共查询到20条相似文献,搜索用时 0 毫秒
1.
Magdalene Ortmann Arne Knief Dirk Deuster Stephanie Brinkheetker Pienie Zwitserlood Antoinette am Zehnhoff-Dinnesen Christian Dobel 《PloS one》2013,8(7)
Prelingually deafened children with cochlear implants stand a good chance of developing satisfactory speech performance. Nevertheless, their eventual language performance is highly variable and not fully explainable by the duration of deafness and hearing experience. In this study, two groups of cochlear implant users (CI groups) with very good basic hearing abilities but non-overlapping speech performance (very good or very bad speech performance) were matched according to hearing age and age at implantation. We assessed whether these CI groups differed with regard to their phoneme discrimination ability and auditory sensory memory capacity, as suggested by earlier studies. These functions were measured behaviorally and with the Mismatch Negativity (MMN). Phoneme discrimination ability was comparable in the CI group of good performers and matched healthy controls, which were both better than the bad performers. Source analyses revealed larger MMN activity (155–225 ms) in good than in bad performers, which was generated in the frontal cortex and positively correlated with measures of working memory. For the bad performers, this was followed by an increased activation of left temporal regions from 225 to 250 ms with a focus on the auditory cortex. These results indicate that the two CI groups developed different auditory speech processing strategies and stress the role of phonological functions of auditory sensory memory and the prefrontal cortex in positively developing speech perception and production. 相似文献
2.
3.
Impaired mental state attribution is a core social cognitive deficit in schizophrenia. With functional magnetic resonance imaging (fMRI), this study examined the extent to which the core neural system of mental state attribution is involved in mental state attribution, focusing on belief attribution and emotion attribution. Fifteen schizophrenia outpatients and 14 healthy controls performed two mental state attribution tasks in the scanner. In a Belief Attribution Task, after reading a short vignette, participants were asked infer either the belief of a character (a false belief condition) or a physical state of an affair (a false photograph condition). In an Emotion Attribution Task, participants were asked either to judge whether character(s) in pictures felt unpleasant, pleasant, or neutral emotion (other condition) or to look at pictures that did not have any human characters (view condition). fMRI data were analyzing focusing on a priori regions of interest (ROIs) of the core neural systems of mental state attribution: the medial prefrontal cortex (mPFC), temporoparietal junction (TPJ) and precuneus. An exploratory whole brain analysis was also performed. Both patients and controls showed greater activation in all four ROIs during the Belief Attribution Task than the Emotion Attribution Task. Patients also showed less activation in the precuneus and left TPJ compared to controls during the Belief Attribution Task. No significant group difference was found during the Emotion Attribution Task in any of ROIs. An exploratory whole brain analysis showed a similar pattern of neural activations. These findings suggest that while schizophrenia patients rely on the same neural network as controls do when attributing beliefs of others, patients did not show reduced activation in the key regions such as the TPJ. Further, this study did not find evidence for aberrant neural activation during emotion attribution or recruitment of compensatory brain regions in schizophrenia. 相似文献
4.
Jeff P. Hamm Trevor J. Crawford Helmut Nebl Matthew Kean Steven C. R. Williams Ulrich Ettinger 《PloS one》2014,9(1)
Illusory line motion (ILM) refers to a motion illusion in which a flash at one end of a bar prior to the bar''s instantaneous presentation or removal results in the percept of motion. While some theories attribute the origin of ILM to attention or early perceptual mechanisms, others have proposed that ILM results from impletion mechanisms that reinterpret the static bar as one in motion. The current functional magnetic resonance imaging study examined participants while they made decisions about the direction of motion in which a bar appeared to be removed. Preceding the instantaneous removal of the bar with a flash at one end resulted in a motion percept away from the flash. If this flash and the bar''s removal overlapped in time, it appeared that the bar was removed towards the flash (reverse ILM). Independent of the motion type, brain responses indicated activations in areas associated with motion (MT+), endogenous and exogenous attention (intraparietal sulcus, frontal eye fields, and ventral frontal cortex), and response selection (ACC). ILM was associated with lower percept scores and higher activations in ACC relative to real motion, but no differences in shape-selective areas emerged. This pattern of brain activation is consistent with the attentional gradient model or bottom-up accounts of ILM in preference to impletion. 相似文献
5.
