首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study aimed to investigate effects of walking direction and speed on gait complexity, symmetry and variability as indicators of neural control mechanisms, and if a period of backward walking has acute effects on forward walking. Twenty-two young adults attended 2 visits. In each visit participants walked forwards at preferred walking speed (PWS) for 3-minutes (pre) followed by 5-minutes walking each at 80%, 100% and 120% of PWS of either forward or backward walking then a further 3-minutes walking forward at PWS (post). The order of walking speed in each visit was randomised and walking direction of each visit was randomised. An inertial measurement unit was placed over L5 vertebra to record tri-axial accelerations. From the trunk accelerations multiscale entropy, harmonic ratio and stride time variability were calculated to measure complexity, symmetry and variability for each walk. Complexity increased with increasing walking speed for all axes in forward and backward walking, and backward walking was less complex than forward walking. Stride time variability was also greater in backward than forward walking. Anterio-posterior and medio-lateral complexity increased following forward and backward walking but there was no difference between forward and backward walking post effects. No effects were found for harmonic ratio. These results suggest during backward walking trunk motion is rigidly controlled but central pattern generators responsible for temporal gait patterns are less refined for backward walking. However, in both directions complexity increased as speed increased suggesting additional constraint of trunk motion, normally characterised by reduced complexity, is not applied as speed increases.  相似文献   

2.
Small wireless trunk accelerometers have become a popular approach to unobtrusively quantify human locomotion and provide insights into both gait rehabilitation and sports performance. However, limited evidence exists as to which trunk accelerometry measures are suitable for the purpose of detecting movement compensations while running, and specifically in response to fatigue. The aim of this study was therefore to detect deviations in the dynamic center of mass (CoM) motion due to running-induced fatigue using tri-axial trunk accelerometry. Twenty runners aged 18–25 years completed an indoor treadmill running protocol to volitional exhaustion at speeds equivalent to their 3.2 km time trial performance. The following dependent measures were extracted from tri-axial trunk accelerations of 20 running steps before and after the treadmill fatigue protocol: the tri-axial ratio of acceleration root mean square (RMS) to the resultant vector RMS, step and stride regularity (autocorrelation procedure), and sample entropy. Running-induced fatigue increased mediolateral and anteroposterior ratios of acceleration RMS (p < .05), decreased the anteroposterior step regularity (p < .05), and increased the anteroposterior sample entropy (p < .05) of trunk accelerometry patterns. Our findings indicate that treadmill running-induced fatigue might reveal itself in a greater contribution of variability in horizontal plane trunk accelerations, with anteroposterior trunk accelerations that are less regular from step-to-step and are less predictable. It appears that trunk accelerometry parameters can be used to detect deviations in dynamic CoM motion induced by treadmill running fatigue, yet it is unknown how robust or generalizable these parameters are to outdoor running environments.  相似文献   

3.
When humans wish to move sideways, they almost never walk sideways, except for a step or two; they usually turn and walk facing forward. Here, we show that the experimental metabolic cost of walking sideways, per unit distance, is over three times that of forward walking. We explain this high metabolic cost with a simple mathematical model; sideways walking is expensive because it involves repeated starting and stopping. When walking sideways, our subjects preferred a low natural speed, averaging 0.575 m s−1 (0.123 s.d.). Even with no prior practice, this preferred sideways walking speed is close to the metabolically optimal speed, averaging 0.610 m s−1 (0.064 s.d.). Subjects were within 2.4% of their optimal metabolic cost per distance. Thus, we argue that sideways walking is avoided because it is expensive and slow, and it is slow because the optimal speed is low, not because humans cannot move sideways fast.  相似文献   

