首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
It was recently shown that rhythmic entrainment, long considered a human-specific mechanism, can be demonstrated in a selected group of bird species, and, somewhat surprisingly, not in more closely related species such as nonhuman primates. This observation supports the vocal learning hypothesis that suggests rhythmic entrainment to be a by-product of the vocal learning mechanisms that are shared by several bird and mammal species, including humans, but that are only weakly developed, or missing entirely, in nonhuman primates. To test this hypothesis we measured auditory event-related potentials (ERPs) in two rhesus monkeys (Macaca mulatta), probing a well-documented component in humans, the mismatch negativity (MMN) to study rhythmic expectation. We demonstrate for the first time in rhesus monkeys that, in response to infrequent deviants in pitch that were presented in a continuous sound stream using an oddball paradigm, a comparable ERP component can be detected with negative deflections in early latencies (Experiment 1). Subsequently we tested whether rhesus monkeys can detect gaps (omissions at random positions in the sound stream; Experiment 2) and, using more complex stimuli, also the beat (omissions at the first position of a musical unit, i.e. the ‘downbeat’; Experiment 3). In contrast to what has been shown in human adults and newborns (using identical stimuli and experimental paradigm), the results suggest that rhesus monkeys are not able to detect the beat in music. These findings are in support of the hypothesis that beat induction (the cognitive mechanism that supports the perception of a regular pulse from a varying rhythm) is species-specific and absent in nonhuman primates. In addition, the findings support the auditory timing dissociation hypothesis, with rhesus monkeys being sensitive to rhythmic grouping (detecting the start of a rhythmic group), but not to the induced beat (detecting a regularity from a varying rhythm).  相似文献   

2.
Gao S  Hu J  Gong D  Chen S  Kendrick KM  Yao D 《PloS one》2012,7(5):e38289
Consonants, unlike vowels, are thought to be speech specific and therefore no interactions would be expected between consonants and pitch, a basic element for musical tones. The present study used an electrophysiological approach to investigate whether, contrary to this view, there is integrative processing of consonants and pitch by measuring additivity of changes in the mismatch negativity (MMN) of evoked potentials. The MMN is elicited by discriminable variations occurring in a sequence of repetitive, homogeneous sounds. In the experiment, event-related potentials (ERPs) were recorded while participants heard frequently sung consonant-vowel syllables and rare stimuli deviating in either consonant identity only, pitch only, or in both dimensions. Every type of deviation elicited a reliable MMN. As expected, the two single-deviant MMNs had similar amplitudes, but that of the double-deviant MMN was also not significantly different from them. This absence of additivity in the double-deviant MMN suggests that consonant and pitch variations are processed, at least at a pre-attentive level, in an integrated rather than independent way. Domain-specificity of consonants may depend on higher-level processes in the hierarchy of speech perception.  相似文献   

3.
We investigated the electrophysiological response to matched two-formant vowels and two-note musical intervals, with the goal of examining whether music is processed differently from language in early cortical responses. Using magnetoencephalography (MEG), we compared the mismatch-response (MMN/MMF, an early, pre-attentive difference-detector occurring approximately 200 ms post-onset) to musical intervals and vowels composed of matched frequencies. Participants heard blocks of two stimuli in a passive oddball paradigm in one of three conditions: sine waves, piano tones and vowels. In each condition, participants heard two-formant vowels or musical intervals whose frequencies were 11, 12, or 24 semitones apart. In music, 12 semitones and 24 semitones are perceived as highly similar intervals (one and two octaves, respectively), while in speech 12 semitones and 11 semitones formant separations are perceived as highly similar (both variants of the vowel in ‘cut’). Our results indicate that the MMN response mirrors the perceptual one: larger MMNs were elicited for the 12–11 pairing in the music conditions than in the language condition; conversely, larger MMNs were elicited to the 12–24 pairing in the language condition that in the music conditions, suggesting that within 250 ms of hearing complex auditory stimuli, the neural computation of similarity, just as the behavioral one, differs significantly depending on whether the context is music or speech.  相似文献   

