共查询到20条相似文献,搜索用时 9 毫秒
1.
Azimi I Matthias LJ Center RJ Wong JW Hogg PJ 《The Journal of biological chemistry》2010,285(51):40072-40080
A functional disulfide bond in both the HIV envelope glycoprotein, gp120, and its immune cell receptor, CD4, is involved in viral entry, and compounds that block cleavage of the disulfide bond in these proteins inhibit HIV entry and infection. The disulfide bonds in both proteins are cleaved at the cell surface by the small redox protein, thioredoxin. The target gp120 disulfide and its mechanism of cleavage were determined using a thioredoxin kinetic trapping mutant and mass spectrometry. A single disulfide bond was cleaved in isolated and cell surface gp120, but not the gp160 precursor, and the extent of the reaction was enhanced when gp120 was bound to CD4. The Cys(32) sulfur ion of thioredoxin attacks the Cys(296) sulfur ion of the gp120 V3 domain Cys(296)-Cys(331) disulfide bond, cleaving the bond. Considering that V3 sequences largely determine the chemokine receptor preference of HIV, we propose that cleavage of the V3 domain disulfide, which is facilitated by CD4 binding, regulates chemokine receptor binding. There are 20 possible disulfide bond configurations, and, notably, the V3 domain disulfide has the same unusual -RHStaple configuration as the functional disulfide bond cleaved in CD4. 相似文献
2.
Chen Y Zeng G Chen SS Feng Q Chen ZW 《Biochemical and biophysical research communications》2011,(2):301-306
Soluble CD4 (sCD4), anti-CD4 antibody, and anti-gp120 antibody have long been regarded as entry inhibitors in human immunodeficiency virus (HIV) therapy. However, the interactions between these HIV entry inhibitors and corresponding target molecules are still poorly understood. In this study, atomic force microscopy (AFM) was utilized to investigate the interaction forces among them. We found that the unbinding forces of sCD4–gp120 interaction, CD4 antigen–antibody interaction, and gp120 antigen–antibody interaction were 25.45 ± 20.46, 51.22 ± 34.64, and 89.87 ± 44.63 pN, respectively, which may provide important mechanical information for understanding the effects of viral entry inhibitors on HIV infection. Moreover, we found that the functionalization of an interaction pair on AFM tip or substrate significantly influenced the results, implying that we must perform AFM force measurement and analyze the data with more caution. 相似文献
3.
The entry of HIV-1 into a target cell requires gp120 and receptor CD4 as well as coreceptor CCR5/CXCR4 recognition events associated with conformational changes of the involved proteins. The binding of CD4 to gp120 is the initiation step of the whole process involving structural rearrangements that are crucial for subsequent pathways. Despite the wealth of knowledge about the gp120/CD4 interactions, details of the conformational changes occurring at this stage remain elusive. We have performed molecular dynamics simulations in explicit solvent based on the gp120/CD4/CD4i crystal structure in conjunction with modeled V3 and V4 loops to gain insight into the dynamics of the binding process. Three differentiated interaction modes between CD4 and gp120 were found, which involve electrostatics, hydrogen bond and van der Waals networks. A "binding funnel" model is proposed based on the dynamical nature of the binding interface together with a CD4-attraction gradient centered in gp120 at the CD4-Phe43-binding cavity. Distinct dynamical behaviors of free and CD4-bound gp120 were monitored, which likely represent the ground and pre-fusogenic states, respectively. The transition between these states revealed concerted motions in gp120 leading to: i) loop contractions around the CD4-Phe43-insertion cavity; ii) stabilization of the four-stranded "bridging sheet" structure; and iii) translocation and clustering of the V3 loop and the bridging sheet leading to the formation of the coreceptor binding site. Our results provide new insight into the dynamic of the underlying molecular recognition mechanism that complements the biochemical and structural studies. 相似文献
4.
