首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dps (DNA protection during starvation) enzymes are a major class of dodecameric proteins that bacteria use to detoxify their cytosol through the uptake of reactive iron species. In the stationary growth phase of bacteria, Dps enzymes are primarily used to protect DNA by biocrystallization. To characterize the wild type Dps protein from Microbacterium arborescens that displays additional catalytic functions (amide hydrolysis and synthesis), we determined the crystal structure to a resolution of 2.05 Å at low iron content. The structure shows a single iron at the ferroxidase center coordinated by an oxo atom, one water molecule, and three ligating residues. An iron-enriched protein structure was obtained at 2 Å and shows the stepwise uptake of two hexahydrated iron atoms moving along channels at the 3-fold axis before a restriction site inside the channels requires removal of the hydration sphere. Supporting biochemical data provide insight into the regulation of this acylamino acid hydrolase. Moreover, the peroxidase activity of the protein was determined. The influence of iron and siderophores on the expression of acylamino acid hydrolase was monitored during several stages of cell growth. Altogether our data provide an interesting view of an unusual Dps-like enzyme evolutionarily located apart from the large Dps sequence clusters.  相似文献   

2.
The Dps (DNA-binding protein from starved cells) proteins from Mycobacterium smegmatis MsDps1 and MsDps2 are both DNA-binding proteins with some differences. While MsDps1 has two oligomeric states, with one of them responsible for DNA binding, MsDps2 has only one DNA-binding oligomeric state. Both the proteins however, show iron-binding activity. The MsDps1 protein has been shown previously to be induced under conditions of starvation and osmotic stress and is regulated by the extra cellular sigma factors σH and σF. We show here, that the second Dps homologue in M. smegmatis, namely MsDps2, is purified in a DNA-bound form and exhibits nucleoid-like structures under the atomic force microscope. It appears that the N-terminal sequence of Dps2 plays a role in nucleoid formation. MsDps2, unlike MsDps1, does not show elevated expression in nutritionally starved or stationary phase conditions; rather its promoter is recognized by RNA polymerase containing σA or σB, under in vitro conditions. We propose that due to the nucleoid-condensing ability, the expression of MsDps2 is tightly regulated inside the cells.  相似文献   

3.
A second DNA binding protein from stationary-phase cells of Mycobacterium smegmatis (MsDps2) has been identified from the bacterial genome. It was cloned, expressed and characterised and its crystal structure was determined. The core dodecameric structure of MsDps2 is the same as that of the Dps from the organism described earlier (MsDps1). However, MsDps2 possesses a long N-terminal tail instead of the C-terminal tail in MsDps1. This tail appears to be involved in DNA binding. It is also intimately involved in stabilizing the dodecamer. Partly on account of this factor, MsDps2 assembles straightway into the dodecamer, while MsDps1 does so on incubation after going through an intermediate trimeric stage. The ferroxidation centre is similar in the two proteins, while the pores leading to it exhibit some difference. The mode of sequestration of DNA in the crystalline array of molecules, as evidenced by the crystal structures, appears to be different in MsDps1 and MsDps2, highlighting the variability in the mode of Dps-DNA complexation. A sequence search led to the identification of 300 Dps molecules in bacteria with known genome sequences. Fifty bacteria contain two or more types of Dps molecules each, while 195 contain only one type. Some bacteria, notably some pathogenic ones, do not contain Dps. A sequence signature for Dps could also be derived from the analysis.  相似文献   

4.