4.
Previous studies on the effects of the mobile phone electromagnetic field (EMF) on various event‐related potential (ERP) components have yielded inconsistent and even contradictory results, and often failed in replication. The mismatch negativity (MMN) is an auditory ERP component elicited by infrequent (deviant) stimuli differing in some physical features from the repetitive frequent (standard) stimuli in a sound sequence. The MMN provides a sensitive measure for cortical auditory stimulus feature discrimination, regardless of attention and other contaminating factors. In this study, MMN responses to duration, intensity, frequency, and gap changes were recorded in healthy young adults (n = 17), using a multifeature paradigm including several types of auditory change in the same stimulus sequence, while a GSM mobile phone was placed on either ear with the EMF (902 MHz pulsed at 217 Hz; SAR1g = 1.14 W/kg, SAR10g = 0.82 W/kg, peak value = 1.21 W/kg, measured with an SAM phantom) on or off. An MMN was elicited by all deviant types, while its amplitude and latency showed no significant differences due to EMF exposure for any deviant types. In the present study, we found no conclusive evidence that acute exposure to GSM mobile phone EMF affects cortical auditory change detection processing reflected by the MMN. Bioelectromagnetics 30:241–248, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
This study illuminates processes underlying change detection for different features (detection of pitch versus loudness changes) and different amounts of attentional allocation (automatic versus attentive change detection). For this reason, the influence of important stimulus characteristics (intensity and inter-stimulus interval (ISI)) on these different types of change detection was determined. By varying intensity, it should be clarified whether these processes are mainly sensitive to the informational content of the change or to the total amount of stimulus energy. By varying ISI, it should be determined whether they are differentially sensitive to manipulations of encoding time and/or state of sensory refractoriness. Automatic change detection was indexed by the mismatch negativity (MMN), which is a component of the event-related brain potential (ERP). Attentive change detection was indexed by the N2b and P3 components of the ERP and by behavioral performance. Human subjects were presented with a high-probability standard tone and a low-probability deviant-tone, which differed from the standard tone in frequency (Experiment I) or intensity (Experiment II). In separate blocks, the intensities of the standard stimuli were of 55 and 70 dB SPL and ISIs were of 350 and 950 ms. During the first part of the experiments, subjects were engaged in silent reading, whereas they tried to discriminate deviants from standards in the second part. The MMN elicited by a frequency change was invariant to variations in intensity and ISI, whereas the MMN elicited by an intensity change was significantly modulated by both intensity and ISI. This implies functional differences between the neural traces underlying the frequency-MMN and the intensity-MMN. In addition, there were larger effects of the ISI on the N2b and P3 amplitudes as compared with the effects on the MMN amplitudes, suggesting stronger capacity limitations for attentive change detection than for automatic change detection.  相似文献   

6.
For the perception of timbre of a musical instrument, the attack time is known to hold crucial information. The first 50 to 150 ms of sound onset reflect the excitation mechanism, which generates the sound. Since auditory processing and music perception in particular are known to be hampered in cochlear implant (CI) users, we conducted an electroencephalography (EEG) study with an oddball paradigm to evaluate the processing of small differences in musical sound onset. The first 60 ms of a cornet sound were manipulated in order to examine whether these differences are detected by CI users and normal-hearing controls (NH controls), as revealed by auditory evoked potentials (AEPs). Our analysis focused on the N1 as an exogenous component known to reflect physical stimuli properties as well as on the P2 and the Mismatch Negativity (MMN). Our results revealed different N1 latencies as well as P2 amplitudes and latencies for the onset manipulations in both groups. An MMN could be elicited only in the NH control group. Together with additional findings that suggest an impact of musical training on CI users’ AEPs, our findings support the view that impaired timbre perception in CI users is at partly due to altered sound onset feature detection.  相似文献   