4.
Behavioural displays are a common feature of animal courtship. Just as female preferences can generate exaggerated male ornaments, female preferences for dynamic behaviours may cause males to perform courtship displays near intrinsic performance limits. I provide an example of an extreme display, the courtship dive of Anna''s hummingbird (Calypte anna). Diving male Anna''s hummingbirds were filmed with a combination of high-speed and conventional video cameras. After powering the initial stage of the dive by flapping, males folded their wings by their sides, at which point they reached an average maximum velocity of 385 body lengths s−1 (27.3 m s−1). This is the highest known length-specific velocity attained by any vertebrate. This velocity suggests their body drag coefficient is less than 0.3. They then spread their wings to pull up, and experienced centripetal accelerations nearly nine times greater than gravitational acceleration. This acceleration is the highest reported for any vertebrate undergoing a voluntary aerial manoeuvre, except jet fighter pilots. Stereotyped courtship behaviours offer several advantages for the study of extreme locomotor performance, and can be assessed in a natural context.  相似文献   

5.
Despite a wealth of evidence demonstrating extraordinary maximal performance, little is known about the routine flight performance of insects. We present a set of techniques for benchmarking performance characteristics of insects in free flight, demonstrated using a model species, and comment on the significance of the performance observed. Free-flying blowflies (Calliphora vicina) were filmed inside a novel mirrored arena comprising a large (1.6 m1.6 m1.6 m) corner-cube reflector using a single high-speed digital video camera (250 or 500 fps). This arrangement permitted accurate reconstruction of the flies'' 3-dimensional trajectories without the need for synchronisation hardware, by virtue of the multiple reflections of a subject within the arena. Image sequences were analysed using custom-written automated tracking software, and processed using a self-calibrating bundle adjustment procedure to determine the subject''s instantaneous 3-dimensional position. We illustrate our method by using these trajectory data to benchmark the routine flight performance envelope of our flies. Flight speeds were most commonly observed between 1.2 ms−1 and 2.3 ms−1, with a maximum of 2.5 ms−1. Our flies tended to dive faster than they climbed, with a maximum descent rate (−2.4 ms−1) almost double the maximum climb rate (1.2 ms−1). Modal turn rate was around 240°s−1, with maximal rates in excess of 1700°s−1. We used the maximal flight performance we observed during normal flight to construct notional physical limits on the blowfly flight envelope, and used the distribution of observations within that notional envelope to postulate behavioural preferences or physiological and anatomical constraints. The flight trajectories we recorded were never steady: rather they were constantly accelerating or decelerating, with maximum tangential accelerations and maximum centripetal accelerations on the order of 3 g.  相似文献   

6.
The magnitude of acceleration required to induce growth responses in Avena seedlings grown in the absence of tropic response to earth gravity has been investigated. For this purpose, a clinostat was developed that imposes accelerations from about 10−9 g to 3 g upon the seedling; simultaneously, it nullifies, or compensates for, response to the directional component of the gravitational-force vector by rotating the seedling on a horizontal axis. When accelerations less than 10−3 g are applied in either the acropetal or the basipetal direction, the growth in length and weight of the various organs is not materially different from that of compensated seedlings to which no longitudinal force is applied. At accelerations between 10−3 and 10−2 g, differences in growth become highly significant. When the centrifugal forces are transverse to the seedling during compensation, the threshold acceleration range for geoperception, as manifest by shoot reorientation, is again between 10−3 and 10−2 g. Geotropic reorientation of the root becomes apparent after exposures between 10−4 and 10−3 g.  相似文献   

7.
Surface plasmon resonance (SPR)-based immunoassays have numerous applications and require high affinity reagents for sensitive and reliable measurements. We describe a quick approach to turn low affinity antibodies into appropriate capture reagents. We used antibodies recognizing human ephrin type A receptor 2 (EphA2) and a ProteOn XPR36 as a model system. We generated so-called ‘bi-epitope’ sensor surfaces by immobilizing various pairs of anti-EphA2 antibodies using standard amine coupling. The apparent binding affinities to EphA2 and EphA2 detection sensitivities of the bi-epitope and ‘single-epitope’ surfaces were then compared. For all antibody pairs tested, bi-epitope surfaces exhibited an ∼10–100-fold improvement in apparent binding affinities when compared with single-epitope ones. When pairing 2 antibodies of low intrinsic binding affinities (∼10−8 M) and fast dissociation rates (∼10−2 s−1), the apparent binding affinity and dissociation rate of the bi-epitope surface was improved up to ∼10–10 M and 10−4 s−1, respectively. This led to an ∼100–200-fold enhancement in EphA2 limit of detection in crude cell supernatants. Our results show that the use of antibody mixtures in SPR applications constitutes a powerful approach to develop sensitive immunoassays, as previously shown for non-SPR formats. As SPR-based assays have significantly expanded their reach in the last decade, such an approach promises to further accelerate their development.  相似文献   

