首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We recently demonstrated that Cryptosporidium parvum IOWA strain induces in situ ileo-caecal adenocarcinoma in an animal model. Herein, the ability of another C. parvum strain to induce digestive neoplasia in dexamethasone-treated SCID mice was explored. SCID mice infected with C. parvum TUM1 strain developed a fulminant cryptosporidiosis associated with intramucosal adenocarcinoma, which is considered an early histological sign of invasive cancer. Both evidence of a role of C. parvum in adenocarcinoma induction and the extended prevalence of cryptosporidiosis worldwide, suggest that the risk of C. parvum-induced gastro-intestinal cancer in humans should be assessed.  相似文献   

2.
Dexamethasone (Dex) treated Severe Combined Immunodeficiency (SCID) mice were previously described as developing digestive adenocarcinoma after massive infection with Cryptosporidium parvum as soon as 45 days post-infection (P.I.). We aimed to determine the minimum number of oocysts capable of inducing infection and thereby gastrointestinal tumors in this model. Mice were challenged with calibrated oocyst suspensions containing intended doses of: 1, 10, 100 or 105 oocysts of C. parvum Iowa strain. All administered doses were infective for animals but increasing the oocyst challenge lead to an increase in mice infectivity (P = 0.01). Oocyst shedding was detected at 7 days P.I. after inoculation with more than 10 oocysts, and after 15 days in mice challenged with one oocyst. In groups challenged with lower inocula, parasite growth phase was significantly higher (P = 0.005) compared to mice inoculated with higher doses. After 45 days P.I. all groups of mice had a mean of oocyst shedding superior to 10,000 oocyst/g of feces. The most impressive observation of this study was the demonstration that C. parvum-induced digestive adenocarcinoma could be caused by infection with low doses of Cryptosporidium, even with only one oocyst: in mice inoculated with low doses, neoplastic lesions were detected as early as 45 days P.I. both in the stomach and ileo-caecal region, and these lesions could evolve in an invasive adenocarcinoma. These findings show a great amplification effect of parasites in mouse tissues after challenge with low doses as confirmed by quantitative PCR. The ability of C. parvum to infect mice with one oocyst and to develop digestive adenocarcinoma suggests that other mammalian species including humans could be also susceptible to this process, especially when they are severely immunocompromised.  相似文献   

3.
4.
A quantitative TaqMan PCR method was developed for assessing the Cryptosporidium parvum infection of in vitro cultivated human ileocecal adenocarcinoma (HCT-8) cell cultures. This method, termed cell culture quantitative sequence detection (CC-QSD), has numerous applications, several of which are presented. CC-QSD was used to investigate parasite infection in cell culture over time, the effects of oocyst treatment on infectivity and infectivity assessment of different C. parvum isolates. CC-QSD revealed that cell culture infection at 24 and 48 h postinoculation was approximately 20 and 60%, respectively, of the endpoint 72-h postinoculation infection. Evaluation of three different lots of C. parvum Iowa isolate oocysts revealed that the mean infection of 0.1 N HCl-treated oocysts was only 36% of the infection obtained with oocysts treated with acidified Hanks' balanced salt solution containing 1% trypsin. CC-QSD comparison of the C. parvum Iowa and TAMU isolates revealed significantly higher levels of infection for the TAMU isolate, which agrees with and supports previous human, animal, and cell culture studies. CC-QSD has the potential to aid in the optimization of Cryptosporidium cell culture methods and facilitate quantitative evaluation of cell culture infectivity experiments.  相似文献   

5.
The contribution of cytokines IL-12, IL-18, IL-23, and IFN-γ, and Stat1 signaling molecules involved in Th1 responses associated with host resistance to Cryptosporidium parvum infection was investigated in adult IL-12p40−/−mice. Host resistance to C. parvum infection was assessed in different mouse strains lacking IL-12, IL-18, and IL-23 genes. We found that as in IL-12p40−/− mice (which lack both IL-12 and IL-23), IL-12p35−/− mice (which lack IL-12) and IL-18 deficient mice were also susceptible to infection with C. parvum. Varied levels of resistance were observed when mice were treated with cytokines like IL-18, IL-23 and IFN-γ. Mice treated with IL-12, as expected, were completely resistant to infection until day 5 post infection, and had significantly decreased (85%) parasite loads at peak infection (day 7), whereas rIL-23 had a lesser effect, decreasing parasite load by approximately 45%. Interestingly, IL-18 appears to play a significant role in initial immune response, even in the absence of IL-12, since treatment with IL-18 in IL-12p40−/− knockout mice decreased parasite load by approximately 70%. In addition, the establishment of C. parvum infection in mice lacking the Stat1 gene demonstrated the involvement of this pathway in resolution of infection. These observations indicate a strong requirement for Th1 response in the development of immunity to C. parvum in the adult IL-12p40−/− mice, information that will be essential to further investigate the immune responses during infections and in the development of potential vaccine candidates.  相似文献   

