首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The exine of the pollen wall shows an intricate pattern, primarily comprising sporopollenin, a polymer of fatty acids and phenolic compounds. A series of enzymes synthesize sporopollenin precursors in tapetal cells, and the precursors are transported from the tapetum to the pollen surface. However, the mechanisms underlying the transport of sporopollenin precursors remain elusive. Here, we provide evidence that strongly suggests that the Arabidopsis ABC transporter ABCG26/WBC27 is involved in the transport of sporopollenin precursors. Two independent mutations at ABCG26 coding region caused drastic decrease in seed production. This defect was complemented by expression of ABCG26 driven by its native promoter. The severely reduced fertility of the abcg26 mutants was caused by a failure to produce mature pollen, observed initially as a defect in pollen-wall development. The reticulate pattern of the exine of wild-type microspores was absent in abcg26 microspores at the vacuolate stage, and the vast majority of the mutant pollen degenerated thereafter. ABCG26 was expressed specifically in tapetal cells at the early vacuolate stage of pollen development. It showed high co-expression with genes encoding enzymes required for sporopollenin precursor synthesis, i.e. CYP704B1, ACOS5, MS2 and CYP703A2. Similar to two other mutants with defects in pollen-wall deposition, abcg26 tapetal cells accumulated numerous vesicles and granules. Taken together, these results suggest that ABCG26 plays a crucial role in the transfer of sporopollenin lipid precursors from tapetal cells to anther locules, facilitating exine formation on the pollen surface.  相似文献   