6.
7.
Francesca Garbarini Riccardo Boero Federico D'Agata Giangiacomo Bravo Cristina Mosso Franco Cauda Sergio Duca Giuliano Geminiani Katiuscia Sacco 《PloS one》2014,9(9)
Gender differences in cooperative choices and their neural correlates were investigated in a situation where reputation represented a crucial issue. Males and females were involved in an economic exchange (trust game) where economic and reputational payoffs had to be balanced in order to increase personal welfare. At the behavioral level, females showed a stronger reaction to negative reputation judgments that led to higher cooperation than males, measured by back transfers in the game. The neuroanatomical counterpart of this gender difference was found within the reward network (engaged in producing expectations of positive results) and reputation-related brain networks, such as the self-control network (engaged in strategically resisting the temptation to defect) and the mentalizing network (engaged in thinking about how one is viewed by others), in which the dorsolateral prefrontal cortex (DLPFC) and the medial (M)PFC respectively play a crucial role. Furthermore, both DLPFC and MPFC activity correlated with the amount of back transfer, as well as with the personality dimensions assessed with the Big-Five Questionnaire (BFQ-2). Males, according to their greater DLPFC recruitment and their higher level of the BFQ-2 subscale of Dominance, were more focused on implementing a profit-maximizing strategy, pursuing this target irrespectively of others'' judgments. On the contrary, females, according to their greater MPFC activity and their lower level of Dominance, were more focused on the reputation per se and not on the strategic component of reputation building. These findings shed light on the sexual dimorphism related to cooperative behavior and its neural correlates. 相似文献
8.
Impaired Theory of Mind (ToM) has been repeatedly reported as a feature of psychotic disorders. ToM is crucial in social interactions and for the development of social behavior. It has been suggested that reasoning about the belief of others, requires inhibition of the self-perspective. We investigated the neural correlates of self-inhibition in nineteen low psychosis prone (PP) and eighteen high PP subjects presenting with subclinical features. High PP subjects have a more than tenfold increased risk of developing a schizophrenia-spectrum disorder. Brain activation was measured with functional Magnetic Resonance Imaging during a ToM task differentiating between self-perspective inhibition and belief reasoning. Furthermore, to test underlying inhibitory mechanisms, we included a stop-signal task. We predicted worse behavioral performance for high compared to low PP subjects on both tasks. Moreover, based on previous neuroimaging results, different activation patterns were expected in the inferior frontal gyrus (IFG) in high versus low PP subjects in self-perspective inhibition and simple response inhibition. Results showed increased activation in left IFG during self-perspective inhibition, but not during simple response inhibition, for high PP subjects as compared to low PP subjects. High and low PP subjects showed equal behavioral performance. The results suggest that at a neural level, high PP subjects need more resources for inhibiting the self-perspective, but not for simple motor response inhibition, to equal the performance of low PP subjects. This may reflect a compensatory mechanism, which may no longer be available for patients with schizophrenia-spectrum disorders resulting in ToM impairments. 相似文献
9.
Humans have a strong preference for fair distributions of resources. Neuroimaging studies have shown that being treated unfairly coincides with activation in brain regions involved in signaling conflict and negative affect. Less is known about neural responses involved in violating a fairness norm ourselves. Here, we investigated the neural patterns associated with inequity, where participants were asked to choose between an equal split of money and an unequal split that could either maximize their own (advantageous inequity) or another person’s (disadvantageous inequity) earnings. Choosing to divide money unequally, irrespective who benefited from the unequal distribution, was associated with activity in the dorsal anterior cingulate cortex, anterior insula and the dorsolateral prefrontal cortex. Inequity choices that maximized another person’s profits were further associated with activity in the ventral striatum and ventromedial prefrontal cortex. Taken together, our findings show evidence of a common neural pattern associated with both advantageous and disadvantageous inequity in sharing decisions and additional recruitment of neural circuitry previously linked to the computation of subjective value and reward when violating a fairness norm at the benefit of someone else. 相似文献
10.