7.
In today’s society, there is an increasing number of workplaces in virtual environments (VE). But, there are only a few reports dealing with occupational health issues or age effects. The question arises how VR generally interferes with cognitive processes. This interference might have relevant implications for workability and work-efficiency in virtual environments. Event-related potentials are known to reflect different stages of stimulus reception, evaluation, and response. We have established an electroencephalographic (EEG) monitoring, focussing on event-related potentials (N100; mismatch negativity, i.e., MMN) to obtain access to attention dependent and pre-attentive processing of sensory stimuli applied in VE. The MMN is known to be correlated with the ability of subjects to react to an unexpected event. The aim of the present study was to investigate cognitive responses to distracting auditory stimuli in two different age groups in a virtual environment (VE) and in a real environment (“real reality”), and to compare characteristic neurophysiological response patterns. Data show that stimulus detection as given by the N100 amplitude and latency does not differ in both age groups and task conditions. In contrast, the pre-attentive processing as given by the MMN is altered in the VR such as the non-VR condition in an age-related manner. A relevant finding of the present study was that the age related differences seen in the non-VR condition were not strengthened in VR.  相似文献   

8.
In the present study, the component structure of auditory event-related potentials (ERP) was studied in children of 7–9 years old by presenting stimuli with different interstimulus intervals (ISI). A short-term auditory sensory memory, as reflected by ISI effects on ERPs, was also studied. Auditory ERPs were recorded to brief unattended 1000 Hz frequent, `standard' and 1100 Hz rare, `deviant' (probability 0.1) tone stimuli with ISIs of 350, 700 and 1400 ms (in separate blocks). With the 350 ms-ISI, the ERP waveform to the standard stimulus consisted of P100-N250 peaks. With the two longer ISIs, in addition, the frontocentral N160 and N460 peaks were observed. Results suggested that N160, found with the longer ISIs, is a correlate of the adult auditory N1. In difference waves, obtained by subtracting ERP to standard stimuli from ERP to deviant stimuli, two negativities were revealed. The first was the mismatch negativity (MMN), which is elicited by any discriminable change in repetitive auditory input. The MMN data suggested that neural traces of auditory sensory memory lasted for at least 1400 ms, probably considerably longer, as no MMN attenuation was found across the ISIs used. The second, later negativity was similar to MMN in all aspects, except for the scalp distribution, which was posterior to that of the MMN.  相似文献   

9.
M Cornella  S Leung  S Grimm  C Escera 《PloS one》2012,7(8):e43604
Auditory deviance detection in humans is indexed by the mismatch negativity (MMN), a component of the auditory evoked potential (AEP) of the electroencephalogram (EEG) occurring at a latency of 100-250 ms after stimulus onset. However, by using classic oddball paradigms, differential responses to regularity violations of simple auditory features have been found at the level of the middle latency response (MLR) of the AEP occurring within the first 50 ms after stimulus (deviation) onset. These findings suggest the existence of fast deviance detection mechanisms for simple feature changes, but it is not clear whether deviance detection among more complex acoustic regularities could be observed at such early latencies. To test this, we examined the pre-attentive processing of rare stimulus repetitions in a sequence of tones alternating in frequency in both long and middle latency ranges. Additionally, we introduced occasional changes in the interaural time difference (ITD), so that a simple-feature regularity could be examined in the same paradigm. MMN was obtained for both repetition and ITD deviants, occurring at 150 ms and 100 ms after stimulus onset respectively. At the level of the MLR, a difference was observed between standards and ITD deviants at the Na component (20-30 ms after stimulus onset), for 800 Hz tones, but not for repetition deviants. These findings suggest that detection mechanisms for deviants to simple regularities, but not to more complex regularities, are already activated in the MLR range, supporting the view that the auditory deviance detection system is organized in a hierarchical manner.  相似文献   

10.
ERPs to sequences of standard and deviant sinusoidal 100 msec tone pips, high-contrast sinusoidal gratings and to their simultaneously presented combinations were recorded. Mismatch negativity (MMN), an ERP component elicited by deviant stimuli, was estimated for the different stimulus sequences in order to find out whether it reflects modality-specific processes or non-specific attentive phenomena. In addition to the auditory modality, we studied whether the mismatch response could be evoked by a deviant visual stimulus in a visual sequence or by a deviant stimulus in either modality. The results show that only auditory stimuli produced the mismatch response, suggesting that MMN is not a manifestation of a general attentional mechanism but is probably specific to the auditory modality.  相似文献   

