首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Partial occlusions, large pose variations, and extreme ambient illumination conditions generally cause the performance degradation of object recognition systems. Therefore, this paper presents a novel approach for fast and robust object recognition in cluttered scenes based on an improved scale invariant feature transform (SIFT) algorithm and a fuzzy closed-loop control method. First, a fast SIFT algorithm is proposed by classifying SIFT features into several clusters based on several attributes computed from the sub-orientation histogram (SOH), in the feature matching phase only features that share nearly the same corresponding attributes are compared. Second, a feature matching step is performed following a prioritized order based on the scale factor, which is calculated between the object image and the target object image, guaranteeing robust feature matching. Finally, a fuzzy closed-loop control strategy is applied to increase the accuracy of the object recognition and is essential for autonomous object manipulation process. Compared to the original SIFT algorithm for object recognition, the result of the proposed method shows that the number of SIFT features extracted from an object has a significant increase, and the computing speed of the object recognition processes increases by more than 40%. The experimental results confirmed that the proposed method performs effectively and accurately in cluttered scenes.  相似文献   

2.
3.
Visual target tracking is a primary task in many computer vision applications and has been widely studied in recent years. Among all the tracking methods, the mean shift algorithm has attracted extraordinary interest and been well developed in the past decade due to its excellent performance. However, it is still challenging for the color histogram based algorithms to deal with the complex target tracking. Therefore, the algorithms based on other distinguishing features are highly required. In this paper, we propose a novel target tracking algorithm based on mean shift theory, in which a new type of image feature is introduced and utilized to find the corresponding region between the neighbor frames. The target histogram is created by clustering the features obtained in the extraction strategy. Then, the mean shift process is adopted to calculate the target location iteratively. Experimental results demonstrate that the proposed algorithm can deal with the challenging tracking situations such as: partial occlusion, illumination change, scale variations, object rotation and complex background clutter. Meanwhile, it outperforms several state-of-the-art methods.  相似文献   

4.
针对目前多分类运动想象脑电识别存在特征提取单一、分类准确率低等问题,提出一种多特征融合的四分类运动想象脑电识别方法来提高识别率。对预处理后的脑电信号分别使用希尔伯特-黄变换、一对多共空间模式、近似熵、模糊熵、样本熵提取结合时频—空域—非线性动力学的初始特征向量,用主成分分析降维,最后使用粒子群优化支持向量机分类。该算法通过对国际标准数据集BCI2005 Data set IIIa中的k3b受试者数据经MATLAB仿真处理后获得93.30%的识别率,均高于单一特征和其它组合特征下的识别率。分别对四名实验者实验采集运动想象脑电数据,使用本研究提出的方法处理获得了72.96%的平均识别率。结果表明多特征融合的特征提取方法能更好的表征运动想象脑电信号,使用粒子群支持向量机可取得较高的识别准确率,为人脑的认知活动提供了一种新的识别方法。  相似文献   

5.
6.
The dragonfly wing,which consists of veins and membrane,is of biological hierarchical material.We observed the cross-sections of longitudinal veins and membrane using Environmental Scanning Electron Microscopy (ESEM).Based on the experiments and previous studies,we described the longitudinal vein and the membrane in terms of two hierarchical levels of organization of composite materials at the micro- and nano-scales.The longitudinal vein of dragonfly wing has a complex sandwich structure with two chitinous shells and a protein layer,and it is considered as the first hierarchical level of the vein.Moreover,the chitinous shells are concentric multilayered structures.Clusters of nano-fibrils grow along the circumferential orientation embedded into the protein layer.It is considered as the second level of the hierarchy.Similarly,the upper and lower epidermises of membrane constitute the first hierarchical level of organization in micro scale.Similar to the vein shell,the membrane epidermises were found to be a paralleled multilayered structure,defined as the second hierarchical level of the membrane.Combining with the mechanical behavior analysis of the dragonfly wing,we concluded that the growth orientation of the hierarchical structure of the longitudinal vein and membrane is relevant to its biomechanical behavior.  相似文献   