Executive functions (EF) are cognitive capacities that allow for planned, controlled behavior and strongly correlate with academic abilities. Several extracurricular activities have been shown to improve EF, however, the relationship between musical training and EF remains unclear due to methodological limitations in previous studies. To explore this further, two experiments were performed; one with 30 adults with and without musical training and one with 27 musically trained and untrained children (matched for general cognitive abilities and socioeconomic variables) with a standardized EF battery. Furthermore, the neural correlates of EF skills in musically trained and untrained children were investigated using fMRI. Adult musicians compared to non-musicians showed enhanced performance on measures of cognitive flexibility, working memory, and verbal fluency. Musically trained children showed enhanced performance on measures of verbal fluency and processing speed, and significantly greater activation in pre-SMA/SMA and right VLPFC during rule representation and task-switching compared to musically untrained children. Overall, musicians show enhanced performance on several constructs of EF, and musically trained children further show heightened brain activation in traditional EF regions during task-switching. These results support the working hypothesis that musical training may promote the development and maintenance of certain EF skills, which could mediate the previously reported links between musical training and enhanced cognitive skills and academic achievement. 相似文献
11.
Marc Tibber Ayse Pinar Saygin Simon Grant Dean Melmoth Geraint Rees Michael Morgan 《PloS one》2010,5(3)
The human visual system must perform complex visuospatial extrapolations (VSE) across space and time in order to extract shape and form from the retinal projection of a cluttered visual environment characterized by occluded surfaces and moving objects. Even if we exclude the temporal dimension, for instance when judging whether an extended finger is pointing towards one object or another, the mechanisms of VSE remain opaque. Here we investigated the neural correlates of VSE using functional magnetic resonance imaging in sixteen human observers while they judged the relative position of, or saccaded to, a (virtual) target defined by the extrapolated path of a pointer. Using whole brain and region of interest (ROI) analyses, we compared the brain activity evoked by these VSE tasks to similar control judgements or eye movements made to explicit (dot) targets that did not require extrapolation. The data show that activity in an occipitotemporal region that included the lateral occipital cortex (LOC) was significantly greater during VSE than during control tasks. A similar, though less pronounced, pattern was also evident in regions of the fronto-parietal cortex that included the frontal eye fields. However, none of the ROIs examined exhibited a significant interaction between target type (extrapolated/explicit) and response type (oculomotor/perceptual). These findings are consistent with a close association between visuoperceptual and oculomotor responses, and highlight a critical role for the LOC in the process of VSE. 相似文献
12.
Stephanie Boehme Viktoria Ritter Susan Tefikow Ulrich Stangier Bernhard Strauss Wolfgang H. R. Miltner Thomas Straube 《PloS one》2015,10(6)
Disorder-relevant but task-unrelated stimuli impair cognitive performance in social anxiety disorder (SAD); however, time course and neural correlates of emotional interference are unknown. The present study investigated time course and neural basis of emotional interference in SAD using event-related functional magnetic resonance imaging (fMRI). Patients with SAD and healthy controls performed an emotional stroop task which allowed examining interference effects on the current and the succeeding trial. Reaction time data showed an emotional interference effect in the current trial, but not the succeeding trial, specifically in SAD. FMRI data showed greater activation in the left amygdala, bilateral insula, medial prefrontal cortex (mPFC), dorsal anterior cingulate cortex (ACC), and left opercular part of the inferior frontal gyrus during emotional interference of the current trial in SAD patients. Furthermore, we found a positive correlation between patients’ interference scores and activation in the mPFC, dorsal ACC and left angular/supramarginal gyrus. Taken together, results indicate a network of brain regions comprising amygdala, insula, mPFC, ACC, and areas strongly involved in language processing during the processing of task-unrelated threat in SAD. However, specifically the activation in mPFC, dorsal ACC, and left angular/supramarginal gyrus is associated with the strength of the interference effect, suggesting a cognitive network model of attentional bias in SAD. This probably comprises exceeded allocation of attentional resources to disorder-related information of the presented stimuli and increased self-referential and semantic processing of threat words in SAD. 相似文献
13.
