首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Thirty-eight Shiga toxin-producing Escherichia coli (STEC) O157:H7/H(-) strains isolated from human infections, cattle and foods in Brazil and in some other Latin American countries were compared with regard to several phenotypic and genotypic characteristics. The genetic relatedness of the strains was also determined by pulsed-field gel electrophoresis (PFGE). Similar biochemical behaviour was identified, regardless of the origin and country of the strains. Most (89.5%) strains were sensitive to the antimicrobial agents tested, but resistance to at least one drug was observed among bovine strains. Although a diversity of stx genotypes was identified, most (77.8%) of the human strains harboured stx(2) or stx(2)stx(2c(2vha)), whereas stx(2c(2vha)) prevailed (64.2%) among strains isolated from cattle. stx(1) and stx(1)stx(2c(2vha)) were the genotypes identified less frequently, and occurred exclusively among strains isolated from food and cattle, respectively. Despite differences in the stx genotypes, all strains carried eae-gamma, efa1, ehx, iha, lpf(O157) and toxB sequences. Many closely related subgroups (more than 80% of similarity) were identified by PFGE, and the presence of a particular O157:H7 STEC clone more related to human infections in Brazil, as well as a common origin for some strains isolated from different sources and countries in Latin America can be suggested.  相似文献   

6.
A global regulator was previously identified in Lysobacter enzymogenes C3, which when mutated, resulted in strains that were greatly reduced in the expression of traits associated with fungal antagonism and devoid of biocontrol activity towards bipolaris leaf-spot of tall fescue and pythium damping-off of sugarbeet. A clp gene homologue belonging to the crp gene family was found to globally regulate enzyme production, antimicrobial activity, and biological control activity expressed by Lysobacter enzymogenes C3 (Kobayashi et al. 2005). Here, we report on the expansion of the biocontrol range of L. enzymogenes C3 to summer patch disease caused by Magnaporthe poae. The clp- mutant strain 5E4 was reduced in its ability to suppress summer patch disease compared with the wild-type strain C3 and was completely devoid of antifungal activity towards M. poae. Furthermore, cell suspensions of 5E4 were incapable of colonizing M. poae mycelium in a manner that was distinct for C3. Strain C3 demonstrated biosurfactant activity in cell suspensions and culture filtrates that was associated with absorption into the mycelium during the colonization process, whereas 5E4 did not. These results describe a novel interaction between bacteria and fungi that intimates a pathogenic relationship.  相似文献   

7.
Hormogonia are the infective agents in many cyanobacterium-plant symbioses. Pilus-like appendages are expressed on the hormogonium surface, and mutations in pil-like genes altered surface piliation and reduced symbiotic competency. This is the first molecular evidence that pilus biogenesis in a filamentous cyanobacterium requires a type IV pilus system.  相似文献   

8.
The selection of new isolates of Trichoderma harzianum with high suppressive activity against Fusarium oxysporum is a suitable strategy to avoid the increase of chemical pesticides. In this study, 31 isolates of Trichoderma sp. were analyzed by RAPD-PCR and five isolates of T. harzianum (T-30, T-31, T-32, T-57 and T-78) were selected. The expression of genes encoding for NAGases (exc1 and exc2), chitinases (chit42 and chit33), proteases (prb1) and β-glucanases (bgn13.1) activities and their respective in vitro enzymatic activities were measured. Dual plate confrontation assays of the isolates against F. oxysporum were also tested. Different profiles of gene expression between the different T. harzianum isolates were related to enzymatic activities values and dual plate confrontation. In this work, the T. harzianum isolates T-30 and T-78 showed the greatest mycoparasitic potential against F. oxysporum, which could lead to improved biocontrol of this phytopathogen.  相似文献   