7.
Currently, most biometric methods mainly use single features, making them easily forged and cracked. In this study, a novel triple-layers biometric recognition method, based on photoacoustic microscopy, is proposed to improve the security of biometric identity recognition. Using the photoacoustic (PA) dermoscope, three-dimensional absorption-structure information of the fingers was obtained. Then, by combining U-Net, Gabor filtering, wavelet analysis and morphological transform, a lightweight algorithm called photoacoustic depth feature recognition algorithm (PADFR) was developed to automatically realize stratification (the fingerprint, blood vessel fingerprint and venous vascular), extracting feature points and identity recognition. The experimental results show that PADFR can automatically recognize the PA hierarchical features with an average accuracy equal to 92.99%. The proposed method is expected to be widely used in biometric identification system due to its high security.  相似文献   

8.
In this paper an experiment in the application of LANDSAT MSS digital image proces. sing technique to classify the aquatic plants in the Honghu Lake, China, as well as the necessary ground feature spectrum measurement and plant chlorophyll content determination techniques are introduced. In order to obtain the expected computer aided classification result different methods of digital image feature extraction have been tried, namely the ratio transformation, the biomass index transformation and the linear stretching of image intensity. The data from spectrum measurement and chlorophyll content determination were used to distinguish the attributions of different classes of aquatic plant associations from one another by comparing with their spectrum response intensity values on different LANDSAT band images. The original LANDSAT MSS images were digitally rectified by control points to a certain map projection system using a general polynomial approach scheme before the classifying activities, so that the classification result may be transfered to an existing map. In this paper the resulting colourassigued image and the thematic map of Honghu Lakes aquatic plant (association) distribution are included, the areas of different classes of aquatic plants are listed and the reliability of the resulting classification and pattern recognition are analysed. These results will provide useful informations for the investigation of the present situation as well as the historical succession of the Honghu Lake and its aquatic plant distribution, and also for the research works of the lake management.  相似文献   

9.
Feature extraction is one of the most important and effective method to reduce dimension in data mining, with emerging of high dimensional data such as microarray gene expression data. Feature extraction for gene selection, mainly serves two purposes. One is to identify certain disease-related genes. The other is to find a compact set of discriminative genes to build a pattern classifier with reduced complexity and improved generalization capabilities. Depending on the purpose of gene selection, two types of feature extraction algorithms including ranking-based feature extraction and set-based feature extraction are employed in microarray gene expression data analysis. In ranking-based feature extraction, features are evaluated on an individual basis, without considering inter-relationship between features in general, while set-based feature extraction evaluates features based on their role in a feature set by taking into account dependency between features. Just as learning methods, feature extraction has a problem in its generalization ability, which is robustness. However, the issue of robustness is often overlooked in feature extraction. In order to improve the accuracy and robustness of feature extraction for microarray data, a novel approach based on multi-algorithm fusion is proposed. By fusing different types of feature extraction algorithms to select the feature from the samples set, the proposed approach is able to improve feature extraction performance. The new approach is tested against gene expression dataset including Colon cancer data, CNS data, DLBCL data, and Leukemia data. The testing results show that the performance of this algorithm is better than existing solutions.  相似文献   

10.
Inspired by theories of higher local order autocorrelation (HLAC), this paper presents a simple, novel, yet very powerful approach for wood recognition. The method is suitable for wood database applications, which are of great importance in wood related industries and administrations. At the feature extraction stage, a set of features is extracted from Mask Matching Image (MMI). The MMI features preserve the mask matching information gathered from the HLAC methods. The texture information in the image can then be accurately extracted from the statistical and geometrical features. In particular, richer information and enhanced discriminative power is achieved through the length histogram, a new histogram that embodies the width and height histograms. The performance of the proposed approach is compared to the state-of-the-art HLAC approaches using the wood stereogram dataset ZAFU WS 24. By conducting extensive experiments on ZAFU WS 24, we show that our approach significantly improves the classification accuracy.  相似文献   