Elucidating pore function at the 3-fold channels of 12-subunit, microbial Dps proteins is important in understanding their role in the management of iron/hydrogen peroxide. The Dps pores are called “ferritin-like” because of the structural resemblance to the 3-fold channels of 24-subunit ferritins used for iron entry and exit to and from the protein cage. In ferritins, negatively charged residues lining the pores generate a negative electrostatic gradient that guides iron ions toward the ferroxidase centers for catalysis with oxidant and destined for the mineralization cavity. To establish whether the set of three aspartate residues that line the pores in Listeria innocua Dps act in a similar fashion, D121N, D126N, D130N, and D121N/D126N/D130N proteins were produced; kinetics of iron uptake/release and the size distribution of the iron mineral in the protein cavity were compared. The results, discussed in the framework of crystal growth in a confined space, indicate that iron uses the hydrophilic 3-fold pores to traverse the protein shell. For the first time, the strength of the electrostatic potential is observed to modulate kinetic cooperativity in the iron uptake/release processes and accordingly the size distribution of the microcrystalline iron minerals in the Dps protein population.The widely distributed bacterial Dps proteins (1, 2) belong to the ferritin superfamily and are characterized by strong similarities (3) but also distinctive differences with respect to “canonical” ferritins, the ubiquitous iron storage, and detoxification proteins found in biological systems. The structural resemblance is apparent in the overall molecular assemblage because both Dps proteins and ferritins are shell-like oligomers constructed from four-helix bundle monomers. However, Dps proteins are 12-mers of identical subunits that assemble with 23 symmetry, whereas ferritins are built by 24 highly similar or identical subunits related by 432 symmetry. The functional similarities consist in the common capacity to remove Fe(II) from cytoplasm, catalyze its oxidation, and store Fe(III) thus produced in the protein cavity, wherefrom the metal can be mobilized when required by the organism. However, ferritins use molecular oxygen as iron oxidant with the production of hydrogen peroxide, whereas Dps proteins prefer hydrogen peroxide, which is typically about 100-fold more efficient than molecular oxygen (1). This difference is of major importance because it renders Dps proteins capable of removing concomitantly Fe(II) and H2O2 whose combination leads to the production of reactive oxygen species via Fenton chemistry (4). This capacity confers H2O2 resistance and hence may be a virulence factor in certain pathogens (e.g. Campylobacter jejuni, Streptococcus mutans, and Porphyromonas gingivalis) because the H2O2 burst represents one of the first defense lines of the host during infection (57).Key to a full understanding of the iron uptake and release processes at a molecular level is the route by which iron enters and exits the protein shell. In both 24-subunit ferritins and 12-subunit Dps proteins, the subunit assemblage creates pores across the protein shell that put the internal cavity in communication with the external medium. In ferritins there are two types of pores: largely hydrophobic ones along the axes with 4-fold symmetry and hydrophilic ones along the axes with 3-fold symmetry. The latter channels are funnel-shaped, with the smaller opening toward the protein cavity, and are lined with conserved glutamic and aspartic residues located in the narrow region of the funnel (8). These 3-fold pores were recognized to provide the route for iron entry into the protein cavity soon after resolution of the horse ferritin x-ray crystal structure (9). Later site-directed mutagenesis studies defined the role of specific residues (Asp131 and Glu134) that line the pore (10, 11), whereas electrostatic calculations related the passage of iron to the existence of a gradient that drives metal ions toward the protein interior cavity (12, 13). More recently, the 3-fold symmetry pores were shown to be involved also in the exit process of iron from the protein cavity. Thus, in H-frog ferritin used as model system, iron exit is affected by local protein unfolding promoted by site-specific mutagenesis of individual amino acid residues (14, 15), by the use of chaotropes (16), and by means of selected peptides designed to bind at these channels (17).In Dps proteins, the protein shell is breached by two types of pores along the 3-fold axes, one type is formed by the N-terminal portion of the