W Chen Y Feng Y Wang Z Zhu DS Dimitrov 《Biochemical and biophysical research communications》2012,425(4):931-937
Development of successful AIDS vaccine immunogens continues to be a major challenge. One of the mechanisms by which HIV-1 evades antibody-mediated neutralizing responses is the remarkable conformational flexibility of its envelope glycoprotein (Env) gp120. Some recombinant gp120s do not preserve their conformations on gp140s and functional viral spikes, and exhibit decreased recognition by CD4 and neutralizing antibodies. CD4 binding induces conformational changes in gp120 leading to exposure of the coreceptor-binding site (CoRbs). In this study, we test our hypothesis that CD4-induced (CD4i) antibodies, which target the CoRbs, could also induce conformational changes in gp120 leading to better exposed conserved neutralizing antibody epitopes including the CD4-binding site (CD4bs). We found that a mixture of CD4i antibodies with gp120 only weakly enhanced CD4 binding. However, such interactions in single-chain fusion proteins resulted in gp120 conformations which bound to CD4 and CD4bs antibodies better than the original or mutagenically stabilized gp120s. Moreover, the two molecules in the fusion proteins synergized with each other in neutralizing HIV-1. Therefore, fusion proteins of gp120 with CD4i antibodies could have potential as components of HIV-1 vaccines and inhibitors of HIV-1 entry, and could be used as reagents to explore the conformational flexibility of gp120 and mechanisms of entry and immune evasion. 相似文献
5.
Kristin Kassler 《Journal of biomolecular structure & dynamics》2013,31(1):52-64
The interaction of the HIV-1 fusion protein gp120 with its cellular receptor CD4 represents a crucial step of the viral infection process, thus rendering gp120 a promising target for the intervention with anti-HIV drugs. Naturally occurring mutations of gp120, however, can decrease its affinity for anti-infective ligands like therapeutic antibodies or soluble CD4. To understand this phenomenon on a structural level, we performed molecular dynamics simulations of two gp120 variants (termed gp1203-2 and gp1202-1), which exhibit a significantly decreased binding of soluble CD4. In both variants, the exchange of a nonpolar residue byglutamate was identified as an important determinant for reduced binding. However, those glutamates are located at different sequence positions and affect different steps of the recognition process: E471 in gp1203-2 predominantly affects the CD4-bound conformation, whereas E372 in gp1202-1 mainly modulates the conformational sampling of free gp120. Despite these differences, there exists an interesting similarity between the two variants: both glutamates exert their function by modulating the conformation and interactions of glycine-rich motifs (G366–G367, G471–G473) resulting in an accumulation of binding incompetent gp120 conformations or a loss of intermolecular gp120–CD4 hydrogen bonds. Thus, the present data suggests that interference with the structure and dynamics of glycine-rich stretches might represent a more widespread mechanism, by which gp120 mutations reduce binding affinity. This knowledge should be helpful to predict the resistance of novel gp120 mutations or to design gp120–ligands with improved binding properties.An animated interactive 3D complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:41 相似文献
6.
Matthias LJ Azimi I Tabrett CA Hogg PJ 《The Journal of biological chemistry》2010,285(52):40793-40799
CD4 is a co-receptor for binding of T cells to antigen-presenting cells and the primary receptor for the human immunodeficiency virus type 1 (HIV). CD4 exists in three different forms on the cell surface defined by the state of the domain 2 cysteine residues: an oxidized monomer, a reduced monomer, and a covalent dimer linked through the domain 2 cysteines. The disulfide-linked dimer is the preferred immune co-receptor. The form of CD4 that is preferred by HIV was examined in this study. HIV entry and envelope-mediated cell-cell fusion were tested using cells expressing comparable levels of wild-type or disulfide bond mutant CD4 in which the domain 2 cysteines were mutated to alanine. Eliminating the domain 2 disulfide bond increased entry of HIV reporter viruses and enhanced HIV envelope-mediated cell-cell fusion 2-4-fold. These observations suggest that HIV enters susceptible cells preferably through monomeric reduced CD4, whereas dimeric CD4 is the preferred receptor for binding to antigen-presenting cells. Cleavage of the domain 2 disulfide bond is possibly involved in the conformational change in CD4 associated with fusion of the HIV and cell membranes. 相似文献
7.
To investigate the potential clinical application of aptamers to prevention of HIV infection, single-stranded DNA (ssDNA) aptamers specific for CD4 were developed using the systematic evolution of ligands by exponential enrichment approach and next generation sequencing. In contrast to RNA-based aptamers, the developed ssDNA aptamers were stable in human serum up to 12 h. Cell binding assays revealed that the aptamers specifically targeted CD4-expressing cells with high binding affinity (Kd = 1.59 nM), a concentration within the range required for therapeutic application. Importantly, the aptamers selectively bound CD4 on human cells and disrupted the interaction of viral gp120 to CD4 receptors, which is a prerequisite step of HIV-1 infection. Functional studies showed that the aptamer polymers significantly blocked binding of viral gp120 to CD4-expressing cells by up to 70% inhibition. These findings provide a new approach to prevent HIV-1 transmission using oligonucleotide aptamers. 相似文献
8.