Recent work has questioned whether the negativity bias is a distinct component of affective picture processing. The current study was designed to determine whether there are different neural correlates of processing positive and negative pictures using event-related brain potentials. The early posterior negativity and late positive potential were greatest in amplitude for erotic pictures. Partial Least Squares analysis revealed one latent variable that distinguished erotic pictures from neutral and positive pictures and another that differentiated negative pictures from neutral and positive pictures. The effects of orienting task on the neural correlates of processing negative and erotic pictures indicate that affective picture processing is sensitive to both stimulus-driven, and attentional or decision processes. The current data, together with other recent findings from our laboratory, lead to the suggestion that there are distinct neural correlates of processing negative and positive stimuli during affective picture processing. 相似文献
14.
Haobo Zhang Perminder S. Sachdev Wei Wen Nicole A. Kochan John D. Crawford Henry Brodaty Melissa J. Slavin Simone Reppermund Kristan Kang Julian N. Trollor 《PloS one》2013,8(11)
Language has been extensively investigated by functional neuroimaging studies. However, only a limited number of structural neuroimaging studies have examined the relationship between language performance and brain structure in healthy adults, and the number is even less in older adults. The present study sought to investigate correlations between grey matter volumes and three standardized language tests in late life. The participants were 344 non-demented, community-dwelling adults aged 70-90 years, who were drawn from the population-based Sydney Memory and Ageing Study. The three language tests included the Controlled Oral Word Association Task (COWAT), Category Fluency (CF), and Boston Naming Test (BNT). Correlation analyses between voxel-wise GM volumes and language tests showed distinctive GM correlation patterns for each language test. The GM correlates were located in the right frontal and left temporal lobes for COWAT, in the left frontal and temporal lobes for CF, and in bilateral temporal lobes for BNT. Our findings largely corresponded to the neural substrates of language tasks revealed in fMRI studies, and we also observed a less hemispheric asymmetry in the GM correlates of the language tests. Furthermore, we divided the participants into two age groups (70-79 and 80-90 years old), and then examined the correlations between structural laterality indices and language performance for each group. A trend toward significant difference in the correlations was found between the two age groups, with stronger correlations in the group of 70-79 years old than those in the group of 80-90 years old. This difference might suggest a further decline of language lateralization in different stages of late life. 相似文献
15.