4.
5.
Sporopollenin is the major component of the outer pollen wall (exine). Fatty acid derivatives and phenolics are thought to be its monomeric building blocks, but the precise structure, biosynthetic route, and genetics of sporopollenin are poorly understood. Based on a phenotypic mutant screen in Arabidopsis (Arabidopsis thaliana), we identified a cytochrome P450, designated CYP704B1, as being essential for exine development. CYP704B1 is expressed in the developing anthers. Mutations in CYP704B1 result in impaired pollen walls that lack a normal exine layer and exhibit a characteristic striped surface, termed zebra phenotype. Heterologous expression of CYP704B1 in yeast cells demonstrated that it catalyzes ω-hydroxylation of long-chain fatty acids, implicating these molecules in sporopollenin synthesis. Recently, an anther-specific cytochrome P450, denoted CYP703A2, that catalyzes in-chain hydroxylation of lauric acid was also shown to be involved in sporopollenin synthesis. This shows that different classes of hydroxylated fatty acids serve as essential compounds for sporopollenin formation. The genetic relationships between CYP704B1, CYP703A2, and another exine gene, MALE STERILITY2, which encodes a fatty acyl reductase, were explored. Mutations in all three genes resulted in pollen with remarkably similar zebra phenotypes, distinct from those of other known exine mutants. The double and triple mutant combinations did not result in the appearance of novel phenotypes or enhancement of single mutant phenotypes. This implies that each of the three genes is required to provide an indispensable subset of fatty acid-derived components within the sporopollenin biosynthesis framework.The biopolymer sporopollenin is the major component of the outer walls in pollen and spores (exines). It is highly resistant to nonoxidative physical, chemical, and biological treatments and is insoluble in both aqueous and organic solvents. While the stability and resistance of sporopollenin account for the preservation of ancient pollen grains for millions of years with nearly full retention of morphology (Doyle and Hickey, 1976; Friis et al., 2001), these same qualities make it extremely difficult to study the chemical structure of sporopollenin. Thus, although the first studies on the composition of sporopollenin were reported in 1928 (Zetzsche and Huggler, 1928), the exact structure of sporopollenin remains unresolved. At present, it is thought that sporopollenin is a complex polymer primarily made of a mixture of fatty acids and phenolic compounds (Guilford et al., 1988; Wiermann et al., 2001).Fatty acids were first implicated as sporopollenin components when ozonolysis of Lycopodium clavatum and Pinus sylvestris exine yielded significant amounts of straight- and branched-chain monocarboxylic acids, characteristic fatty acid breakdown products (Shaw and Yeadon, 1966). More recently, improved purification and degradation techniques coupled with analytical methods, such as solid-state 13C-NMR spectroscopy, Fourier transform infrared spectroscopy, and 1H-NMR, have shown that sporopollenin is made up of polyhydroxylated unbranched aliphatic units and also contains small amounts of oxygenated aromatic rings and phenylpropanoids (Guilford et al., 1988; Ahlers et al., 1999; Domínguez et al., 1999; Bubert et al., 2002). Biochemical studies using thiocarbamate herbicide inhibition of the chain-elongating steps in the synthesis of long-chain fatty acids and radioactive tracer experiments provided further evidence that lipid metabolism is involved in the biosynthesis of sporopollenin (Wilwesmeier and Wiermann, 1995; Meuter-Gerhards et al., 1999).Relatively little is known about the genetic network that determines sporopollenin synthesis. However, several Arabidopsis (Arabidopsis thaliana) genes implicated in exine biosynthesis encode proteins with sequence homology to enzymes that are involved in fatty acid metabolism. Mutations in MALE STERILITY2 (MS2) eliminate exine and affect a protein with sequence similarity to fatty acyl reductases; the predicted inability of ms2 plants to reduce pollen wall fatty acids to the corresponding alcohols suggests that this reaction is a key step in sporopollenin synthesis (Aarts et al., 1997). The FACELESS POLLEN1 (FLP1) gene, whose loss causes the flp1 exine defect, encodes a protein similar to those involved in wax synthesis (Ariizumi et al., 2003). The no exine formation1 (nef1) mutant accumulates reduced levels of lipids, and the NEF1 protein was suggested to be involved in either lipid transport or the maintenance of plastid membrane integrity, including those plastids in the secretory tapetum of anthers, where many of the sporopollenin components are synthesized (Ariizumi et al., 2004). The dex2 mutant has mutations in the evolutionarily conserved anther-specific cytochrome P450, CYP703A2 (Morant et al., 2007), which catalyzes in-chain hydroxylation of saturated medium-chain fatty acids, with lauric acid (C12:0) as a preferred substrate (Morant et al., 2007). A recently described gene, ACOS5, encodes a fatty acyl-CoA synthetase that has in vitro preference for medium-chain fatty acids (de Azevedo Souza et al., 2009). Mutations in all of these genes compromise exine formation.Here, we describe an evolutionarily conserved cytochrome P450, CYP704B1, and demonstrate that this gene is essential for exine biosynthesis and plays a role different from that of CYP703A2. Heterologously expressed CYP704B1 catalyzed ω-hydroxylation of several saturated and unsaturated C14-C18 fatty acids. These results suggest the possibility that ω-hydroxylated fatty acids produced by CYP704B1, together with in-chain hydroxylated lauric acids provided by the action of CYP703A2, may serve as key monomeric aliphatic building blocks in sporopollenin formation. Analyses of the genetic relationships between CYP704B1, MS2, and CYP703A2 suggest that all three genes are involved in the same pathway within the sporopollenin biosynthesis framework.  相似文献   

6.
Land plants have evolved aliphatic biopolymers that protect their cell surfaces against dehydration, pathogens, and chemical and physical damage. In flowering plants, a critical event during pollen maturation is the formation of the pollen surface structure. The pollen wall consists essentially of the microspore-derived intine and the sporophyte-derived exine. The major component of the exine is termed sporopollenin, a complex biopolymer. The chemical composition of sporopollenin remains poorlycharacterized because it is extremely resistant to chemical and biological degradation procedures. Recent characterization of Arabidopsis thaliana genes and corresponding enzymes involved in exine formation has demonstrated that the sporopollenin polymer consists of phenolic and fatty acid-derived constituents that are covalently coupled by ether and ester linkages. This review illuminates the outlines of a biosynthetic pathway involved in generating monomer constituents of the sporopollenin biopolymer component of the pollen wall.  相似文献   

