首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2.
3.
Vibrio cholerae is a Gram-negative bacterium that causes cholera. Although the pathogenesis caused by this deadly pathogen takes place in the intestine, commonly thought to be anaerobic, anaerobiosis-induced virulence regulations are not fully elucidated. Anerobic growth of the V. cholerae strain, N16961, was promoted when trimethylamine N-oxide (TMAO) was used as an alternative electron acceptor. Strikingly, cholera toxin (CT) production was markedly induced during anaerobic TMAO respiration. N16961 mutants unable to metabolize TMAO were incapable of producing CT, suggesting a mechanistic link between anaerobic TMAO respiration and CT production. TMAO reductase is transported to the periplasm via the twin arginine transport (TAT) system. A similar defect in both anaerobic TMAO respiration and CT production was also observed in a N16961 TAT mutant. In contrast, the abilities to grow on TMAO and to produce CT were not affected in a mutant of the general secretion pathway. This suggests that V. cholerae may utilize the TAT system to secrete CT during TMAO respiration. During anaerobic growth with TMAO, N16961 cells exhibit green fluorescence when stained with 2′,7′-dichlorofluorescein diacetate, a specific dye for reactive oxygen species (ROS). Furthermore, CT production was decreased in the presence of an ROS scavenger suggesting a positive role of ROS in regulating CT production. When TMAO was co-administered to infant mice infected with N16961, the mice exhibited more severe pathogenic symptoms. Together, our results reveal a novel anaerobic growth condition that stimulates V. cholerae to produce its major virulence factor.  相似文献   

4.
5.
The ppGpp molecule is part of a highly conserved regulatory system for mediating the growth response to various environmental conditions. This mechanism may represent a common strategy whereby pathogens such as Yersinia pestis, the causative agent of plague, regulate the virulence gene programs required for invasion, survival and persistence within host cells to match the capacity for growth. The products of the relA and spoT genes carry out ppGpp synthesis. To investigate the role of ppGpp on growth, protein synthesis, gene expression and virulence, we constructed a ΔrelA ΔspoT Y. pestis mutant. The mutant was no longer able to synthesize ppGpp in response to amino acid or carbon starvation, as expected. We also found that it exhibited several novel phenotypes, including a reduced growth rate and autoaggregation at 26°C. In addition, there was a reduction in the level of secretion of key virulence proteins and the mutant was>1,000-fold less virulent than its wild-type parent strain. Mice vaccinated subcutaneously (s.c.) with 2.5×104 CFU of the ΔrelA ΔspoT mutant developed high anti-Y. pestis serum IgG titers, were completely protected against s.c. challenge with 1.5×105 CFU of virulent Y. pestis and partially protected (60% survival) against pulmonary challenge with 2.0×104 CFU of virulent Y. pestis. Our results indicate that ppGpp represents an important virulence determinant in Y. pestis and the ΔrelA ΔspoT mutant strain is a promising vaccine candidate to provide protection against plague.  相似文献   

6.
In Escherichia coli, ppGpp is a major determinant of growth and glycogen accumulation. Levels of this signaling nucleotide are controlled by the balanced activities of the ppGpp RelA synthetase and the dual-function hydrolase/synthetase SpoT. Here we report the construction of spoT null (ΔspoT) mutants obtained by transducing a ΔspoT allele from ΔrelAΔspoT double mutants into relA+ cells. Iodine staining of randomly selected transductants cultured on a rich complex medium revealed differences in glycogen content among them. Sequence and biochemical analyses of 8 ΔspoT clones displaying glycogen-deficient phenotypes revealed different inactivating mutations in relA and no detectable ppGpp when cells were cultured on a rich complex medium. Remarkably, although the co-existence of ΔspoT with relA proficient alleles has generally been considered synthetically lethal, we found that 11 ΔspoT clones displaying high glycogen phenotypes possessed relA mutant alleles with non-inactivating mutations that encoded stable RelA proteins and ppGpp contents reaching 45–85% of those of wild type cells. None of the ΔspoT clones, however, could grow on M9-glucose minimal medium. Both Sanger sequencing of specific genes and high-throughput genome sequencing of the ΔspoT clones revealed that suppressor mutations were restricted to the relA locus. The overall results (a) defined in around 4 nmoles ppGpp/g dry weight the threshold cellular levels that suffice to trigger net glycogen accumulation, (b) showed that mutations in relA, but not necessarily inactivating mutations, can be selected to compensate total SpoT function(s) loss, and (c) provided useful tools for studies of the in vivo regulation of E. coli RelA ppGpp synthetase.  相似文献   