8.
The electrophoretic mobilities (EPMs) of 30 Mycobacterium avium complex organisms were measured. The EPMs of 15 clinical isolates ranged from −1.9 to −5.0 μm cm V−1 s−1, and the EPMs of 15 environmental isolates ranged from −1.9 to −4.6 μm cm V−1 s−1 at pH 7.  相似文献   

9.
Many cyanobacteria produce microcystins, hepatotoxic cyclic heptapeptides that can affect animals and humans. The effects of photosynthetically active radiation (PAR) on microcystin production by Microcystis strain PCC 7806 were studied in continuous cultures. Microcystis strain PCC 7806 was grown under PAR intensities between 10 and 403 μmol of photons m−2 s−1 on a light-dark rhythm of 12 h -12 h. The microcystin concentration per cell, per unit biovolume and protein, was estimated under steady-state and transient-state conditions and on a diurnal timescale. The cellular microcystin content varied between 34.5 and 81.4 fg cell−1 and was significantly positively correlated with growth rate under PAR-limited growth but not under PAR-saturated growth. Microcystin production and PAR showed a significant positive correlation under PAR-limited growth and a significant negative correlation under PAR-saturated growth. The microcystin concentration, as a ratio with respect to biovolume and protein, correlated neither with growth rate nor with PAR. Adaptation of microcystin production to a higher irradiance during transient states lasted for 5 days. During the period of illumination at a PAR of 10 and 40 μmol of photons m−2 s−1, the intracellular microcystin content increased to values 10 to 20% higher than those at the end of the dark period. Extracellular (dissolved) microcystin concentrations were 20 times higher at 40 μmol of photons m−2 s−1 than at 10 μmol of photons m−2 s−1 and did not change significantly during the light-dark cycles at both irradiances. In summary, our results showed a positive effect of PAR on microcystin production and content of Microcystis strain PCC 7806 up to the point where the maximum growth rate is reached, while at higher irradiances the microcystin production is inhibited.  相似文献   

10.
Indirect photometric chromatography and microdistillation enabled a simultaneous measurement of sulfate depletion and sulfide production in the top 3 cm of freshwater sediments to be made. The simultaneous measurement of sulfate depletion and sulfide production rates provided added insight into microbial sulfur metabolism. The lower sulfate reduction rates, as derived from the production of acid-volatile 35S2− only, were explained by a conversion of this pool to an undistillable fraction under acidic conditions during incubation. A mathematical model was applied to calculate sulfate reduction from sulfate gradients at the sediment-water interface. To avoid disturbance of these gradients, the sample volume was reduced to 0.2 g (wet weight) of sediment. Sulfate diffusion coefficients in the model were determined (Ds = 0.3 × 10−5 cm2 s−1 at 6°C). The results of the model were compared with those of radioactive sulfate turnover experiments by assessing the actual turnover rate constants (2 to 5 day−1) and pool sizes of sulfate at different sediment depths.  相似文献   