RAIMO FRANKE TATJANA HIRSCH JUTTA EICHLER 《Journal of receptor and signal transduction research》2013,33(5-6):453-460
Synthetic mimetics of the CD4-binding site of HIV-1 gp120 are promising candidates for HIV-1 entry inhibition, as well as immunogen candidates for the elicitation of virus-neutralizing antibodies. On the basis of the crystal structure of gp120 in complex with CD4, we have used a recently introduced strategy for the generation of structurally diverse scaffolds to design and synthesize a scaffolded peptide, in which three fragments, making up the sequentially discontinuous binding site of gp120 for CD4, are presented in a nonlinear and discontinuous fashion through a molecular scoffold, which restrains conformational flexibility. The affinities of this molecule to CD4, as well as to the broadly neutralizing antibody mAb b12, whose epitope overlaps the CD4-binding site of gp120, were determined in competitive binding assays. 相似文献
9.
《Bioorganic & medicinal chemistry letters》2014,24(24):5699-5703
CD4-gp120 interaction is the first step for HIV-1 entry into host cells. A highly conserved pocket in gp120 protein is an attractive target for developing gp120 inhibitors or novel HIV detection tools. Here we incorporate seven phenylalanine derivatives having different sizes and steric conformations into position 43 of domain 1 of CD4 (mD1.2) to explore the architecture of the ‘Phe43 cavity’ of HIV-1 gp120. The results show that the conserved hydrophobic pocket in gp120 tolerates a hydrophobic side chain of residue 43 of CD protein, which is 12.2 Å in length and 8.0 Å in width. This result provides useful information for developing novel gp120 inhibitors or new HIV detection tools. 相似文献
10.
Dynamic domains and geometrical properties of HIV-1 gp120 during conformational changes induced by CD4 binding 总被引:1,自引:0,他引:1
The HIV-1 gp120 exterior envelope glycoprotein undergoes a series of conformational rearrangements while sequentially interacting
with the receptor CD4 and coreceptor CCR5 or CXCR4 on the surface of host cells to initiate virus entry. Both the crystal
structures of the HIV-1 gp120 core bound by the CD4 and antigen 17b, and the SIV gp120 core pre-bound by the CD4 are known.
We have performed dynamic domain studies on the homology models of the CD4-bound and unliganded HIV-1 gp120 with modeled V3
and V4 loops to explore details of conformational changes, hinge axes, and hinge bending regions in the gp120 structures upon
CD4 binding. Four dynamic domains were clustered and intricately motional modes for domain pairs were discovered. Together
with the detailed comparative analyses of geometrical properties between the unliganded and liganded gp120 models, an induced
fit model was proposed to explain events accompanying the CD4 engagement to the gp120, which provided new insight into the
dynamics of the molecular induced binding mechanism that complements the molecular dynamics and crystallographic studies. 相似文献
11.
N. K. Banda W. C. Satterfield A. Dunlap K. S. Steimer R. Kurrle T. H. Finkel 《Apoptosis : an international journal on programmed cell death》1996,1(1):49-62
Human immunodeficiency virus-1 (HIV-1) infects both humans and chimpanzees, but in the chimpanzee, HIV-1 infection leads only very rarely to loss of CD4 T cells or to AIDS-like disease. The pathogenetic basis for this difference in host range is not understood. In previous studies, using CD4 T cells from HIV-1 seronegative human donors, we demonstrated that crosslinking of CD4-bound gp120, followed by signaling through the T cell receptor for antigen (TCR), resulted in cell death by apoptosis. To determine whether activation-induced apoptosis correlates with progression to AIDS, we studied the chimpanzee. Our data suggest that, although human CD4 T cells respond to CD4 ligation with anergy and apoptosis upon activation, chimpanzee CD4 T cells do not undergo apoptosis after cross-linking of CD4-bound gp120, followed by signaling through the TCR. In addition, proliferation assays show that chimpanzee CD4 T cells do not become anergic after CD4 ligation. Thus, it is possible that, in the chimpanzee, the absence of cellular anergy and apoptotic cell death after CD4 ligation by HIV-1 gp120 protect this primate species from progression to AIDS-like disease.This investigation was supported by National Institute of Health grants AI-30575, AI-29903, AI-35513, and RR00015 (TH Finkel), AI-05060 (WC Satterfield), American Foundation for AIDS Research grants 02270-16-RG (TH Finkel) and 770188-11-PF (NK Banda), the Concerned Parents for AIDS Research, the UCHSC Cancer Center, the Eleanore and Michael Stobin Trust, and the Bender Foundation. 相似文献
12.