6.
The effects of Heligmosomoides bakeri infection on the course of a concurrent Cryptosporidium parvum infection were studied in C57BL/6 mice. Mice were initially infected with 80 L3 of H. bakeri and then challenged with 104 oocysts of C. parvum, administered during the patent period of the nematode infection (28 day post H. bakeri infection). The number of C. parvum oocysts excreted in the feces and the number of adult H. bakeri in the small intestine were monitored during the experiment. Concurrent H. bakeri infection resulted in a prolonged course of infection with C. parvum. The intensities of both parasite infections were higher in co-infections. We also investigated the cellular immune response at 14 and 42 days post infection C. parvum. During infection with C. parvum there was an increase in production of IFN-γ and IL-12 but co-infection with H. bakeri inhibited IFN-γ secretion. The present study is the first to demonstrate that infection with H. bakeri markedly exacerbates the intensity of a concurrent C. parvum infection in laboratory mice and also affects immune effectors mechanisms in co-infection with H. bakeri.  相似文献   

7.
Isolates of Cryptosporidium spp. from human and animal hosts in Iran were characterized on the basis of both the 18S rRNA gene and the Laxer locus. Three Cryptosporidium species, C. hominis, C. parvum, and C. meleagridis, were recognized, and zoonotically transmitted C. parvum was the predominant species found in humans.  相似文献   

8.
Host–parasite co‐evolution can lead to genetic differentiation among isolated host–parasite populations and local adaptation between parasites and their hosts. However, tests of local adaptation rarely consider multiple fitness‐related traits although focus on a single component of fitness can be misleading. Here, we concomitantly examined genetic structure and co‐divergence patterns of the trematode Coitocaecum parvum and its crustacean host Paracalliope fluviatilis among isolated populations using the mitochondrial cytochrome oxidase I gene (COI). We then performed experimental cross‐infections between two genetically divergent host–parasite populations. Both hosts and parasites displayed genetic differentiation among populations, although genetic structure was less pronounced in the parasite. Data also supported a co‐divergence scenario between C. parvum and P. fluviatilis potentially related to local co‐adaptation. Results from cross‐infections indicated that some parasite lineages seemed to be locally adapted to their sympatric (home) hosts in which they achieved higher infection and survival rates than in allopatric (away) amphipods. However, local, intrinsic host and parasite characteristics (host behavioural or immunological resistance to infections, parasite infectivity or growth rate) also influenced patterns of host–parasite interactions. For example, overall host vulnerability to C. parvum varied between populations, regardless of parasite origin (local vs. foreign), potentially swamping apparent local co‐adaptation effects. Furthermore, local adaptation effects seemed trait specific; different components of parasite fitness (infection and survival rates, growth) responded differently to cross‐infections. Overall, data show that genetic differentiation is not inevitably coupled with local adaptation, and that the latter must be interpreted with caution in a multi‐trait context.  相似文献   

9.
10.
11.

Background

The protozoan parasite Cryptosporidium parvum is responsible for significant disease burden among children in developing countries. In addition Cryptosporidiosis can result in chronic and life-threatening enteritis in AIDS patients, and the currently available drugs lack efficacy in treating these severe conditions. The discovery and development of novel anti-cryptosporidial therapeutics has been hampered by the poor experimental tractability of this pathogen. While the genome sequencing effort has identified several intriguing new targets including a unique inosine monophosphate dehydrogenase (IMPDH), pursuing these targets and testing inhibitors has been frustratingly difficult.

Methodology and Principal Findings

Here we have developed a pipeline of tools to accelerate the in vivo screening of inhibitors of C. parvum IMPDH. We have genetically engineered the related parasite Toxoplasma gondii to serve as a model of C. parvum infection as the first screen. This assay provides crucial target validation and a large signal window that is currently not possible in assays involving C. parvum. To further develop compounds that pass this first filter, we established a fluorescence-based assay of host cell proliferation, and a C. parvum growth assay that utilizes automated high-content imaging analysis for enhanced throughput.