Chantale Montigny Natalie Castellanos-Ryan Robert Whelan Tobias Banaschewski Gareth J. Barker Christian Büchel Jürgen Gallinat Herta Flor Karl Mann Marie-Laure Paillère-Martinot Frauke Nees Mark Lathrop Eva Loth Tomas Paus Zdenka Pausova Marcella Rietschel Gunter Schumann Michael N. Smolka Maren Struve Trevor W. Robbins Hugh Garavan Patricia J. Conrod and the IMAGEN Consortium 《PloS one》2013,8(11)
Background
A compulsivity spectrum has been hypothesized to exist across Obsessive-Compulsive disorder (OCD), Eating Disorders (ED), substance abuse (SA) and binge-drinking (BD). The objective was to examine the validity of this compulsivity spectrum, and differentiate it from an externalizing behaviors dimension, but also to look at hypothesized personality and neural correlates.Method
A community-sample of adolescents (N=1938; mean age 14.5 years), and their parents were recruited via high-schools in 8 European study sites. Data on adolescents’ psychiatric symptoms, DSM diagnoses (DAWBA) and substance use behaviors (AUDIT and ESPAD) were collected through adolescent- and parent-reported questionnaires and interviews. The phenotypic structure of compulsive behaviors was then tested using structural equation modeling. The model was validated using personality variables (NEO-FFI and TCI), and Voxel-Based Morphometry (VBM) analysis.Results
Compulsivity symptoms best fit a higher-order two factor model, with ED and OCD loading onto a compulsivity factor, and BD and SA loading onto an externalizing factor, composed also of ADHD and conduct disorder symptoms. The compulsivity construct correlated with neuroticism (r=0.638; p≤0.001), conscientiousness (r=0.171; p≤0.001), and brain gray matter volume in left and right orbitofrontal cortex, right ventral striatum and right dorsolateral prefrontal cortex. The externalizing factor correlated with extraversion (r=0.201; p≤0.001), novelty-seeking (r=0.451; p≤0.001), and negatively with gray matter volume in the left inferior and middle frontal gyri.Conclusions
Results suggest that a compulsivity spectrum exists in an adolescent, preclinical sample and accounts for variance in both OCD and ED, but not substance-related behaviors, and can be differentiated from an externalizing spectrum. 相似文献16.
Manuel Vázquez-Marrufo Alejandro Galvao-Carmona Javier J. González-Rosa Antonio R. Hidalgo-Mu?oz Mónica Borges Juan Luis Ruiz-Pe?a Guillermo Izquierdo 《PloS one》2014,9(5)
Background
A considerable percentage of multiple sclerosis patients have attentional impairment, but understanding its neurophysiological basis remains a challenge. The Attention Network Test allows 3 attentional networks to be studied. Previous behavioural studies using this test have shown that the alerting network is impaired in multiple sclerosis. The aim of this study was to identify neurophysiological indexes of the attention impairment in relapsing-remitting multiple sclerosis patients using this test.Results
After general slowing had been removed in patients group to isolate the effects of each condition, some behavioral differences between them were obtained. About Contingent Negative Variation, a statistically significant decrement were found in the amplitude for Central and Spatial Cue Conditions for patient group (p<0.05). ANOVAs showed for the patient group a significant latency delay for P1 and N1 components (p<0.05) and a decrease of P3 amplitude for congruent and incongruent stimuli (p<0.01). With regard to correlation analysis, PASAT-3s and SDMT showed significant correlations with behavioral measures of the Attention Network Test (p<0.01) and an ERP parameter (CNV amplitude).Conclusions
Behavioral data are highly correlated with the neuropsychological scores and show that the alerting and orienting mechanisms in the patient group were impaired. Reduced amplitude for the Contingent Negative Variation in the patient group suggests that this component could be a physiological marker related to the alerting and orienting impairment in relapsing-remitting multiple sclerosis. P1 and N1 delayed latencies are evidence of the demyelination process that causes impairment in the first steps of the visual sensory processing. Lastly, P3 amplitude shows a general decrease for the pathological group probably indexing a more central impairment. These results suggest that the Attention Network Test give evidence of multiple levels of attention impairment, which could help in the assessment and treatment of relapsing-remitting multiple sclerosis patients. 相似文献17.
Harinder R Singh Anjan S Batra Seshadri Balaji 《Indian pacing and electrophysiology journal》2013,13(1):4-13
The population of children and young adults requiring a cardiac pacing device has been consistently increasing. The current generation of devices are small with a longer battery life, programming capabilities that can cater to the demands of the young patients and ability to treat brady and tachyarrhythmias as well as heart failure. This has increased the scope and clinical indications of using these devices. As patients with congenital heart disease (CHD) comprise majority of these patients requiring devices, the knowledge of indications, pacing leads and devices, anatomical variations and the technical skills required are different than that required in the adult population. In this review we attempt to discuss these specific points in detail to improve the understanding of cardiac pacing in children and young adults. 相似文献
18.