7.
Pollen grains are encased by a multilayered, multifunctional wall. The sporopollenin and pollen coat constituents of the outer pollen wall (exine) are contributed by surrounding sporophytic tapetal cells. Because the biosynthesis and development of the exine occurs in the innermost cell layers of the anther, direct observations of this process are difficult. The objective of this study was to investigate the transport and assembly of exine components from tapetal cells to microspores in the intact anthers of Arabidopsis thaliana. Intrinsically fluorescent components of developing tapetum and microspores were imaged in intact, live anthers using two-photon microscopy. Mutants of ABCG26, which encodes an ATP binding cassette transporter required for exine formation, accumulated large fluorescent vacuoles in tapetal cells, with corresponding loss of fluorescence on microspores. These vacuolar inclusions were not observed in tapetal cells of double mutants of abcg26 and genes encoding the proposed sporopollenin polyketide biosynthetic metabolon (ACYL COENZYME A SYNTHETASE5, POLYKETIDE SYNTHASE A [PKSA], PKSB, and TETRAKETIDE α-PYRONE REDUCTASE1), providing a genetic link between transport by ABCG26 and polyketide biosynthesis. Genetic analysis also showed that hydroxycinnamoyl spermidines, known components of the pollen coat, were exported from tapeta prior to programmed cell death in the absence of polyketides, raising the possibility that they are incorporated into the exine prior to pollen coat deposition. We propose a model where ABCG26-exported polyketides traffic from tapetal cells to form the sporopollenin backbone, in coordination with the trafficking of additional constituents, prior to tapetum programmed cell death.  相似文献   

8.
Exine, the sporopollenin-based outer layer of the pollen wall, forms through an unusual mechanism involving interactions between two anther cell types: developing pollen and tapetum. How sporopollenin precursors and other components required for exine formation are delivered from tapetum to pollen and assemble on the pollen surface is still largely unclear. Here, we characterized an Arabidopsis (Arabidopsis thaliana) mutant, thin exine2 (tex2), which develops pollen with abnormally thin exine. The TEX2 gene (also known as REPRESSOR OF CYTOKININ DEFICIENCY1 (ROCK1)) encodes a putative nucleotide–sugar transporter localized to the endoplasmic reticulum. Tapetal expression of TEX2 is sufficient for proper exine development. Loss of TEX2 leads to the formation of abnormal primexine, lack of primary exine elements, and subsequent failure of sporopollenin to correctly assemble into exine structures. Using immunohistochemistry, we investigated the carbohydrate composition of the tex2 primexine and found it accumulates increased amounts of arabinogalactans. Tapetum in tex2 accumulates prominent metabolic inclusions which depend on the sporopollenin polyketide biosynthesis and transport and likely correspond to a sporopollenin-like material. Even though such inclusions have not been previously reported, we show mutations in one of the known sporopollenin biosynthesis genes, LAP5/PKSB, but not in its paralog LAP6/PKSA, also lead to accumulation of similar inclusions, suggesting separate roles for the two paralogs. Finally, we show tex2 tapetal inclusions, as well as synthetic lethality in the double mutants of TEX2 and other exine genes, could be used as reporters when investigating genetic relationships between genes involved in exine formation.

Genetic, microscopy, and immunohistochemistry analyses place the Arabidopsis THIN EXINE2 protein at the intersection of several processes involved in the formation of pollen exine.  相似文献   

9.
Pollen development in flowering plants is critical for male reproductive success. The pollen wall that protects the pollen from various environment stresses and bacterial infections plays an essential role in pollen development. The formation of pollen wall is associated with the biosynthesis and transport of sporopollenin components. ACOS5 in Arabidopsis encodes an acyl-CoA synthetase 5 required for sporopollenin biosynthesis. We identified the rice homolog of ACOS5 as OsACOS12. The CRISPR/Cas9-mediated OsACOS12 knockout mutant has complete male sterility due to a defect in pollen wall formation. β-Glucuronidase reporter gene analysis and RNA in situ hybridization indicated that OsACOS12 was specifically expressed in tapetum and microspores. The subcellular localization of OsACOS12-YFP demonstrated that OsACOS12 protein was primarily localized in the endoplasmic reticulum and nucleus. Our results suggest that OsACOS12 plays a critical and conserved role in pollen wall formation and pollen development and has implications in rice breeding.  相似文献   

