma and triple-negative MDA-MB-231 breast cancer cells. However, little is known about the effect of on the biological behaviors of HER2-positive SK-BR-3 breast cancer cells and the underlying mechanisms. This study aimed to investigate the effects of BMP9 on the proliferation and metastasis of SK-BR-3 cells with BMP9 over-expression or BMP9 down-regulated expression. Results indicated that exogenously expressed BMP9 inhibited the proliferation and metastasis of SK-BR-3 cells while decreased endogenous BMP9 expression in SK-BR-3 cells promoted the proliferation and migration of breast cancer cells in vitro and in vivo. In SK-BR-3 cells with BMP9 over-expression, the phosphorylation of HER2, ERK1/2 and AKT was markedly suppressed and the HER2 expression decreased at both mRNA and protein levels, while opposite results were observed in SK-BR-3 cells with BMP9 knock down. When the phosphorylation of ERK1/2 and PI3K/AKT was inhibited by PD98059 and , respectively, the decreased proliferation and invasion induced by BMP9 knock down were eliminated. These findings suggest that BMP9 can inhibit the proliferation and metastasis of SK-BR-3 cells via inactivating ERK1/2 and PI3K/AKT signaling pathways. Thus, BMP9 may serve as a useful agent in the treatment of HER-2 positive breast cancer. LY294002相似文献
13.
SW Han Y Cha A Paquet W Huang J Weidler Y Lie T Sherwood M Bates M Haddad IH Park DY Oh KS Lee SA Im YJ Bang J Ro TY Kim 《PloS one》2012,7(7):e39943
Background
Lapatinib plus capecitabine is an effective treatment option for trastuzumab-refractory HER2-positive metastatic breast cancer. We have investigated the correlation between quantitative measures of HER2, p95HER2, and HER3 and treatment outcomes using lapatinib and capecitabine.Methods
Total HER2 (H2T), p95HER2 (p95), and total HER3 (H3T) expression were quantified in formalin-fixed paraffin-embedded samples using the VeraTag assays. Patients received lapatinib and capecitabine treatment following trastuzumab failure according to the Lapatinib Expanded Access Program. The association between the protein expression levels and clinical outcomes was analyzed.Results
A total of 52 patients were evaluable. H2T level was significantly higher in responders (median 93.49 in partial response, 47.66 in stable disease, and 17.27 in progressive disease; p = 0.020). Longer time-to-progression (TTP) was observed in patients with high H2T [p = 0.018, median 5.2 months in high (>14.95) vs. 1.8 in low (<14.95)] and high H3T [p = 0.017, median 5.0 months in high (>0.605) vs. 2.2 in low (<0.605)]. Patients having both high H2T and high H3T had significantly longer TTP [adjusted hazard ratio (HR) 0.38 (95% CI 0.20–0.73), p = 0.004] and overall survival [adjusted HR 0.46 (95% CI 0.24–0.89), p = 0.020]. No significant association between p95 and response or survival was observed.Conclusions
These data suggest a correlation between high HER2 and high HER3 expression and treatment outcome, while no significant difference was observed between clinical outcome and p95 expression level in this cohort of HER2-positive, trastuzumab-refractory metastatic breast cancer patients treated with lapatinib and capecitabine. 相似文献14.
Joshua E. Allen Jean-Nicolas Gallant David T. Dicker Shantu Amin Rosalyn B. Irby Arun K. Sharma Wafik S. El-Deiry 《PloS one》2013,8(3)
Phenylbutyl isoselenocyanate (ISC-4) is an Akt inhibitor with demonstrated preclinical efficacy against melanoma and colon cancer. In this study, we sought to improve the clinical utility of ISC-4 by identifying a synergistic combination with FDA-approved anti-cancer therapies, a relevant and appropriate disease setting for testing, and biomarkers of response. We tested the activity of ISC-4 and 19 FDA-approved anticancer agents, alone or in combination, against the SW480 and RKO human colon cancer cell lines. A synergistic interaction with cetuximab was identified and validated in a panel of additional colon cancer cell lines, as well as the kinetics of synergy. ISC-4 in combination with cetuximab synergistically reduced the viability of human colon cancer cells with wild-type but not mutant KRAS genes. Further analysis revealed that the combination therapy cooperatively decreased cell cycle progression, increased caspase-dependent apoptosis, and decreased phospho-Akt in responsive tumor cells. The synergism between ISC-4 and cetuximab was retained independently of acquired resistance to 5-FU in human colon cancer cells. The combination demonstrated synergistic anti-tumor effects in vivo without toxicity and in the face of resistance to 5-FU. These results suggest that combining ISC-4 and cetuximab should be explored in patients with 5-FU-resistant colon cancer harboring wild-type KRAS. 相似文献
15.