Conclusions and Significance

We have used these assays to evaluate C. parvum IMPDH inhibitors emerging from our ongoing medicinal chemistry effort and have identified a subset of 1,2,3-triazole ethers that exhibit excellent in vivo selectivity in the T. gondii model and improved anti-cryptosporidial activity.  相似文献   

12.
13.
14.
Cryptosporidium parvum is a zoonotic protozoan parasite found worldwide, that develops only in the gastrointestinal epithelium and causes profuse diarrhea. Using a mouse model of C. parvum infection, we demonstrated by conditional depletion of CD11c+ cells that these cells are essential for the control of the infection both in neonates and adults. Neonates are highly susceptible to C. parvum but the infection is self-limited, whereas adults are resistant unless immunocompromised. We investigated the contribution of DC to the age-dependent susceptibility to infection. We found that neonates presented a marked deficit in intestinal CD103+ DC during the first weeks of life, before weaning, due to weak production of chemokines by neonatal intestinal epithelial cells (IEC). Increasing the number of intestinal CD103+ DC in neonates by administering FLT3-L significantly reduced susceptibility to the infection. During infections in neonates, the clearance of the parasite was preceded by a rapid recruitment of CD103+ DC mediated by CXCR3-binding chemokines produced by IEC in response to IFNγ. In addition to this key role in CD103+ DC recruitment, IFNγ is known to inhibit intracellular parasite development. We demonstrated that during neonatal infection CD103+ DC produce IL-12 and IFNγ in the lamina propria and the draining lymph nodes. Thus, CD103+DC are key players in the innate immune control of C. parvum infection in the intestinal epithelium. The relative paucity of CD103+ DC in the neonatal intestine contributes to the high susceptibility to intestinal infection.

Authors Summary

Dendritic cells are central to the defense against mucosal pathogens. They are numerous and form a uniform network in the intestinal mucosa of adults, but are poorly characterized in the intestine of neonates. Young animals are more susceptible than adults to intestinal pathogens, such as Cryptosporidium parvum, a zoonotic agent distributed worldwide that develops in the epithelium of the small intestine causing profuse diarrhea. We show that dendritic cells are scarce in the small intestine of neonates until weaning and that increasing their numbers in vivo results in increased resistance to infection. Using a conditional depletion model we demonstrate that the presence of dendritic cells is necessary for the control of the infection in both neonates and adults. During infection in neonates, dendritic cells are rapidly recruited into the intestine by chemokines produced by the epithelium and produce interferon gamma, a cytokine that inhibits parasite development in epithelial cells. Thus, the low number of dendritic cells in the intestinal mucosa of neonates is responsible for their sensitivity to cryptosporidiosis, and probably contributes to the general susceptibility of neonates to intestinal diseases.  相似文献   

15.
Exosomes are membranous nanovesicles released by most cell types from multi-vesicular endosomes. They are speculated to transfer molecules to neighboring or distant cells and modulate many physiological and pathological procedures. Exosomes released from the gastrointestinal epithelium to the basolateral side have been implicated in antigen presentation. Here, we report that luminal release of exosomes from the biliary and intestinal epithelium is increased following infection by the protozoan parasite Cryptosporidium parvum. Release of exosomes involves activation of TLR4/IKK2 signaling through promoting the SNAP23-associated vesicular exocytotic process. Downregulation of let-7 family miRNAs by activation of TLR4 signaling increases SNAP23 expression, coordinating exosome release in response to C. parvum infection. Intriguingly, exosomes carry antimicrobial peptides of epithelial cell origin, including cathelicidin-37 and beta-defensin 2. Activation of TLR4 signaling enhances exosomal shuttle of epithelial antimicrobial peptides. Exposure of C. parvum sporozoites to released exosomes decreases their viability and infectivity both in vitro and ex vivo. Direct binding to the C. parvum sporozoite surface is required for the anti-C. parvum activity of released exosomes. Biliary epithelial cells also increase exosomal release and display exosome-associated anti-C. parvum activity following LPS stimulation. Our data indicate that TLR4 signaling regulates luminal exosome release and shuttling of antimicrobial peptides from the gastrointestinal epithelium, revealing a new arm of mucosal immunity relevant to antimicrobial defense.  相似文献   

16.
Infective Cryptosporidium parvum oocysts were detected in mussels (Mytilus galloprovincialis) and cockles (Cerastoderma edule) from a shellfish-producing region (Gallaecia, northwest Spain, bounded by the Atlantic Ocean) that accounts for the majority of European shellfish production. Shellfish were collected from bay sites with different degrees of organic pollution. Shellfish harboring C. parvum oocysts were recovered only from areas located near the mouths of rivers with a high density of grazing ruminants on their banks. An approximation of the parasite load of shellfish collected in positive sites indicated that each shellfish transported more than 103 oocysts. Recovered oocysts were infectious for neonatal mice, and PCR-restriction fragment length polymorphism analysis demonstrated a profile similar to that described for genotype C or 2 of the parasite. These results demonstrate that mussels and cockles could act as a reservoir of C. parvum infection for humans. Moreover, estuarine shellfish could be used as an indicator of river water contamination.  相似文献   