9.
Lysobacter enzymogenes strain N4-7 produces multiple biochemically distinct extracellular beta-1,3-glucanase activities. The gluA, gluB, and gluC genes, encoding enzymes with beta-1,3-glucanase activity, were identified by a reverse-genetics approach following internal amino acid sequence determination of beta-1,3-glucanase-active proteins partially purified from culture filtrates of strain N4-7. Analysis of gluA and gluC gene products indicates that they are members of family 16 glycoside hydrolases that have significant sequence identity to each other throughout the catalytic domain but that differ structurally by the presence of a family 6 carbohydrate-binding domain within the gluC product. Analysis of the gluB gene product indicates that it is a member of family 64 glycoside hydrolases. Expression of each gene in Escherichia coli resulted in the production of proteins with beta-1,3-glucanase activity. Biochemical analyses of the recombinant enzymes indicate that GluA and GluC exhibit maximal activity at pH 4.5 and 45 degrees C and that GluB is most active between pH 4.5 and 5.0 at 41 degrees C. Activity of recombinant proteins against various beta-1,3 glucan substrates indicates that GluA and GluC are most active against linear beta-1,3 glucans, while GluB is most active against the insoluble beta-1,3 glucan substrate zymosan A. These data suggest that the contribution of beta-1,3-glucanases to the biocontrol activity of L. enzymogenes may be due to complementary activities of these enzymes in the hydrolysis of beta-1,3 glucans from fungal cell walls.  相似文献   

10.
Type IV pili are surface-exposed retractable fibers which play a key role in the pathogenesis of Neisseria meningitidis and other gram-negative pathogens. PilG is an integral inner membrane protein and a component of the type IV pilus biogenesis system. It is related by sequence to the extensive GspF family of secretory proteins, which are involved in type II secretion processes. PilG was overexpressed and purified from Escherichia coli membranes by detergent extraction and metal ion affinity chromatography. Analysis of the purified protein by perfluoro-octanoic acid polyacrylamide gel electrophoresis showed that PilG formed dimers and tetramers. A three-dimensional (3-D) electron microscopy structure of the PilG multimer was determined using single-particle averaging applied to samples visualized by negative staining. Symmetry analysis of the unsymmetrized 3-D volume provided further evidence that the PilG multimer is a tetramer. The reconstruction also revealed an asymmetric bilobed structure approximately 125 A in length and 80 A in width. The larger lobe within the structure was identified as the N terminus by location of Ni-nitrilotriacetic acid nanogold particles to the N-terminal polyhistidine tag. We propose that the smaller lobe corresponds to the periplasmic domain of the protein, with the narrower waist region being the transmembrane section. This constitutes the first report of a 3-D structure of a member of the GspF family and suggests a physical basis for the role of the protein in linking cytoplasmic and periplasmic protein components of the type II secretion and type IV pilus biogenesis systems.  相似文献   

11.
12.
Here, three different suicide vectors were evaluated for the possibility of performing gene mutagenesis in strain OH11 using the chiA gene (accession number: DQ888611) as a new reporter. Suicide vector pEX18GM was selected, and it was successfully applied for disruption and in-frame deletions in the chiA gene in strain OH11, which was confirmed by PCR amplification and Southern hybridization. The chiA-deletion mutant OH11-3 did not have the ability to produce chitinase on chitine selection medium. Interestingly, the chiA-deletion mutants displayed wild-type antimicrobial activity against Saccharomyces cerevisiae, Magnaporthe grisea, Phytophthora capsici, Rhizoctonia solani, Sclerotinia sclerotiorum and Pythium ultimum. Our data suggest that chitinase might not be a unique lytic enzyme in controlling S. cerevisiae, M. grisea, P. capsici, and P. ultimum. R. solani, S. sclerotiorum. Also, suicide vector pEX18GM might be explored as a potential tool for gene deletions in L. enzymogenes, which will facilitate the molecular study of mechanisms of biological control in L. enzymogenes.  相似文献   

13.
14.
Pathogenic Neisseria express type IV pili (tfp), which have been shown to play a central role in the interactions of bacteria with their environment. The regulation of piliation thus constitutes a central element in bacterial life cycle. The PilC proteins are outer membrane-associated proteins that have a key role in tfp biogenesis since PilC-null mutants appear defective for fibre expression. Moreover, tfp are also subjected to retraction, which is under the control of the PilT nucleotide-binding protein. In this work, we bring evidence that fibre retraction involves the translocation of pilin subunits to the cytoplasmic membrane. Furthermore, by engineering meningococcal strains that harbour inducible pilC genes, and with the use of meningococcus-cell interaction as a model for the sequential observation of fibre expression and retraction, we show that the PilC proteins regulate PilT-mediated fibre retraction.  相似文献   