Santhalakshmi Ranganathan Devaraj Halagowder Niranjali Devaraj Sivasithambaram 《PloS one》2015,10(10)
Quercetin is a dietary flavonoid which exerts anti-oxidant, anti-inflammatory and anti-cancer properties. In this study, we investigated the anti-proliferative effect of quercetin in two breast cancer cell lines (MCF-7 and MDA-MB-231), which differed in hormone receptor. IC50 value (37μM) of quercetin showed significant cytotoxicity in MCF-7 cells, which was not observed in MDA-MB-231 cells even at 100μM of quercetin treatment. To study the response of cancer cells to quercetin, with respect to different hormone receptors, both the cell lines were treated with a fixed concentration (40μM) of quercetin. MCF-7 cells on quercetin treatment showed more apoptotic cells with G1 phase arrest. In addition, quercetin effectively suppressed the expression of CyclinD1, p21, Twist and phospho p38MAPK, which was not observed in MDA-MB-231 cells. To analyse the molecular mechanism of quercetin in exerting an apoptotic effect in MCF-7 cells, Twist was over-expressed and the molecular changes were observed after quercetin administration. Quercetin effectively regulated the expression of Twist, in turn p16 and p21 which induced apoptosis in MCF-7 cells. In conclusion, quercetin induces apoptosis in breast cancer cells through suppression of Twist via p38MAPK pathway. 相似文献
16.
Background
The HER3 receptor functions as a major cause of drug resistance in cancer treatment. It is believed that therapeutic targeting of HER3 is required to improve patient outcomes. It is not clear whether a novel strategy with two functional cooperative miRNAs would effectively inhibit erbB3 expression and potentiate the anti-proliferative/anti-survival effects of a HER2-targeted therapy (trastuzumab) and chemotherapy (paclitaxel) on HER2-overexpressing breast cancer cells.Results
Combination of miR-125a and miR-205, as compared to either miRNA alone, potently inhibited expression of HER3 in HER2-overexpressing breast cancer BT474 cells. Co-expression of the two miRNAs not only reduced the levels of phosphorylated erbB3 (P-erbB3), Akt (P-Akt), and Src (P-Src), it also inhibited cell proliferation and increased cells at G1 phase. A multi-miRNA lentiviral vector - the cluster of miR-125a and miR-205 - was constructed to simultaneously express the two miRNAs in HER2-overexpressing breast cancer cells. Concurrent expression of miR-125a and miR-205 via the miRNA cluster transfection significantly enhanced trastuzumab-mediated growth inhibition and cell cycle G1 arrest in BT474 cells and markedly increased paclitaxel-induced apoptosis in another HER2-overexpressing breast cancer cell line HCC1954.Conclusions
Here, we showed that functional cooperative miRNAs effectively suppressed erbB3 expression. This novel approach targeting of HER3 was able to enhance the therapeutic efficacy of trastuzumab and paclitaxel against HER2-overexpressing breast cancer.17.
Yi-Ying Wu Tzu-Chuan Huang Tsung-Neng Tsai Jia-Hong Chen Ming-Shen Dai Ping-Ying Chang Ching-Liang Ho Ren-Hua Ye Tsai-Rong Chung Yeu-Chin Chen Tsu-Yi Chao 《PloS one》2016,11(3)
Objective
Trastuzumab-containing treatment regimens have been shown to improve survival outcomes in HER2-positive breast cancer (BC). It is much easier to infuse a fixed one-vial dose to every patient on a regular schedule in the general clinical setting. The aims of this study were evaluating the efficacy of a 440 mg fixed-dose of trastuzumab administered on a monthly infusion schedule, and the risk factors for cardiac events.Patients and methods
We retrospectively reviewed data from 300 HER2-positive BC patients in our institute: 208 were early-stage BC patients undergoing adjuvant trastuzumab treatment, and 92 were metastatic BC patients treated with trastuzumab infusions until disease progression. There were 181 patients receiving regular trastuzumab infusions every 3 weeks (Q3W; 8 mg/kg loading dose followed by 6 mg/kg every 3 weeks), and the other 119 patients were treated monthly with a fixed 440 mg dose (QM; fixed 440 mg every 4 weeks).Results
The medians of progression-free survival (PFS) and overall survival (OS) in the adjuvant setting were not reached in both treatment groups. In the metastatic setting, there was no significant difference between groups in PFS or OS. The median time to significant cardiovascular (CV) dysfunction was 4.54 months. The incidence of congestive heart failure requiring medication in our cohort was 3.4%.Conclusion
In our study, we found that fixed-dose monthly trastuzumab was feasible and effective. In addition, the CV risk was not higher with the fixed-dose protocol. This treatment modality could lower the cost and was easier to implement in clinical practice. Larger prospective randomized studies with longer-term follow up are needed to confirm our results. 相似文献18.