11.
Evapotranspiration (E) and CO2 flux (Fc) in the growing season of an unusual dry year were measured continuously over a Scots pine forest in eastern Finland, by eddy covariance techniques. The aims were to gain an understanding of their biological and environmental control processes. As a result, there were obvious diurnal and seasonal changes in E, Fc, surface conductance (gc), and decoupling coefficient (Ω), showing similar trends to those in radiation (PAR) and vapour pressure deficit (δ). The maximum mean daily values (24-h average) for E, Fc, gc, and Ω were 1.78 mmol m−2 s−1, −11.18 µmol m−2 s−1, 6.27 mm s−1, and 0.31, respectively, with seasonal averages of 0.71 mmol m−2 s−1, −4.61 µmol m−2 s−1, 3.3 mm s−1, and 0.16. E and Fc were controlled by combined biological and environmental variables. There was curvilinear dependence of E on gc and Fc on gc. Among the environmental variables, PAR was the most important factor having a positive linear relationship to E and curvilinear relationship to Fc, while vapour pressure deficit was the most important environmental factor affecting gc. Water use efficiency was slightly higher in the dry season, with mean monthly values ranging from 6.67 to 7.48 μmol CO2 (mmol H2O)−1 and a seasonal average of 7.06 μmol CO2 (μmol H2O)−1. Low Ω and its close positive relationship with gc indicate that evapotranspiration was sensitive to surface conductance. Mid summer drought reduced surface conductance and decoupling coefficient, suggesting a more biotic control of evapotranspiration and a physiological acclimation to dry air. Surface conductance remained low and constant under dry condition, supporting that a constant value of surface constant can be used for modelling transpiration under drought condition.  相似文献   

12.
Working as a firefighter is physically strenuous, and a high level of physical fitness increases a firefighter’s ability to cope with the physical stress of their profession. Direct measurements of aerobic capacity, however, are often complicated, time consuming, and expensive. The first aim of the present study was to evaluate the correlations between direct (laboratory) and indirect (field) aerobic capacity tests with common and physically demanding firefighting tasks. The second aim was to give recommendations as to which field tests may be the most useful for evaluating firefighters’ aerobic work capacity. A total of 38 subjects (26 men and 12 women) were included. Two aerobic capacity tests, six field tests, and seven firefighting tasks were performed. Lactate threshold and onset of blood lactate accumulation were found to be correlated to the performance of one work task (rs = −0.65 and −0.63, p<0.01, respectively). Absolute (mL·min−1) and relative (mL·kg−1·min−1) maximal aerobic capacity was correlated to all but one of the work tasks (rs = −0.79 to 0.55 and −0.74 to 0.47, p<0.01, respectively). Aerobic capacity is important for firefighters’ work performance, and we have concluded that the time to row 500 m, the time to run 3000 m relative to body weight (s·kg−1), and the percent of maximal heart rate achieved during treadmill walking are the most valid field tests for evaluating a firefighter’s aerobic work capacity.  相似文献   

13.
Using molecular techniques and microsensors for H2S and CH4, we studied the population structure of and the activity distribution in anaerobic aggregates. The aggregates originated from three different types of reactors: a methanogenic reactor, a methanogenic-sulfidogenic reactor, and a sulfidogenic reactor. Microsensor measurements in methanogenic-sulfidogenic aggregates revealed that the activity of sulfate-reducing bacteria (2 to 3 mmol of S2− m−3 s−1 or 2 × 10−9 mmol s−1 per aggregate) was located in a surface layer of 50 to 100 μm thick. The sulfidogenic aggregates contained a wider sulfate-reducing zone (the first 200 to 300 μm from the aggregate surface) with a higher activity (1 to 6 mmol of S2− m−3 s−1 or 7 × 10−9 mol s−1 per aggregate). The methanogenic aggregates did not show significant sulfate-reducing activity. Methanogenic activity in the methanogenic-sulfidogenic aggregates (1 to 2 mmol of CH4 m−3 s−1 or 10−9 mmol s−1 per aggregate) and the methanogenic aggregates (2 to 4 mmol of CH4 m−3 s−1 or 5 × 10−9 mmol s−1 per aggregate) was located more inward, starting at ca. 100 μm from the aggregate surface. The methanogenic activity was not affected by 10 mM sulfate during a 1-day incubation. The sulfidogenic and methanogenic activities were independent of the type of electron donor (acetate, propionate, ethanol, or H2), but the substrates were metabolized in different zones. The localization of the populations corresponded to the microsensor data. A distinct layered structure was found in the methanogenic-sulfidogenic aggregates, with sulfate-reducing bacteria in the outer 50 to 100 μm, methanogens in the inner part, and Eubacteria spp. (partly syntrophic bacteria) filling the gap between sulfate-reducing and methanogenic bacteria. In methanogenic aggregates, few sulfate-reducing bacteria were detected, while methanogens were found in the core. In the sulfidogenic aggregates, sulfate-reducing bacteria were present in the outer 300 μm, and methanogens were distributed over the inner part in clusters with syntrophic bacteria.  相似文献   