10.
Pollen grains of land plants have evolved remarkably strong outer walls referred to as exine that protect pollen and interact with female stigma cells. Exine is composed of sporopollenin, and while the composition and synthesis of this biopolymer are not well understood, both fatty acids and phenolics are likely components. Here, we describe mutations in the Arabidopsis (Arabidopsis thaliana) LESS ADHESIVE POLLEN (LAP5) and LAP6 that affect exine development. Mutation of either gene results in abnormal exine patterning, whereas pollen of double mutants lacked exine deposition and subsequently collapsed, causing male sterility. LAP5 and LAP6 encode anther-specific proteins with homology to chalcone synthase, a key flavonoid biosynthesis enzyme. lap5 and lap6 mutations reduced the accumulation of flavonoid precursors and flavonoids in developing anthers, suggesting a role in the synthesis of phenolic constituents of sporopollenin. Our in vitro functional analysis of LAP5 and LAP6 using 4-coumaroyl-coenzyme A yielded bis-noryangonin (a commonly reported derailment product of chalcone synthase), while similar in vitro analyses using fatty acyl-coenzyme A as the substrate yielded medium-chain alkyl pyrones. Thus, in vitro assays indicate that LAP5 and LAP6 are multifunctional enzymes and may play a role in both the synthesis of pollen fatty acids and phenolics found in exine. Finally, the genetic interaction between LAP5 and an anther gene involved in fatty acid hydroxylation (CYP703A2) demonstrated that they act synergistically in exine production.Pollen grains of land plants are surrounded by complex cell walls that are divided into three layers: (1) an outer exine, itself a multilayered structure, primarily made of sporopollenin; (2) an inner intine, made primarily of cellulose; and (3) a lipid- and protein-rich pollen coat in the crevices of exine. The exine is morphologically diverse, provides protection against environmental stresses and bacterial and fungal attacks, and plays a role in species-specific adhesion (Zinkl et al., 1999; Edlund et al., 2004).Several studies indicate that sporopollenin is a complex polymer composed of fatty acids and phenolic compounds (Guilford et al., 1988; Ahlers et al., 1999; Wiermann et al., 2001). Sporopollenin is remarkably strong and chemically resistant, making it difficult to determine its precise composition by direct chemical analysis. Ozonolysis has yielded simple straight- and branched-chain monocarboxylic acids, typical of fatty acid breakdown (Shaw, 1971), as well as phenolic acids, such as p-hydroxybenzoic, m-hydroxybenzoic, and protocatechuic acids. Additional evidence for phenolic compounds came from degradation experiments or studies showing the incorporation of radiolabeled Phe and p-coumaric acid into sporopollenin (Shulze Osthoff and Wiermann, 1987; Rittscher and Wiermann, 1988; Gubatz et al., 1993), while immunolocalization studies with anti-p-coumaric acid antibodies demonstrated the occurrence of phenols in exines of different plant species (Niester-Nyveld et al., 1997).While a growing number of genes have been identified that are important for exine development, still relatively little is known about the genetic network that governs the formation of this structure, and the pathways that lead to its biosynthesis are far from being understood. In recent years, the importance of fatty acid-derived components in sporopollenin composition has been revealed through the identification of several Arabidopsis (Arabidopsis thaliana) genes, such as MALE STERILITY2 (MS2; Aarts et al., 1997), cytochrome P450 CYP703A2 (Morant et al., 2007), cytochrome P450 CYP704B1 (Dobritsa et al., 2009), and ACYL-CoA SYNTHETASE5 (ACOS5; de Azevedo Souza et al., 2009), which are important for exine production and involved in fatty acid metabolism. Less is known concerning the role of phenolics in sporopollenin biosynthesis, and the key synthetic and regulatory genes specifically associated with this aspect of sporopollenin biosynthesis are absent from the literature.Phenolic compounds are a large class of secondary metabolites that play a variety of biological roles (Hahlbrock and Scheel, 1989). Most plant phenolics are products of phenylpropanoid metabolism, including lignins, coumarins, stilbenes, and flavonoids. A well-characterized biosynthetic pathway leads to the biosynthesis of flavonoids (Supplemental Fig. S1). Chalcone synthase (CHS) catalyzes the first committed step in this pathway using 4-coumaroyl-CoA provided by 4-coumaroyl:CoA ligase as a substrate. Flavonoids are important for pollen germination and plant fertility in several plant species (Coe et al., 1981; Taylor and Jorgensen, 1992; van der Meer et al., 1992; Fischer et al., 1997; Napoli et al., 1999), while a null mutation in the Arabidopsis CHS gene, TRANSPARENT TESTA4 (TT4), results in plants with normal fertility and an absence of flavonoids in the mature stamens (Burbulis et al., 1996; Ylstra et al., 1996). This suggests that flavonoids are either not required for Arabidopsis male fertility or that TT4-independent flavonoid synthesis occurs in anthers, perhaps transiently and at an earlier developmental stage, through a mechanism that has not been detected in previous experiments.Recently, an anther-specific gene, ACOS5, was described that is essential for exine production and sporopollenin biosynthesis (de Azevedo Souza et al., 2009). ACOS5 is related to a phenylpropanoid enzyme, 4-coumaroyl:CoA ligase, but encodes a novel medium- to long-chain fatty acyl-CoA synthetase. In this study, we describe the identification and characterization of two highly conserved anther-specific genes that are involved in pollen exine development, likely participate in sporopollenin biosynthesis, and, similar to ACOS5, are related to, yet distinct from, an enzyme of the phenylpropanoid pathway. Our results provide further insight into the mechanism that leads to the formation of sporopollenin.  相似文献   