11.
规律短音中极短间隔短音诱发的失匹配负电位   总被引:10,自引:0,他引:10  
姜德鸣 Paavi.  P 《生理学报》1994,46(6):561-567
失匹配负电位是听觉事件相关电位的一个成分,它由一系列重复的,同性质的“标准刺激”的物理性质稍有偏离的“偏差刺激”所诱发,在规律性的标准刺激中,偶然的物理性质稍有偏离的刺激,如频率,强度,久度等的些微变化均可诱发MMN。偶然地给于时间上“过早出现”的同样刺激,即频率,强度,久度完全相同,只是在规律性的标准刺激中过早地出现的刺激,作为偏差刺激,也可以诱发出NNM。本研究在恒定刺激间隔ISI=600ms  相似文献   

12.

Background

There is lack of neuroscientific studies investigating music processing with naturalistic stimuli, and brain responses to real music are, thus, largely unknown.

Methodology/Principal Findings

This study investigates event-related brain potentials (ERPs), skin conductance responses (SCRs) and heart rate (HR) elicited by unexpected chords of piano sonatas as they were originally arranged by composers, and as they were played by professional pianists. From the musical excerpts played by the pianists (with emotional expression), we also created versions without variations in tempo and loudness (without musical expression) to investigate effects of musical expression on ERPs and SCRs. Compared to expected chords, unexpected chords elicited an early right anterior negativity (ERAN, reflecting music-syntactic processing) and an N5 (reflecting processing of meaning information) in the ERPs, as well as clear changes in the SCRs (reflecting that unexpected chords also elicited emotional responses). The ERAN was not influenced by emotional expression, whereas N5 potentials elicited by chords in general (regardless of their chord function) differed between the expressive and the non-expressive condition.

Conclusions/Significance

These results show that the neural mechanisms of music-syntactic processing operate independently of the emotional qualities of a stimulus, justifying the use of stimuli without emotional expression to investigate the cognitive processing of musical structure. Moreover, the data indicate that musical expression affects the neural mechanisms underlying the processing of musical meaning. Our data are the first to reveal influences of musical performance on ERPs and SCRs, and to show physiological responses to unexpected chords in naturalistic music.  相似文献   

13.
The concept of categorical perception of speech and speech-like sounds has been central to models of speech perception for decades. Event-related potentials (ERPs) provide a neurophysiologic perspective of this important phenomenon. In the present experiment the mismatch negativity (MMN) event-related potential, which is sensitive to fine acoustic differences, was recorded in adults. Of interest was whether the MMN reflects the acoustic or categorical perception of speech.The MMN was elicited by stimulus pairs (along a continuum varying in place of articulation from /da/ to /ga/) which had been identified as the same phoneme /da/ (within category condition) and as different phonemes /da/ and /ga/ (across categories condition). The acoustic differences between these two pairs of stimuli were equivalent.The MMN was observed in all subjects both in the within and across category conditions. Furthermore, the MMN did not differ in latency, amplitude or area within and across categories. That is, the MMN indicated equal discrimination both across and within categories. These results suggest that the MMN appears to reflect the processing of acoustic aspects of the speech stimulus, but not phonetic processing into categories. The MMN appears to be an extremely sensitive electrophysiologic index of minimal acoustic differences in speech stimuli.  相似文献   

14.

Background

Cognitive deficits are considered core symptoms of the schizophrenia. Cognitive function has been found to be a better predictor of functional outcome than symptom levels. Changed mismatch negativity (MMN) reflects abnormalities of early auditory processing in schizophrenia. Up to now, no studies for the effects of aripiprazole on MMN in schizophrenia have been reported.