Lei Li Ryan Z.L. Lim Lawrence S.U. Lee Nicholas S.Y. Chew 《Biochimica et Biophysica Acta (BBA)/General Subjects》2018,1862(8):1790-1800
Background
HIV infection and/or the direct pathogenic effects of circulating HIV proteins impairs the physiological function of mesenchymal stem cells (MSCs), and contribute to the pathogenesis of age-related clinical comorbidities in people living with HIV. The SDF-1/CXCR4 pathway is vital for modulating MSC proliferation, migration and differentiation. HIV glycoprotein gp120 inhibits SDF-1 induced chemotaxis by downregulating the expression and function of CXCR4 in monocytes, B and T cells. The influence of gp120 on CXCR4 expression and migration in MSCs is unknown.Methods
We investigated CXCR4 expression and SDF-1/CXCR4-mediated MSC migration in response to gp120, and its effect on downstream signaling pathways: focal adhesion kinase (FAK)/Paxillin and extracellular signal-regulated kinase (ERK).Results
Gp120 upregulated MSC CXCR4 expression. This potentiated the effects of SDF-1 in inducing chemotaxis; FAK/Paxillin and ERK pathways were over-activated, thereby facilitating actin stress fiber reorganization. CXCR4 blockage or depletion abrogated the observed effects.Conclusion
Gp120 from both T- and M- tropic HIV strains upregulated CXCR4 expression in MSCs, resulting in enhanced MSC chemotaxis in response to SDF-1.General significance
HIV infection and its proteins are known to disrupt physiological differentiation of MSC; increased gp120-driven migration amplifies the total MSC population destined for ineffective and inappropriate differentiation, thus contributing to the pathogenesis of HIV-related comorbidities. Additionally, given that MSCs are permissive to HIV infection, initial cellular priming by gp120 results in increased expression of CXCR4 and could lead to co-receptor switching and cell tropism changes in chronic HIV infection and may have implications against CCR5-knockout based HIV cure strategies. 相似文献13.
14.
Lalonde JM Elban MA Courter JR Sugawara A Soeta T Madani N Princiotto AM Kwon YD Kwong PD Schön A Freire E Sodroski J Smith AB 《Bioorganic & medicinal chemistry》2011,19(1):91-101
The low-molecular-weight compound JRC-II-191 inhibits infection of HIV-1 by blocking the binding of the HIV-1 envelope glycoprotein gp120 to the CD4 receptor and is therefore an important lead in the development of a potent viral entry inhibitor. Reported here is the use of two orthogonal screening methods, gold docking and ROCS shape-based similarity searching, to identify amine-building blocks that, when conjugated to the core scaffold, yield novel analogs that maintain similar affinity for gp120. Use of this computational approach to expand SAR produced analogs of equal inhibitory activity but with diverse capacity to enhance viral infection. The novel analogs provide additional lead scaffolds for the development of HIV-1 entry inhibitors that employ protein-ligand interactions in the vestibule of gp120 Phe 43 cavity. 相似文献
15.
Nanako Takeda-Hirokawa Lian-pin Neoh Hiroaki Akimoto Hiroshi Kaneko Takashi Hishikawa Iwao Sekigawa Hiroshi Hashimoto Shun-ichi Hirose Tsutomu Murakami Naoki Yamamoto Tohru Mimura Yutaro Kaneko 《Microbiology and immunology》1997,41(9):741-745
To clarify the mechanism by which curdlan sulfate (CRDS) inhibits human immunodeficiency virus (HIV)-1 infection, we examined its influence on the binding of gp120 to CD4 molecules on T cells and macrophages, as well as on the production of TNF-α by gp120-stimulated macrophages (which promotes HIV-1 replication). CRDS treatment of cells not only inhibited the binding of HIV-1 gp120 to CD4+ cells, but also inhibited TNF-α production induced by gp120. Inhibition of HIV-1 infection by CRDS may be related to these two actions. 相似文献
16.
17.