11.
12.
13.
14.
CYP703 is a cytochrome P450 family specific to land plants. Typically, each plant species contains a single CYP703. Arabidopsis thaliana CYP703A2 is expressed in the anthers of developing flowers. Expression is initiated at the tetrad stage and restricted to microspores and to the tapetum cell layer. Arabidopsis CYP703A2 knockout lines showed impaired pollen development and a partial male-sterile phenotype. Scanning electron and transmission electron microscopy of pollen from the knockout plants showed impaired pollen wall development with absence of exine. The fluorescent layer around the pollen grains ascribed to the presence of phenylpropanoid units in sporopollenin was absent in the CYP703A2 knockout lines. Heterologous expression of CYP703A2 in yeast cells demonstrated that CYP703 catalyzes the conversion of medium-chain saturated fatty acids to the corresponding monohydroxylated fatty acids, with a preferential hydroxylation of lauric acid at the C-7 position. Incubation of recombinant CYP703 with methanol extracts from developing flowers confirmed that lauric acid and in-chain hydroxy lauric acids are the in planta substrate and product, respectively. These data demonstrate that in-chain hydroxy lauric acids are essential building blocks in sporopollenin synthesis and enable the formation of ester and ether linkages with phenylpropanoid units. This study identifies CYP703 as a P450 family specifically involved in pollen development.  相似文献   