Methodology/Principal Findings

Subjects included 26 patients with schizophrenia, and 26 controls. Psychopathology was rated in patients with the Positive and Negative Syndrome Scale (PANSS) at baseline, after 4- and 8-week treatments with aripiprazole. Auditory stimuli for ERP consisted of 100 millisecond/1000 Hz standards, intermixed with 100 millisecond/1500 Hz frequency deviants and 250 millisecond/1000 Hz duration deviants. EEG was recorded at Fz. BESA 5.1.8 was used to perform data analysis. MMN waveforms were obtained by subtracting waveforms elicited by standards from waveforms elicited by frequency- or duration-deviant stimuli. Aripiprazole decreased all PANSS. Patients showed smaller mean amplitudes of frequency and duration MMN at baseline than did controls. A repeated measure ANOVA with sessions (i.e., baseline, 4- and 8-week treatments) and MMN type (frequency vs. duration) as within-subject factors revealed no significant MMN type or MMN type × session main effect for MMN amplitudes. Session main effect was significant. LSD tests demonstrated significant differences between MMN amplitudes at 8 weeks and those at both baseline and 4 weeks. There was significant negative correlation between changes in amplitudes of frequency and duration MMN and changes in PANSS total scores at baseline and follow-up periods.

Conclusions

Aripiprazole improved the amplitudes of MMN. MMN offers objective evidence that treatment with the aripiprazole may ameliorate preattentive deficits in schizophrenia.  相似文献   

15.
Schizophrenia is a severe mental disorder associated with disturbances in perception and cognition. Event-related potentials (ERP) provide a mechanism for evaluating potential mechanisms underlying neurophysiological dysfunction in schizophrenia. Mismatch negativity (MMN) is a short-duration auditory cognitive ERP component that indexes operation of the auditory sensory (`echoic') memory system. Prior studies have demonstrated impaired MMN generation in schizophrenia along with deficits in auditory sensory memory performance. MMN is elicited in an auditory oddball paradigm in which a sequence of repetitive standard tones is interrupted infrequently by a physically deviant (`oddball') stimulus. The present study evaluates MMN generation as a function of deviant stimulus probability, interstimulus interval, interdeviant interval and the degree of pitch separation between the standard and deviant stimuli. The major findings of the present study are first, that MMN amplitude is decreased in schizophrenia across a broad range of stimulus conditions, and second, that the degree of deficit in schizophrenia is largest under conditions when MMN is normally largest. The pattern of deficit observed in schizophrenia differs from the pattern observed in other conditions associated with MMN dysfunction, including Alzheimer's disease, stroke, and alcohol intoxication.  相似文献   

16.
Dance and music often co-occur as evidenced when viewing choreographed dances or singers moving while performing. This study investigated how the viewing of dance motions shapes sound perception. Previous research has shown that dance reflects the temporal structure of its accompanying music, communicating musical meter (i.e. a hierarchical organization of beats) via coordinated movement patterns that indicate where strong and weak beats occur. Experiments here investigated the effects of dance cues on meter perception, hypothesizing that dance could embody the musical meter, thereby shaping participant reaction times (RTs) to sound targets occurring at different metrical positions.In experiment 1, participants viewed a video with dance choreography indicating 4/4 meter (dance condition) or a series of color changes repeated in sequences of four to indicate 4/4 meter (picture condition). A sound track accompanied these videos and participants reacted to timbre targets at different metrical positions. Participants had the slowest RT’s at the strongest beats in the dance condition only. In experiment 2, participants viewed the choreography of the horse-riding dance from Psy’s “Gangnam Style” in order to examine how a familiar dance might affect meter perception. Moreover, participants in this experiment were divided into a group with experience dancing this choreography and a group without experience. Results again showed slower RTs to stronger metrical positions and the group with experience demonstrated a more refined perception of metrical hierarchy. Results likely stem from the temporally selective division of attention between auditory and visual domains. This study has implications for understanding: 1) the impact of splitting attention among different sensory modalities, and 2) the impact of embodiment, on perception of musical meter. Viewing dance may interfere with sound processing, particularly at critical metrical positions, but embodied familiarity with dance choreography may facilitate meter awareness. Results shed light on the processing of multimedia environments.  相似文献   