15.
16.
Unicellular organisms naturally form multicellular communities, differentiate into specialized cells, and synchronize their behaviour under certain conditions. Swarming, defined as a movement of a large mass of bacteria on solid surfaces, is recognized as a preliminary step in the formation of biofilms. The main aim of this work was to study the role of a group of genes involved in exopolysaccharide biosynthesis during pellicle formation and swarming inBacillus subtilis strain 168. To assess the role of particular proteins encoded by the group ofepsI-epsO genes that form theeps operon, we constructed a series of insertional mutants. The results obtained showed that mutations inepsJ-epsN, but not in the last gene of theeps operon (epsO), have a severe effect on pellicle formation under all tested conditions. Moreover, the inactivation of 5 out of the 6 genes analysed caused total inhibition of swarming in strain 168 (that does not produce surfactin) on LB medium. Following restoration of thesfp gene (required for production of surfactin, which is essential for swarming of the wild-type bacteria), thesfp + strains defective ineps genes (exceptepsO) generated significantly different patterns during swarming on synthetic B medium, as compared to the parental strain 168sfp +.  相似文献   

17.
We previously demonstrated that one or more products of the genes in the pil and com gene clusters of the opportunistic human respiratory pathogen nontypeable Haemophilus influenzae (NTHI) are required for type IV pilus (Tfp) biogenesis and function. Here, we have now demonstrated that the pilABCD and comABCDEF gene clusters are operons and that the product of each gene is essential for normal pilus function. Mutants with nonpolar deletions in each of the 10 pil and com genes had an adherence defect when primary human airway cells were used as the target. These mutants were also diminished in their ability to form a biofilm in vitro and, additionally, were deficient in natural transformation. Collectively, our data demonstrate that the product of each gene within these operons is required for the normal biogenesis and/or function of NTHI Tfp. Based on the similarity of PilA to other type IV pilins, we further predicted that the product of the pilA gene would be the major pilin subunit. Toward that end, we also demonstrated by immunogold labeling and mass spectrometry that PilA is indeed the majority type IV pilin protein expressed by NTHI. These new observations set the stage for experiments designed to dissect the function of each of the proteins encoded by genes within the pil and com gene clusters. The ability to characterize individual proteins with vital roles in NTHI colonization or pathogenesis has the potential to reduce the burden of NTHI-induced diseases through development of a Tfp-derived vaccine or a pilus-directed therapeutic.  相似文献   

18.
19.
M S Strom  D Nunn    S Lory 《Journal of bacteriology》1991,173(3):1175-1180
In Pseudomonas aeruginosa, the genes pilB, pilC, and pilD encode proteins necessary for posttranslational modification and assembly of pilin monomers into pilus organelles (D. Nunn, S. Bergman, and S. Lory, J. Bacteriol. 172:2911-2919, 1990). We show that PilD, encoding a putative pilin-specific leader peptidase, also controls export of alkaline phosphatase, phospholipase C, elastase, and exotoxin A. pilD mutants accumulate these proteins in the periplasmic space, while secretion of periplasmic and outer membrane proteins appears to be normal. The periplasmic form of exotoxin A was fully mature in size, contained all cysteines in disulfide bonds, and was toxic in a tissue culture cytotoxicity assay, suggesting that in pilD mutants, exotoxin A was folded into its native conformation. The function of the other two accessory proteins, PilB and PilC, appears to be restricted to pilus biogenesis, and strains carrying mutations in their respective genes do not show an export defect. These studies show that in addition to cleaving the leader sequence from prepilin, PilD has an additional role in secretion of proteins that are released from P. aeruginosa into the surrounding media. PilD most likely functions as a protease that is involved in processing and assembly of one or more components of the membrane machinery necessary for the later stages of protein extracellular localization.  相似文献   

20.
Escherichia coli directs the assembly of functional amyloid fibers termed "curli" that mediate adhesion and biofilm formation. We discovered that E. coli exhibits a tunable and selective increase in curli protein expression and fiber assembly in response to moderate concentrations of dimethyl sulfoxide (DMSO) and ethanol. Furthermore, the molecular alterations resulted in dramatic functional phenotypes associated with community behavior, including (i) cellular agglutination in broth, (ii) altered colony morphology, and (iii) increased biofilm formation. Solid-state nuclear magnetic resonance (NMR) spectra of intact pellicles formed in the presence of [(13)C(2)]DMSO confirmed that DMSO was not being transformed and utilized directly for metabolism. Collectively, the chemically induced phenotypes emphasize the plasticity of E. coli's response to environmental stimuli to enhance amyloid production and amyloid-integrated biofilm formation. The data also support our developing model of the extracellular matrix as an organized assembly of polymeric components, including amyloid fibers, in which composition relates to bacterial physiology and community function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号