7.
The universal stress proteins (Usps) UspK (PA3309) and UspN (PA4352) of Pseudomonas aeruginosa are essential for surviving specific anaerobic energy stress conditions such as pyruvate fermentation and anaerobic stationary phase. Expression of the respective genes is under the control of the oxygen-sensing regulator Anr. In this study we investigated the regulation of uspN and three additional P. aeruginosa usp genes: uspL (PA1789), uspM (PA4328), and uspO (PA5027). Anr induces expression of these genes in response to anaerobic conditions. Using promoter-lacZ fusions, we showed that PuspL-lacZ, PuspM-lacZ, and PuspO-lacZ were also induced in stationary phase as described for PuspN-lacZ. However, stationary phase gene expression was abolished in the P. aeruginosa triple mutant Δanr ΔrelA ΔspoT. The relA and spoT genes encode the regulatory components of the stringent response. We determined pppGpp and ppGpp levels using a thin-layer chromatography approach and detected the accumulation of ppGpp in the wild type and the ΔrelA mutant in stationary phase, indicating a SpoT-derived control of ppGpp accumulation. Additional investigation of stationary phase in LB medium revealed that alkaline pH values are involved in the regulatory process of ppGpp accumulation.  相似文献   

8.
In Escherichia coli cellular levels of pppGpp and ppGpp, collectively called (p)ppGpp, are maintained by the products of two genes, relA and spoT. Like E. coli, Vibrio cholerae also possesses relA and spoT genes. Here we show that similar to E. coli, V. cholerae ΔrelA cells can accumulate (p)ppGpp upon carbon starvation but not under amino acid starved condition. Although like in E. coli, the spoT gene function was found to be essential in V. cholerae relA + background, but unlike E. coli, several V. cholerae ΔrelA ΔspoT mutants constructed in this study accumulated (p)ppGpp under glucose starvation. The results suggest a cryptic source of (p)ppGpp synthesis in V. cholerae, which is induced upon glucose starvation. Again, unlike E. coli ΔrelA ΔspoT mutant (ppGpp0 strain), the V. cholerae ΔrelA ΔspoT mutants showed certain unusual phenotypes, which are (a) resistance towards 3-amino-1,2,4-triazole (AT); (b) growth in nutrient poor M9 minimal medium; (c) ability to stringently regulate cellular rRNA accumulation under glucose starvation and (d) initial growth defect in nutrient rich medium. Since these phenotypes of ΔrelA ΔspoT mutants could be reverted back to ΔrelA phenotypes by providing SpoT in trans, it appears that the spoT gene function is crucial in V. cholerae. Part of this work was presented at the International Symposium on Chemical Biology, Kolkata, India, 7–9 March 2007.  相似文献   

9.
10.
In Helicobacter pylori the stringent response is mediated solely by spoT. The spoT gene is known to encode (p)ppGpp synthetase activity and is required for H. pylori survival in the stationary phase. However, neither the hydrolase activity of the H. pylori SpoT protein nor the role of SpoT in the regulation of growth during serum starvation and intracellular survival of H. pylori in macrophages has been determined. In this study, we examined the effects of SpoT on these factors. Our results showed that the H. pylori spoT gene encodes a bifunctional enzyme with both a hydrolase activity and the previously described (p)ppGpp synthetase activity, as determined by introducing the gene into Escherichia coli relA and spoT defective strains. Also, we found that SpoT mediates a serum starvation response, which not only restricts the growth but also maintains the helical morphology of H. pylori. Strikingly, a spoT null mutant was able to grow to a higher density in serum-free medium than the wild-type strain, mimicking the “relaxed” growth phenotype of an E. coli relA mutant during amino acid starvation. Finally, SpoT was found to be important for intracellular survival in macrophages during phagocytosis. The unique role of (p)ppGpp in cell growth during serum starvation, in the stress response, and in the persistence of H. pylori is discussed.  相似文献   