17.
The topography of auditory event-related potentials (ERPs) was examined during 3 kinds of tasks: selection of a specified real word or nonsense syllable from a list; simple detection of each of the same stimuli without discrimination; and classification of a set of words according to a specified semantic category. The potentials that were associated with the additional processing required by the discriminative tasks were disclosed by subtracting the wave forms obtained in the detection condition from those obtained during discriminative performance. Difference wave forms were also derived between the semantic classification and verbal discriminative ERP to delineate the changes associated with the extraction of word meaning.The topography of the ERP associated with stimulus detection was comparable to that found in previous studies of evoked potentials to non-speech stimuli. This distribution was consistent with 2 cortical generators, one within the supratemporal plane and the other on the lateral surface of the superior temporal gyrus. When discriminative performance was required on the basis of acoustic stimulus properties, the topography of the difference wave form that reflected this discriminative processing extended more posteriorly over temporal cortex. Semantic processing elicited a further posterior extension of ERP components by 330 msec after stimulus onset, as well as longer latency potentials that were not present in the verbal selection task. These differences imply that a more extensive portion of language cortex is engaged in semantic classification than in verbal identification.  相似文献   

18.
Mismatch negativity of ERP in cross-modal attention   总被引:1,自引:0,他引:1  
Event-related potentials were measured in 12 healthy youth subjects aged 19-22 using the paradigm "cross-modal and delayed response" which is able to improve unattended purity and to avoid the effect of task target on the deviant components of ERP. The experiment included two conditions: (i) Attend visual modality, ignore auditory modality; (ii) attend auditory modality, ignore visual modality. The stimuli under the two conditions were the same. The difference wave was obtained by subtracting ERPs of the standard stimuli from that of the deviant stim-uli. The present results showed that mismatch negativity (MMN), N2b and P3 components can be produced in the auditory and visual modalities under attention condition. However, only MMN was observed in the two modalities un-der inattention condition. Auditory and visual MMN have some features in common: their largest MMN wave peaks were distributed respectively over their primary sensory projection areas of the scalp under attention condition, but over front  相似文献   

19.
The work investigated event-related potentials, mismatch negativity (MMN), and P3a component under dichotic stimulation with deviant stimuli simulating abrupt or smooth displacement of auditory images to the left or to the right from the head midline by means of interaural time delay introduced into the deviant stimuli. Repetitive standard stimuli were localized near the head midline. All deviant stimuli elicited mismatch negativity and P3a component. It was shown the MMN for smooth deviant motion was lower than that for the abrupt deviant displacement. MMN amplitude for both deviant types obviously depended on interaural time delay, which confirms that MMN might be considered as a measure of the auditory system spatial discriminative ability. The P3a component demonstrated the same amplitude dependences as the MMN. The results obtained are discussed in respect to manifestation of the processes underlying the auditory motion detection in the event-related potentials.  相似文献   

20.
Previous studies have shown that a frequency change in a continuous tone elicits an NI type of ERP (event-related potential) component. It remained unclear, however, whether this response is a “genuine” N1 (onset detector response) or the mismatch negativity (MMN), a change-detector type of ERP response, elicited in previous studies by an infrequent change in a sequence of homogeneous stimuli. A further possibility is a nearly perfect overlap of the two types of ERP components. The advent of modern, high-resolution magnetometers has opened a new, powerful way to tackle such component-overlap problems.Subjects were presented with a continuous tone of 988 Hz which was occasionally increased to 1108 Hz for a period of 100 msec. The magnetic responses to this change consisted of two partially overlapping components with peaks separated by 30 msec. The earlier component was probably generated by neuronal populations of the auditory cortex corresponding to the supratemporal N1, whereas the later one, generated anteriorly and inferiorly to the first, probably reflects a mismatch process causing the magnetic equivalent of the electrical MMN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号