14.
Reid RJ  Smith FA 《Plant physiology》1992,100(2):637-643
Measurements were made of 45Ca influx into isolated internodal cells of Chara corallina and also into internodal cells of intact plants. 45Ca influx was closely related to growth. In rapidly expanding internodal cells, the influx was approximately 1.4 nmol m−2 s−1 compared to the influx in mature cells from slow-growing cultures of 0.2 nmol m−2 s−1. Isolated internodal cells had influxes in the range 0.2 to 0.7 nmol m−2 s−1, but this increased to approximately 2 nmol m−2 s−1 in high calcium solutions and to 4 nmol m−2 s−1 in high potassium solutions. No significant effects on calcium influx were observed for changes in external pH or for treatments that changed internal pH, except that NH4 was slightly inhibitory. Severe metabolic inhibition by carbonylcyanide-m-chlorophenyl-hydrazone stimulated influx, whereas dicyclohexylcarbodiimide had no effect and darkness inhibited influx. La3+ also inhibited influx, but the organic channel blockers nifedipine and bepridil stimulated influx. Verapamil had no effect. The results are generally consistent with voltage regulation of calcium channels as in animal cells.  相似文献   

15.
Twenty genotypes of Jatropha collected from diverse eco-geographic regions from the states of Chhattisgarh (3), Andhra Pradesh (12), Rajasthan (4) and Uttarakhand (1) of India were subjected to elevated CO2 conditions. All the genotypes showed significant difference (p < 0.05 and 0.01) in the phenotypic traits in both the environments (elevated and ambient) and genotype x environment interaction. Among the physiological traits recorded, maximum photosynthetic rate was observed in IC565048 (48.8 μmol m−2 s−1) under ambient controlled conditions while under elevated conditions maximum photosynthetic rate was observed in IC544678 (41.3 μmol m−2 s−1), and there was no significant difference in the genotype x environment interaction. Stomatal conductance (Gs) emerged as the key factor as it recorded significant difference among the genotypes, between the environments and also genotype x environment interaction. The Gs and transpiration (E) recorded a significant decline in the genotypes under the elevated CO2 condition over the ambient control. Under elevated CO2 conditions, the minimum values recorded for Gs and E were 0.03 mmol m−2 s−1 and 0.59 mmol m−2 s−1 respectively in accession IC565039, while the maximum values for Gs and E were 1.8 mmol m−2 s−1 and 11.5 mmol m−2 s−1 as recorded in accession IC544678. The study resulted in the identification of potential climate ready genotypes viz. IC471314, IC544654, IC541634, IC544313, and IC471333 for future use.  相似文献   

16.
Pseudomonas putida aggressively colonizes root surfaces and is agglutinated by a root surface glycoprotein. Mutants of P. putida derived chemically or by Tn5 insertion demonstrated enhanced or decreased agglutinability. Two nonagglutinable Tn5 mutants (Agg) and two mutants with enhanced agglutinability (Aggs) possessed Tn5 in unique restriction sites. Agg mutants colonized root surfaces of seedlings grown from inoculated seeds, but at levels lower than those observed with the Agg+ parent. In short-term binding studies, Agg cells adhered at levels that were 20- to 30-fold less than those for Agg+ parental cells. These data suggest that the agglutination interaction plays a role in the attachment of P. putida to root surfaces.  相似文献   