11.
Personal recognition using palm–vein patterns has emerged as a promising alternative for human recognition because of its uniqueness, stability, live body identification, flexibility, and difficulty to cheat. With the expanding application of palm–vein pattern recognition, the corresponding growth of the database has resulted in a long response time. To shorten the response time of identification, this paper proposes a simple and useful classification for palm–vein identification based on principal direction features. In the registration process, the Gaussian-Radon transform is adopted to extract the orientation matrix and then compute the principal direction of a palm–vein image based on the orientation matrix. The database can be classified into six bins based on the value of the principal direction. In the identification process, the principal direction of the test sample is first extracted to ascertain the corresponding bin. One-by-one matching with the training samples is then performed in the bin. To improve recognition efficiency while maintaining better recognition accuracy, two neighborhood bins of the corresponding bin are continuously searched to identify the input palm–vein image. Evaluation experiments are conducted on three different databases, namely, PolyU, CASIA, and the database of this study. Experimental results show that the searching range of one test sample in PolyU, CASIA and our database by the proposed method for palm–vein identification can be reduced to 14.29%, 14.50%, and 14.28%, with retrieval accuracy of 96.67%, 96.00%, and 97.71%, respectively. With 10,000 training samples in the database, the execution time of the identification process by the traditional method is 18.56 s, while that by the proposed approach is 3.16 s. The experimental results confirm that the proposed approach is more efficient than the traditional method, especially for a large database.  相似文献   

12.
Brain computer interfaces (BCI) provide a new approach to human computer communication, where the control is realised via performing mental tasks such as motor imagery (MI). In this study, we investigate a novel method to automatically segment electroencephalographic (EEG) data within a trial and extract features accordingly in order to improve the performance of MI data classification techniques. A new local discriminant bases (LDB) algorithm using common spatial patterns (CSP) projection as transform function is proposed for automatic trial segmentation. CSP is also used for feature extraction following trial segmentation. This new technique also allows to obtain a more accurate picture of the most relevant temporal–spatial points in the EEG during the MI. The results are compared with other standard temporal segmentation techniques such as sliding window and LDB based on the local cosine transform (LCT).  相似文献   

13.
Perspective texture synthesis has great significance in many fields like video editing, scene capturing etc., due to its ability to read and control global feature information. In this paper, we present a novel example-based, specifically energy optimization-based algorithm, to synthesize perspective textures. Energy optimization technique is a pixel-based approach, so it’s time-consuming. We improve it from two aspects with the purpose of achieving faster synthesis and high quality. Firstly, we change this pixel-based technique by replacing the pixel computation with a little patch. Secondly, we present a novel technique to accelerate searching nearest neighborhoods in energy optimization. Using k- means clustering technique to build a search tree to accelerate the search. Hence, we make use of principal component analysis (PCA) technique to reduce dimensions of input vectors. The high quality results prove that our approach is feasible. Besides, our proposed algorithm needs shorter time relative to other similar methods.  相似文献   

14.
Vascular system development in sepals, petals, and sepaloid petals was compared in wild-type and crinkled petal mutant plants of Clarkia tembloriensis. Patterns of vascularization in cleared whole mounts were visualized and traced under both brightfield and polarizing illumination. Wild-type sepals exhibited a basipetal pattern of maturation, with tracheary elements maturing relatively rapidly. Mature sepals had three primary veins with numerous secondary veins. In contrast, wild-type petals exhibited an acropetal pattern of maturation, with tracheary elements maturing relatively slowly. The mature petals had only one primary vein with numerous secondary veins. Sepaloid (crinkled) petals combined characteristics of both wild-type sepals and wild-type petals. They exhibited a basipetal pattern of development and a relatively rapid maturation of the tracheary elements characteristic of wild-type sepals. Venation architecture in crinkled petal mutants showed a single primary vein with numerous secondary veins, similar to wild-type petals. The crinkled petal mutant fits the definition of a homeotic mutant in that the petal has assumed characteristics of the sepal. However, homeotic transformation from petal to sepal is incomplete since the crinkled petal still retains many of the characteristics of wild-type petals.  相似文献   

15.
The one-sample-per-person problem has become an active research topic for face recognition in recent years because of its challenges and significance for real-world applications. However, achieving relatively higher recognition accuracy is still a difficult problem due to, usually, too few training samples being available and variations of illumination and expression. To alleviate the negative effects caused by these unfavorable factors, in this paper we propose a more accurate spectral feature image-based 2DLDA (two-dimensional linear discriminant analysis) ensemble algorithm for face recognition, with one sample image per person. In our algorithm, multi-resolution spectral feature images are constructed to represent the face images; this can greatly enlarge the training set. The proposed method is inspired by our finding that, among these spectral feature images, features extracted from some orientations and scales using 2DLDA are not sensitive to variations of illumination and expression. In order to maintain the positive characteristics of these filters and to make correct category assignments, the strategy of classifier committee learning (CCL) is designed to combine the results obtained from different spectral feature images. Using the above strategies, the negative effects caused by those unfavorable factors can be alleviated efficiently in face recognition. Experimental results on the standard databases demonstrate the feasibility and efficiency of the proposed method.  相似文献   