11.
12.
The enteric pathogen Campylobacter jejuni is a highly prevalent yet fastidious bacterium. Biofilms and surface polysaccharides participate in stress survival, transmission, and virulence in C. jejuni; thus, the identification and characterization of novel genes involved in each process have important implications for pathogenesis. We found that C. jejuni reacts with calcofluor white (CFW), indicating the presence of surface polysaccharides harboring β1-3 and/or β1-4 linkages. CFW reactivity increased with extended growth, under 42°C anaerobic conditions, and in a ΔspoT mutant defective for the stringent response (SR). Conversely, two newly isolated dim mutants exhibited diminished CFW reactivity as well as growth and serum sensitivity differences from the wild type. Genetic, biochemical, and nuclear magnetic resonance analyses suggested that differences in CFW reactivity between wild-type and ΔspoT and dim mutant strains were independent of well-characterized lipooligosaccharides, capsular polysaccharides, and N-linked polysaccharides. Targeted deletion of carB downstream of the dim13 mutation also resulted in CFW hyporeactivity, implicating a possible role for carbamoylphosphate synthase in the biosynthesis of this polysaccharide. Correlations between biofilm formation and production of the CFW-reactive polymer were demonstrated by crystal violet staining, scanning electron microscopy, and confocal microscopy, with the C. jejuni ΔspoT mutant being the first SR mutant in any bacterial species identified as up-regulating biofilms. Together, these results provide new insight into genes and processes important for biofilm formation and polysaccharide production in C. jejuni.  相似文献   

13.
14.
Summary Mutants in thespoT gene have been isolated as stringent second site revertants of therelC mutation. These show varying degrees of the characteristics associated with thespoT1 gene,viz relative amount and absolute levels of both pppGpp and ppGpp and the decay rate of the latter. The entry of3H-guanosine into GTP and ppGpp pools inspoT + andspoT1 cells either growing exponentially or during amino acid starvation was determined, and the rate of ppGpp synthesis and its decay constant calculated. During exponential growth the ppGpp pool is 2-fold higher, its decay constant 10-fold lower, and its synthesis rate 5-fold lower inspoT - than inspoT + cells; during amino acid starvation the ppGpp pool is 2-fold higher, its decay constant 20-fold lower, and its synthesis rate 10-fold lower inspoT than inspoT + cells. In one of the “intermediate”spoT mutants the rate of entry of3H-guanosine into GTP, ppGpp and pppGpp was measured during amino acid starvation. The data form the basis of a model for the interconversion of the guanosine nucleotides in which the flow is:GDP→GTP→pppGpp→ppGpp→Y. Calculations of the rates of synthesis and conversion of pppGpp and ppGpp under various conditions in variousspoT + andspoT - strains indicate that the ppGpp concentration indirectly controls the rate of pppGpp synthesis. ThespoT1 allele was introduced into various relaxed mutants. It was shown that many phenomena associated with the relaxed response ofrelC and “intermediate”relA mutants were phenotypically suppressed when thespoT1 allele was introduced into these mutants. These double mutants exhibit ppGpp accumulation, rate of RNA accumulation, rate of β-galactosidase synthesis, and heat lability of β-galactosidase synthesized during amino acid starvation similar to the stringent wild-type. It is concluded that the relaxed response is due directly to the lack of ppGpp and that the stringest response is due directly to ppGpp.  相似文献   