Central inhibition plays a pivotal role in determining physical performance during physical fatigue. Classical conditioning of central inhibition is believed to be associated with the pathophysiology of chronic fatigue. We tried to determine whether classical conditioning of central inhibition can really occur and to clarify the neural mechanisms of central inhibition related to classical conditioning during physical fatigue using magnetoencephalography (MEG). Eight right-handed volunteers participated in this study. We used metronome sounds as conditioned stimuli and maximum handgrip trials as unconditioned stimuli to cause central inhibition. Participants underwent MEG recording during imagery of maximum grips of the right hand guided by metronome sounds for 10 min. Thereafter, fatigue-inducing maximum handgrip trials were performed for 10 min; the metronome sounds were started 5 min after the beginning of the handgrip trials. The next day, neural activities during imagery of maximum grips of the right hand guided by metronome sounds were measured for 10 min. Levels of fatigue sensation and sympathetic nerve activity on the second day were significantly higher relative to those of the first day. Equivalent current dipoles (ECDs) in the posterior cingulated cortex (PCC), with latencies of approximately 460 ms, were observed in all the participants on the second day, although ECDs were not identified in any of the participants on the first day. We demonstrated that classical conditioning of central inhibition can occur and that the PCC is involved in the neural substrates of central inhibition related to classical conditioning during physical fatigue. 相似文献
19.
Charline Urbain Mathieu Bourguignon Marc Op de Beeck Rémy Schmitz Sophie Galer Vincent Wens Brice Marty Xavier De Tiège Patrick Van Bogaert Philippe Peigneux 《PloS one》2013,8(7)
Learning the functional properties of objects is a core mechanism in the development of conceptual, cognitive and linguistic knowledge in children. The cerebral processes underlying these learning mechanisms remain unclear in adults and unexplored in children. Here, we investigated the neurophysiological patterns underpinning the learning of functions for novel objects in 10-year-old healthy children. Event-related fields (ERFs) were recorded using magnetoencephalography (MEG) during a picture-definition task. Two MEG sessions were administered, separated by a behavioral verbal learning session during which children learned short definitions about the “magical” function of 50 unknown non-objects. Additionally, 50 familiar real objects and 50 other unknown non-objects for which no functions were taught were presented at both MEG sessions. Children learned at least 75% of the 50 proposed definitions in less than one hour, illustrating children''s powerful ability to rapidly map new functional meanings to novel objects. Pre- and post-learning ERFs differences were analyzed first in sensor then in source space. Results in sensor space disclosed a learning-dependent modulation of ERFs for newly learned non-objects, developing 500–800 msec after stimulus onset. Analyses in the source space windowed over this late temporal component of interest disclosed underlying activity in right parietal, bilateral orbito-frontal and right temporal regions. Altogether, our results suggest that learning-related evolution in late ERF components over those regions may support the challenging task of rapidly creating new semantic representations supporting the processing of the meaning and functions of novel objects in children. 相似文献
20.
Perception of novel objects is of enormous importance in our lives. People have to perceive or understand novel objects when seeing an original painting, admiring an unconventional construction, and using an inventive device. However, very little is known about neural mechanisms underlying the perception for novel objects. Perception of novel objects relies on the integration of unusual features of novel objects in order to identify what such objects are. In the present study, functional Magnetic Resonance Imaging (MRI) was employed to investigate neural correlates of perception of novel objects. The neuroimaging data on participants engaged in novel object viewing versus ordinary object viewing revealed that perception of novel objects involves significant activation in the left precuneus (Brodmann area 7) and the right visual cortex. The results suggest that the left precuneus is associated with the integration of unusual features of novel objects, while the right visual cortex is sensitive to the detection of such features. Our findings highlight the left precuneus as a crucial component of the neural circuitry underlying perception of novel objects. 相似文献