17.
Evidence is presented that the myosin subfragment-1–ADP complex, generated by the addition of Mg2+ and ADP to subfragment 1, is an intermediate within the myosin Mg2+-dependent adenosine triphosphatase (ATPase) turnover cycle. The existence of this species as a steady-state intermediate at pH8 and 5°C is demonstrated by fluorescence measurements, but its concentration becomes too low to measure at 21°C. This arises because there is a marked temperature-dependence on the rate of the process controlling ADP dissociation from subfragment 1 (rate=1.4s−1 at 21°C, 0.07s−1 at 5°C). In the ATPase pathway this reaction is in series with a relatively temperature-insensitive process, namely an isomerization of the subfragment-1–product complex (rate=0.055s−1 at 21°C, 0.036s−1 at 5°C). By means of studies on the Pi inhibition of nucleotide-association rates, a myosin subfragment-1–Pi complex was characterized with a dissociation equilibrium constant of 1.5mm. Pi appears to bind more weakly to the myosin subfragment-1–ADP complex. The studies indicate that Pi dissociates from subfragment 1 at a rate greater than 40s−1, and substantiates the existence of a myosin-product isomerization before product release in the elementary processes of the Mg2+-dependent ATPase. In this ATPase mechanism Mg2+ associates as a complex with ATP and is released as a complex with ADP. In 0.1m-KCl at pH8 1.0mol of H+ is released/mol of subfragment 1 concomitant with the myosin-product isomerization or Pi dissociation, and 0.23 mol of H+ is released/mol of subfragment when ATP binds to the protein, but 0.23 mol of H+ is taken up again from the medium when ADP dissociates. Within experimental sensitivity no H+ is released into the medium in the step involving ATP cleavage.  相似文献   

18.
Humans do not generally walk at constant speed, except perhaps on a treadmill. Normal walking involves starting, stopping and changing speeds, in addition to roughly steady locomotion. Here, we measure the metabolic energy cost of walking when changing speed. Subjects (healthy adults) walked with oscillating speeds on a constant-speed treadmill, alternating between walking slower and faster than the treadmill belt, moving back and forth in the laboratory frame. The metabolic rate for oscillating-speed walking was significantly higher than that for constant-speed walking (6–20% cost increase for ±0.13–0.27 m s−1 speed fluctuations). The metabolic rate increase was correlated with two models: a model based on kinetic energy fluctuations and an inverted pendulum walking model, optimized for oscillating-speed constraints. The cost of changing speeds may have behavioural implications: we predicted that the energy-optimal walking speed is lower for shorter distances. We measured preferred human walking speeds for different walking distances and found people preferred lower walking speeds for shorter distances as predicted. Further, analysing published daily walking-bout distributions, we estimate that the cost of changing speeds is 4–8% of daily walking energy budget.  相似文献   

19.
An acetylene inhibition method was satisfactorily used for the in situ measurement of denitrification in two sediment-water systems incubated for not more than 22 h. In the presence of added nitrate, denitrification acted as a source of nitrous oxide in a drainage pond, but acted as a sink in its absence. The averaged rates of nitrous oxide accumulation with nitrate enrichment in the absence and presence of acetylene were 0.15 and 0.30 mg of N m−2h−1, respectively. Acetylene reduction at an average rate of 0.07 mmol of C2H4 formed m−2h−1 was simultaneously measured in the absence of added nitrate. In a small eutrophic lake where nitrogen was nonlimiting, the in situ rates of sediment denitrification were 0.09 and 0.11 mg of N m−2h−1 in the presence and absence of macrophytes, respectively, and no acetylene reduction activity was found.  相似文献   

20.
Balaenid whales perform long breath-hold foraging dives despite a high drag from their ram filtration of zooplankton. To maximize the volume of prey acquired in a dive with limited oxygen supplies, balaenids must either filter feed only occasionally when prey density is particularly high, or they must swim at slow speeds while filtering to reduce drag and oxygen consumption. Using digital tags with three-axis accelerometers, we studied bowhead whales feeding off West Greenland and present here, to our knowledge, the first detailed data on the kinematics and swimming behaviour of a balaenid whale filter feeding at depth. Bowhead whales employ a continuous fluking gait throughout the bottom phase of foraging dives, moving at very slow speeds (less than 1 m s−1), allowing them to filter feed continuously at depth. Despite the slow speeds, the large mouth aperture provides a water filtration rate of approximately 3 m3 s−1, amounting to some 2000 tonnes of water and prey filtered per dive. We conclude that a food niche of dense, slow-moving zooplankton prey has led balaenids to evolve locomotor and filtering systems adapted to work against a high drag at swimming speeds of less than 0.07 body length s−1 using a continuous fluking gait very different from that of nekton-feeding, aquatic predators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号