15.
Bacteria form multicellular communities known as biofilms that cause two thirds of all infections and demonstrate a 10 to 1000 fold increase in adaptive resistance to conventional antibiotics. Currently, there are no approved drugs that specifically target bacterial biofilms. Here we identified a potent anti-biofilm peptide 1018 that worked by blocking (p)ppGpp, an important signal in biofilm development. At concentrations that did not affect planktonic growth, peptide treatment completely prevented biofilm formation and led to the eradication of mature biofilms in representative strains of both Gram-negative and Gram-positive bacterial pathogens including Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae, methicillin resistant Staphylococcus aureus, Salmonella Typhimurium and Burkholderia cenocepacia. Low levels of the peptide led to biofilm dispersal, while higher doses triggered biofilm cell death. We hypothesized that the peptide acted to inhibit a common stress response in target species, and that the stringent response, mediating (p)ppGpp synthesis through the enzymes RelA and SpoT, was targeted. Consistent with this, increasing (p)ppGpp synthesis by addition of serine hydroxamate or over-expression of relA led to reduced susceptibility to the peptide. Furthermore, relA and spoT mutations blocking production of (p)ppGpp replicated the effects of the peptide, leading to a reduction of biofilm formation in the four tested target species. Also, eliminating (p)ppGpp expression after two days of biofilm growth by removal of arabinose from a strain expressing relA behind an arabinose-inducible promoter, reciprocated the effect of peptide added at the same time, leading to loss of biofilm. NMR and chromatography studies showed that the peptide acted on cells to cause degradation of (p)ppGpp within 30 minutes, and in vitro directly interacted with ppGpp. We thus propose that 1018 targets (p)ppGpp and marks it for degradation in cells. Targeting (p)ppGpp represents a new approach against biofilm-related drug resistance.  相似文献   

16.
A gene encoding a putative guanosine 3′,5′-bispyrophosphate (ppGpp) synthase–degradase, designated Cr-RSH, was identified in the unicellular photosynthetic eukaryote Chlamydomonas reinhardtii. The encoded Cr-RSH protein possesses a putative chloroplast-targeting signal at its NH2-terminus, and translocation of Cr-RSH into chloroplasts isolated from C.reinhardtii was demonstrated in vitro. The predicted mature region of Cr-RSH exhibits marked similarity to eubacterial members of the RelA–SpoT family of proteins. Expression of an NH2-terminal portion of Cr-RSH containing the putative ppGpp synthase domain in a relA, spoT double mutant of Escherichia coli complemented the growth deficits of the mutant cells. Chromatographic analysis of 32P-labeled cellular mononucleotides also revealed that expression of Cr-RSH in the mutant bacterial cells resulted in the synthesis of ppGpp. SpoT, which catalyzes (p)ppGpp degradation, is dispensable in E.coli only if cells also lack RelA, which possesses (p)ppGpp synthase activity. The complementation analysis thus indicated that Cr-RSH possesses both ppGpp synthase and degradase activities. These results represent the first demonstration of ppGpp synthase–degradase activities in a eukaryotic organism, and they suggest that eubacterial stringent control mediated by ppGpp has been conserved during evolution of the chloroplast from a photosynthetic bacterial symbiont.  相似文献   

17.
The concentration of guanosine 3′,5′-bispyrophosphate (ppGpp) increases in bacteria in response to amino acid or carbon/energy source starvation. An Escherichia coli K12 ΔrelAΔspoT mutant lacking the ability to synthesize ppGpp lost viability at an increased rate during both glucose and seryl-tRNA starvation. Also, the deleterious effect of chloramphenicol on starved wild-type cells could be overcome by inducing expression of RelA from a plasmid carrying the relA gene transcribed from a tac promoter, prior to starvation and chloramphenicol treatment. As demonstrated by two dimensional gel electrophoresis, this induction of the RelA protein resulted in global alterations in gene expression including increased synthesis of some rpoS-dependent proteins. The ΔrelAΔspoT mutant maintained high expression of several ribosomal proteins during starvation and appeared to exhibit significantly decreased translational fidelity, as demonstrated by an unusual heterogeneity in the isoelectric point of several proteins and the failure to express higher molecular weight proteins during starvation. Moreover, both rpoS-dependent and independent genes failed to exhibit increased expression in the mutant. It is suggested that the deleterious effects on the cells of the relA, spoT deletions are not due solely to the inability of these cells to induce the sigma factor σs, but also to deficiencies in translational fidelity and failure to exert classical stringent regulation.  相似文献   