Trastuzumab has led to improved survival rates of HER2+ breast cancer patients. However, acquired resistance remains a problem in the majority of cases. t-Darpp is over-expressed in trastuzumab-resistant cell lines and its over-expression is sufficient for conferring the resistance phenotype. Although its mechanism of action is unknown, t-Darpp has been shown to increase cellular proliferation and inhibit apoptosis. We have reported that trastuzumab-resistant BT.HerR cells that over-express endogenous t-Darpp are sensitized to EGFR inhibition in the presence (but not the absence) of trastuzumab. The purpose of the current study was to determine if t-Darpp might modulate sensitivity to EGFR inhibitors in trastuzumab-resistant cells. Using EGFR tyrosine kinase inhibitors AG1478, gefitinib and erlotinib, we found that trastuzumab-resistant SK.HerR cells were sensitized to EGFR inhibition, compared to SK-Br-3 controls, even in the absence of trastuzumab. t-Darpp knock-down in SK.HerR cells reversed their sensitivity to EGFR inhibition. Increased EGFR sensitivity was also noted in SK.tDp cells that stably over-express t-Darpp. High levels of synergy between trastuzumab and the EGFR inhibitors were observed in all cell lines with high t-Darpp expression. These cells also demonstrated more robust activation of EGFR signaling and showed greater EGFR stability than parental cells. The T75A phosphorylation mutant of t-Darpp did not confer sensitivity to EGFR inhibition nor activation of EGFR signaling. The over-expression of t-Darpp might facilitate enhanced EGFR signaling as part of the trastuzumab resistance phenotype. This study suggests that the presence of t-Darpp in HER2+ cancers might predict the enhanced response to dual HER2/EGFR targeting. 相似文献
19.
BackgroundThe anti–human epidermal growth factor receptor 2 (HER2) monoclonal antibody trastuzumab improves outcomes in patients with node-positive HER2+ early breast cancer. Given trastuzumab’s high cost, we aimed to estimate its cost-effectiveness by heterogeneity in age and estrogen receptor (ER) and progesterone receptor (PR) status, which has previously been unexplored, to assist prioritisation.ConclusionsThis study highlights how cost-effectiveness can vary greatly by heterogeneity in age and hormone receptor subtype. Resource allocation and licensing of subsidised therapies such as trastuzumab should consider demographic and clinical heterogeneity; there is currently a profound disconnect between how funding decisions are made (largely agnostic to heterogeneity) and the principles of personalised medicine. 相似文献
20.
Laura W. Bowers Megan Wiese Andrew J. Brenner Emily L. Rossi Rajeshwar R. Tekmal Stephen D. Hursting Linda A. deGraffenried 《PloS one》2015,10(12)
Obesity is associated with a worse breast cancer prognosis, while greater breast tumor estrogen receptor beta (ERβ) expression is correlated with improved therapy response and survival. The objective of this study was to determine the impact of obesity on breast cancer cell ERβ expression, which is currently unknown. We utilized an in vitro model of obesity in which breast cancer cells were exposed to patient serum pooled by body mass index category (obese (OB): ≥30 kg/m2; normal weight (N): 18.5–24.9 kg/m2). Four human mammary tumor cell lines representing the major breast cancer subtypes (SKBR3, MCF-7, ZR75, MDA-MB-231) and mammary tumor cells from MMTV-neu mice were used. ERβ expression, assessed by qPCR and western blotting, was suppressed in the two HER2-overexpressing cell lines (SKBR3, MMTV-neu) following OB versus N sera exposure, but did not vary in the other cell lines. Expression of Bcl-2 and cyclin D1, two genes negatively regulated by ERβ, was elevated in SKBR3 cells following exposure to OB versus N sera, but this difference was eliminated when the ERβ gene was silenced with siRNA. Herceptin, a HER2 antagonist, and siRNA to HER2 were used to evaluate the role of HER2 in sera-induced ERβ modulation. SKBR3 cell treatment with OB sera plus Herceptin increased ERβ expression three-fold. Similar results were obtained when HER2 expression was silenced with siRNA. OB sera also promoted greater SKBR3 cell viability and growth, but this variance was not present when ERβ was silenced or the cells were modified to overexpress ERβ. Based on this data, we conclude that obesity-associated systemic factors suppress ERβ expression in breast cancer cells via a HER2-mediated pathway, leading to greater cell viability and growth. Elucidation of the mechanism(s) mediating this effect could provide important insights into how ERβ expression is regulated as well as how obesity promotes a more aggressive disease. 相似文献