15.
The development of pollen wall with proper sporopollenin deposition is essential for pollen viability and male fertility in flowering plants. Sporopollenin is a complex biopolymer synthesized from fatty acid and phenolic derivatives. Recent investigations in Arabidopsis have identified a number of anther‐specific genes involved in the production of fatty‐acyl monomers potentially required for exine formation. The existence of ancient biochemical pathways for sporopollenin biosynthesis has been widely proposed but experimental evidence from plant species other than Arabidopsis is not extensively available. Here, we investigated the metabolic steps catalyzed by the anther‐specific acyl‐CoA synthetase (ACOS), polyketide synthase (PKS) and tetraketide α‐pyrone reductase (TKPR). Using fatty acids as starting substrates, sequential activities of heterologously expressed tobacco enzymes NtACOS1, NtPKS1 and NtTKPR1 resulted in the production of reduced tetraketide α‐pyrones. Transgenic RNA interference lines were then generated for the different tobacco genes which were demonstrated to be indispensable for normal pollen development and male fertility. Similarly, recombinant rice OsPKS1 and OsTKPR1 were shown to function as downstream enzymes of NtACOS1. In addition, insertion mutant lines for these rice genes displayed different levels of impaired pollen and seed formation. Taken together, reduced tetraketide α‐pyrones appear to represent common sporopollenin fatty‐acyl precursors essential for male fertility in taxonomically distinct plant species.  相似文献   

16.
17.
18.
Tapetum: regulation and role in sporopollenin biosynthesis in Arabidopsis   总被引:1,自引:0,他引:1  
Pollen acts as a biological protector for protecting male sperm from various harsh conditions and is covered by an outer cell wall polymer called the exine, a major constituent of which is sporopollenin. The tapetum is in direct contact with the developing gametophytes and plays an essential role in pollen wall and pollen coat formation. The precise molecular mechanisms underlying tapetal development remain highly elusive, but molecular genetic studies have identified a number of genes that control the formation, differentiation, and programmed cell death of tapetum and interactions of genes in tapetal development. Herein, several lines of evidence suggest that sporopollenin is built up via catalytic enzyme reactions in the tapetum. Furthermore, as based on genetic evidence, we review the currently accepted understanding of the molecular regulation of sporopollenin biosynthesis and examine unanswered questions regarding the requirements underpinning proper exine pattern formation.  相似文献   

19.
The Arabidopsis EXORDIUM-LIKE1 (EXL1) gene (At1g35140) is required for adaptation to carbon (C)- and energy-limiting growth conditions. An exl1 loss of function mutant showed diminished biomass production in a low total irradiance growth regime, impaired survival during extended night, and impaired survival of anoxia stress. We show here additional expression data and discuss the putative roles of EXL1. We hypothesize that EXL1 suppresses brassinosteroid-dependent growth and controls C allocation in the cell. In-depth expression analysis of homologous genes suggests that the EXL2 (At5g64260) and EXL4 (At5g09440) genes play similar roles.  相似文献   

20.
Cytochromes P450 in phenolic metabolism   总被引:2,自引:0,他引:2  
Three independent cytochrome P450 enzyme families catalyze the three rate-limiting hydroxylation steps in the phenylpropanoid pathway leading to the biosynthesis of lignin and numerous other phenolic compounds in plants. Their characterization at the molecular and enzymatic level has revealed an unexpected complexity of phenolic metabolism as the major route involves shikimate/quinate esters and alcohol/aldehyde intermediates. Engineering expression of CYP73s (encoding cinnamate 4-hydroxylase), CYP98s (encoding 4-coumaroylshikimate 3′-hydroxylase) or CYP84s (encoding coniferaldehyde 5-hydroxylase) leads to modified lignin and seed phenolic composition. In particular CYP73s and CYP98s also play essential roles in plant growth and development, while CYP84 constitutes a check-point for the synthesis of syringyl lignin and sinapate esters. Although recent data shed new light on the main path for lignin synthesis, they also raised new questions. Mutants and engineered plants revealed the existence of (an) alternative pathway(s), which most likely involve(s) different precursors and oxygenases. On the other hand, phylogenetic analysis of plant genomes show the existence of P450 gene duplications in each family, which may have led to the acquisition of novel or additional physiological functions in planta. In addition to the main lignin pathway, P450s contribute to the biosynthesis of many bioactive phenolic derivatives, with potential applications in medicine and plant defense, including lignans, phenylethanoids, benzoic acids, xanthones or quinoid compounds. A very small proportion of these P450s have been characterized so far, and rarely at a molecular level. The possible involvement of P450s in salicylic acid is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号