18.
Streptomyces coelicolor (p)ppGpp synthetase (Rel protein) belongs to the RelA and SpoT (RelA/SpoT) family, which is involved in (p)ppGpp metabolism and the stringent response. The potential functions of the rel gene have been examined. S. coelicolor Rel has been shown to be ribosome associated, and its activity in vitro is ribosome dependent. Analysis in vivo of the active recombinant protein in well-defined Escherichia coli relA and relA/spoT mutants provides evidence that S. coelicolor Rel, like native E. coli RelA, is functionally ribosome associated, resulting in ribosome-dependent (p)ppGpp accumulation upon amino acid deprivation. Expression of an S. coelicolor C-terminally deleted Rel, comprised of only the first 489 amino acids, catalyzes a ribosome-independent (p)ppGpp formation, in the same manner as the E. coli truncated RelA protein (1 to 455 amino acids). An E. coli relA spoT double deletion mutant transformed with S. coelicolor rel gene suppresses the phenotype associated with (p)ppGpp deficiency. However, in such a strain, a rel-mediated (p)ppGpp response apparently occurs after glucose depletion, but only in the absence of amino acids. Analysis of ppGpp decay in E. coli expressing the S. coelicolor rel gene suggests that it also encodes a (p)ppGpp-degrading activity. By deletion analysis, the catalytic domains of S. coelicolor Rel for (p)ppGpp synthesis and degradation have been located within its N terminus (amino acids 267 to 453 and 93 to 397, respectively). In addition, E. coli relA in an S. coelicolor rel deletion mutant restores actinorhodine production and shows a nearly normal morphological differentiation, as does the wild-type rel gene, which is in agreement with the proposed role of (p)ppGpp nucleotides in antibiotic biosynthesis.  相似文献   

19.
A chlorpyrifos-degrading bacterium, Klebsiella sp. CPK, which can biodegrade chlorpyrifos and transform it into 3,5,6-trichloro-2-pyridinol, was isolated by the enrichment culture technique. A classic stringent response triggered by chlorpyrifos stress was identified through the detection of (p)ppGpp accumulation in this strain. Sequence analysis of the (p)ppGpp synthetase RelA in Klebsiella sp. CPK showed that it only had (p)ppGpp synthetase activity. Compared to its parent, the △relA strain was more sensitive to several stress conditions, such as high salt, low pH values and a high concentration of chlorpyrifos. In addition, growth curves and semi-quantitative RT-PCR indicated that chlorpyrifos stress affected the growth and relA expression. Together, these results indicated that chlorpyrifos could mount a stringent response in the Klebsiella sp. CPK strain, and relA expression modulated the response of the Klebsiella sp. CPK strain to chlorpyrifos stress.  相似文献   

20.
Summary This work describes an approach towards analyzing the regulatory effects of variation of guanosine 3,5-bispyrophosphate (ppGpp) basal levels in Escherichia coli during steady state growth. A series of strains was derived by mutating the spoT gene (which encodes the major cellular ppGppase) so as to obtain systematic increments in ppGpp basal levels. These strains differ genetically at the spoT locus and, in some cases, also at the relA locus because of the severity of spoT mutant alleles. Measurements of ppGpp revealed a ten-fold range of basal levels during growth on minimal medium. The empirical relationship between ppGpp concentration and growth rate is a simple linear inverse correlation. Tandem rrnA ribosomal RNA promoters, present on a multicopy plasmid, are shown to be differentially regulated over this range of basal levels. The upstream P 1 promoter activity shows an inverse exponential relation to ppGpp concentration whereas the downstream P 2 promoter is only weakly affected. We conclude that there are systematic regulatory consequences associated with small changes in ppGpp basal levels during steady state growth that probably are part of a continuum with more dramatic effects observed during the stringent response to amino acid deprivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号