17.
Cryptosporidium is a genus of apicomplexan parasites that inhabit the respiratory and gastrointestinal tracts of vertebrates. Research of these parasites is limited by a lack of model hosts. This study aimed to determine the extent to which infection at the embryo stage can enhance the propagation of Cryptosporidium oocysts in chickens. Nine-day-old chicken embryos and one-day-old chickens were experimentally infected with different doses of Cryptosporidium baileyi and Cryptosporidium parvum oocysts. Post hatching, all chickens had demonstrable infections, and the infection dose had no effect on the course of infection. Chickens infected as embryos shed oocysts immediately after hatching and shed significantly more oocysts over the course of the infection than chickens infected as one-day-olds. In chickens infected as embryos, C. baileyi was found in all organs except the brain whereas, C. parvum was only found in the gastrointestinal tract and trachea. In chickens infected as one-day-olds, C. baileyi was only found in the gastrointestinal tract and trachea. Chickens infected as embryos with C. baileyi died within 16 days of hatching. All other chickens cleared the infection. Infection of chickens as embryos could be used as an effective and simple model for the propagation of C. baileyi and C. parvum.  相似文献   

18.
To assess the genetic diversity in Cryptosporidium parvum, we have sequenced the small subunit (SSU) rRNA gene of seven Cryptosporidium spp., various isolates of C. parvum from eight hosts, and a Cryptosporidium isolate from a desert monitor. Phylogenetic analysis of the SSU rRNA sequences confirmed the multispecies nature of the genus Cryptosporidium, with at least four distinct species (C. parvum, C. baileyi, C. muris, and C. serpentis). Other species previously defined by biologic characteristics, including C. wrairi, C. meleagridis, and C. felis, and the desert monitor isolate, clustered together or within C. parvum. Extensive genetic diversities were present among C. parvum isolates from humans, calves, pigs, dogs, mice, ferrets, marsupials, and a monkey. In general, specific genotypes were associated with specific host species. A PCR-restriction fragment length polymorphism technique previously developed by us could differentiate most Cryptosporidium spp. and C. parvum genotypes, but sequence analysis of the PCR product was needed to differentiate C. wrairi and C. meleagridis from some of the C. parvum genotypes. These results indicate a need for revision in the taxonomy and assessment of the zoonotic potential of some animal C. parvum isolates.  相似文献   

19.
Cryptosporidium parvum (Cp) is a potential biowarfare agent and major cause of diarrhea and malnutrition. This protozoan parasite relies on inosine 5′-monophosphate dehydrogenase (IMPDH) for the production of guanine nucleotides. A CpIMPDH-selective N-aryl-3,4-dihydro-3-methyl-4-oxo-1-phthalazineacetamide inhibitor was previously identified in a high throughput screening campaign. Herein we report a structure–activity relationship study for the phthalazinone-based series that resulted in the discovery of benzofuranamide analogs that exhibit low nanomolar inhibition of CpIMPDH. In addition, the antiparasitic activity of select analogs in a Toxoplasma gondii model of C. parvum infection is also presented.  相似文献   

20.
The typical multi‐host life cycle of many parasites, although conferring several advantages, presents the parasites with a highly hazardous transmission route. As a consequence, parasites have evolved various adaptations increasing their chances of transmission between the different hosts of the life cycle. Some trematode species like the opecoelid Coitocaecum parvum have adopted a more drastic alternative strategy whereby the definitive host is facultatively dropped from the cycle, resulting in a shorter, hence easier to complete, life cycle. Like other species capable of abbreviating their life cycle, C. parvum does so through progenetic development within its intermediate host. Laboratory‐reared C. parvum can modulate their developmental strategy inside the second intermediate host according to current transmission opportunities, though this ability is not apparent in natural C. parvum populations. Here we show that this difference is likely due to the time C. parvum individuals spend in their intermediate hosts in the natural environment. Although transmission opportunities, i.e. chemical cues of the presence of definitive hosts, promoted the adoption of a truncated life cycle in the early stages of infection, individuals that remained in their amphipod host for a relatively long time had a similar probability of adopting progenesis and the abbreviated cycle, regardless of the presence or absence of chemical cues from the predator definitive host. These results support the developmental time hypothesis which states that parasites capable of facultative life cycle abbreviation should eventually adopt progenesis regardless of transmission opportunities, and provide further evidence of the adaptive plasticity of parasite transmission strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号