Daniel Licht Bruce Cronstein Daryll C. Dykes Joseph Pedersen Sharon M. Luster Miroslav Trampota Eugene Hull Fred K. Friedman Matthew R. Pincus 《Journal of Protein Chemistry》1992,11(5):475-481
Peptide T, from the human immunodeficiency virus (HIV), whose sequence is Ala-Ser-Thr-Thr-Thr-Asn-Tyr-Thr, has been shown to inhibit attachment of this virus to T cells and neural cells bearing the CD4 receptor. This peptide shares extensive homology with the 19–26 segment of ribonuclease A (RNase A), whose sequence is Ala-Ala-Ser-Ser-Ser-Asn-Tyr-Cys. Based on comparison of the structures of peptides occurring in proteins of known structure that are homologous to peptide T,viz, RNase A and endothiapepsin and on conformational energy calculations, we predicted that peptide T adopts a structure much like that for residues 19–26 in RNase A. A critical feature is a bend involving residues Thr 4-Asn 7 in peptide T corresponding to Ser 22-Tyr 25 in the RNase A peptide. Our proposed structure for peptide T has recently been confirmed by Cotelleet al. (Biochem. Biophys. Res. Commun.
171, 596–602). We now show directly that the RNase A peptide, with Met replacing Cys 26 to prevent disulfide exchange reactions, strongly induces monocyte-chemotaxis that is blocked by anti-CD4 monoclonal antibody. Both peptide T and RNase A fail to induce chemotaxis, however, in neutrophils which do not express surface CD4 receptors. These results suggest that both peptides interact with the CD4 receptor in inducing monocyte chemotaxis. We have also prepared cyclo-RNase A peptide with Met 26. Using molecular dynamics and conformational energy calculations, we find that the cyclic peptide cannot form a bend structure involving Ser 22-Tyr 25 that is superimposable on the RNase A bend. Indeed, we find that this peptide is inactive in inducing monocyte chemotaxis despite the fact that its amino acid sequence is identical to that of the open chain form. This result suggests that a correlation between the -bend structure of the RNase A peptide and peptide T and their abilities to bind to the CD4 receptor. 相似文献
18.
19.
The structure of the free form HIV gp120, critical for therapeutic agent development, is unavailable due to its high flexibility. Previous thermodynamic data, structural analysis and simulation results have suggested a large conformational change in the core domain upon CD4 binding. The bridging sheet, which consists of four beta-strands with beta20/21 nestling against the inner/outer domains and beta2/3 facing outward, more exposed to the solvent, was proposed to be unfolded in the native state. In order to test this proposition and to characterize the native conformations, we performed potential mean force (PMF) molecular dynamics (MD) simulations on the CD4-bound crystal structure. We pushed the bridging sheet away from the inner and outer domain to explore the accessible conformational space for the bridging sheet. In addition, we performed conventional MD simulations on structures with the bridging sheet partially unfolded to investigate the stability of the association between the inner and outer domains. Based on the free energy profiles, we find that the whole bridging sheet is unlikely to unfold without other concurrent conformational changes. On the other hand, the partial bridging sheet, beta strands 2/3, can switch its conformation from the folded to the unfolded state. Furthermore, relaxation of conformation with partially unfolded bridging sheet through MD simulations leads to a conformation with beta strands 20/21 quickly re-anchoring against the inner and outer domains. Such a conformation, although lacking some of the hydrophobic interactions present in the CD4-bound structure, displayed high stability as further indicated by other restrained MD simulations. The relevance of this conformation to the free form structure and the pathway for conformational change from the free form to the CD4-bound structure is discussed in detail in light of the available unliganded SIV gp120 crystal structure. 相似文献
20.
Dukkipati A Vaclavikova J Waghray D Garcia KC 《Protein expression and purification》2006,50(2):203-214
CXCR4 belongs to the family of G protein-coupled receptors and mediates the various developmental and regulatory effects of the chemokine SDF-1alpha. In addition, CXCR4 acts as a co-receptor along with CD4 for the HIV-1 viral glycoprotein gp120. Recently, there has also been a small molecule described that antagonizes both SDF-1 and gp120 binding to CXCR4. The structural and mechanistic basis for this dual recognition ability of CXCR4 is unknown largely due to the technical challenges of biochemically producing the components of the various complexes. We expressed the human CXCR4 receptor using a modified baculovirus expression vector that facilitates a single step antibody affinity purification of CXCR4 to >80% purity from Hi5 cells. The recombinant receptor undergoes N-linked glycosylation, tyrosine sulfation and is recognized by the 12G5 conformation specific antibody against human CXCR4. We are able to purify CXCR4 alone as well as complexed with its endogenous ligand SDF-1, its viral ligand gp120, and a small molecule antagonist AMD3100 by ion-exchange chromatography. We anticipate that the expression and purification scheme described in this paper will facilitate structure-function studies aimed at elucidating the molecular basis for CXCR4 recognition of its endogenous chemokine and viral ligands. 相似文献