16.
Feature detection and matching are crucial for robust and reliable image registration. Although many methods have been developed, they commonly focus on only one class of image features. The methods that combine two or more classes of features are still novel and significant. In this work, methods for feature detection and matching are proposed. A Mexican hat function-based operator is used for image feature detection, including the local area detection and the feature point detection. For the local area detection, we use the Mexican hat operator for image filtering, and then the zero-crossing points are extracted and merged into the area borders. For the feature point detection, the Mexican hat operator is performed in scale space to get the key points. After the feature detection, an image registration is achieved by using the two classes of image features. The feature points are grouped according to a standardized region that contains correspondence to the local area, precise registration is achieved eventually by the grouped points. An image transformation matrix is estimated by the feature points in a region and then the best one is chosen through competition of a set of the transformation matrices. This strategy has been named the Grouped Sample Consensus (GCS). The GCS has also ability for removing the outliers effectively. The experimental results show that the proposed algorithm has high registration accuracy and small computational volume.  相似文献   

17.
An efficient method for fingerprint searching using recurrent autoassociative memory is proposed. This algorithm uses recurrent autoassociative memory, which uses a connectivity matrix to find if the pattern being searched is already stored in the database. The advantage of this memory is that a big database is to be searched only if there is a matching pattern. Fingerprint comparison is usually based on minutiae matching, and its efficiency depends on the extraction of minutiae. This process may reduce the speed, when large amount of data is involved. So, in the proposed method, a simple approach has been adopted, wherein first determines the closely matched fingerprint images, and then determines the minutiae of only those images for finding the more appropriate one. The gray level value of pixels along with its neighboring ones are considered for the extraction of minutiae, which is more easier than using ridge information. This approach is best suitable when database size is large.  相似文献   

18.
The modeling of the spatial distribution of image properties is important for many pattern recognition problems in science and engineering. Mathematical methods are needed to quantify the variability of this spatial distribution based on which a decision of classification can be made in an optimal sense. However, image properties are often subject to uncertainty due to both incomplete and imprecise information. This paper presents an integrated approach for estimating the spatial uncertainty of vagueness in images using the theory of geostatistics and the calculus of probability measures of fuzzy events. Such a model for the quantification of spatial uncertainty is utilized as a new image feature extraction method, based on which classifiers can be trained to perform the task of pattern recognition. Applications of the proposed algorithm to the classification of various types of image data suggest the usefulness of the proposed uncertainty modeling technique for texture feature extraction.  相似文献   

19.
Three-dimensional (3D) electron microscopy (3DEM) aims at the determination of the spatial distribution of the Coulomb potential of macromolecular complexes. The 3D reconstruction of a macromolecule using single-particle techniques involves thousands of 2D projections. One of the key parameters required to perform such a 3D reconstruction is the orientation of each projection image as well as its in-plane orientation. This information is unknown experimentally and must be determined using image-processing techniques. We propose the use of wavelets to match the experimental projections with those obtained from a reference 3D model. The wavelet decomposition of the projection images provides a framework for a multiscale matching algorithm in which speed and robustness to noise are gained. Furthermore, this multiresolution approach is combined with a novel orientation selection strategy. Results obtained from computer simulations as well as experimental data encourage the use of this approach.  相似文献   

20.
In this study we propose a new feature extraction algorithm, dNMF (discriminant non-negative matrix factorization), to learn subtle class-related differences while maintaining an accurate generative capability. In addition to the minimum representation error for the standard NMF (non-negative matrix factorization) algorithm, the dNMF algorithm also results in higher between-class variance for discriminant power. The multiplicative NMF learning algorithm has been modified to cope with this additional constraint. The cost function was carefully designed so that the extraction of feature coefficients from a single testing pattern with pre-trained feature vectors resulted in a quadratic convex optimization problem in non-negative space for uniqueness. It also resolves issues related to the previous discriminant NMF algorithms. The developed dNMF algorithm has been applied to the emotion recognition task for speech, where it needs to emphasize the emotional differences while de-emphasizing the dominant phonetic components. The dNMF algorithm successfully extracted subtle emotional differences, demonstrated much better recognition performance and showed a smaller representation error from an emotional speech database.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号