monomers and bears a strong similarity to the typical 3-fold channels of 24-subunit ferritins in that it is funnel-shaped, hydrophilic, and lined by conserved, negatively charged residues. It was therefore named “ferritin-like” and assumed to be involved in iron entry into the protein cavity upon resolution of the Listeria innocua x-ray crystal structure (18). The other type of pore is formed by the C-terminal ends of the monomers and was called “Dps type” because it is created at a subunit interface that is unique to Dps proteins. Although somewhat variable in length and in the size of the openings, the Dps type pore is mainly hydrophobic in nature (19).The present paper investigates the role of the ferritin-like pores in the iron uptake and release processes in Dps proteins using the well characterized L. innocua Dps (LiDps) as a model system (18, 2022). In LiDps, the ferritin-like pores contain a set of three aspartate residues, Asp121, Asp126, and Asp130 that would be encountered in succession by a metal ion that is attracted by the electrostatic gradient they create and moves down the funnel-shaped pore toward the protein cavity (Fig. 1). Asp130, which is located in the narrowest part of the funnel, is conserved significantly among Dps proteins (∼ 80%), whereas Asp121 and Asp126 are less conserved (Fig. 1). Such considerations were used in the design of site-specific variants D121N, D126N, D130N, and D121N/D126N/D130N to elucidate the function of the ferritin-like pores in Dps proteins.Open in a separate windowFIGURE 1.Dps proteins sequences and conservation of the aspartate residues that line the 3-fold ferritin-like pores in L. innocua Dps. A, alignment of multiple Dps sequences from different bacteria: LiDps, non-heme iron-binding ferritin (L. innocua Clip11262]; EcDps, DNA-binding protein Dps (E. coli); HpDps, neutrophil-activating protein (Helicobacter pylori); YpDps, ferritin family protein (Yersinia pestis Angola); GtDps, DNA-protecting protein (Geobacillus thermodenitrificans NG80–2); RmDps, ferritin, and Dps (Ralstonia metallidurans CH34); AtDps, DNA protection during starvation conditions (Agrobacterium tumefaciens str. C58); TeDps Dps family DNA-binding stress response protein (Thermosynechococcus elongatus BP-1); PaDps, putative DNA-binding protein, Dps (Psychrobacter arcticus 273-4); TfDps, hypothetical protein Tfu_0799 (Thermobifida fusca YX); PhDps, DNA-binding DPS protein (Pseudoalteromonas haloplanktis TAC125); SoDps, Dps family protein (Shewanella oneidensis MR-1); BaDps1, general stress protein 20U (Bacillus anthracis str. Ames); BaDps2 general stress protein (B. anthracis str. Ames); LlDps, non-heme iron-binding ferritin (Lactococcus lactis subsp. lactis Il1403); VcDps, DPS family protein (Vibrio cholerae MZO-3); and StDps, DNA-binding ferritin-like protein (oxidative damage protectant) (Streptococcus thermophilus LMD-9). Residues forming the Dps catalytic center are highlighted in pale blue (His31, His43, Asp58, and Glu62 in LiDps); 3-fold pores aspartate residues are highlighted in yellow and marked in bold type. Alignment has been created with ClustalW2 (34). B, view of the junction of three monomers forming the 3-fold ferritin-like pore. C, Asp121, Asp126, and Asp130 aspartate residues comprised the pore area. D, three-dimensional view of the pore colored by charge. Red, negatively charged residues; blue, positively charged residues; white, uncharged residues. E, schematic representation of the vertical section of the pore. The images were created with PyMol (35).The results demonstrate that iron uses the LiDps ferritin-like pores to enter and leave the protein shell and hence that these pores have the same role as the structurally similar 3-fold channels in 24-subunit ferritins. LiDps residue Asp130 is the most important determinant of the negative electrostatic gradient because of its location in the narrow part of the pores. Importantly, the data show for the first time that the electrostatic gradient at the pores modulates cooperativity in the iron uptake process and influences the size distribution of the iron core (23). The effect of the electrostatic gradient can be explained in terms of the electrostatic interaction effects between the fixed negative charges of the aspartate residues at the pores and the mobile positive charges of iron ions.  相似文献   

5.
The crystal structure of a DNA-binding protein from starved cells (Dps) (DR2263) from Deinococcus radiodurans was determined in two states: a native form, to 1.1-Å resolution, and one soaked in an iron solution, to 1.6-Å resolution. In comparison with other Dps proteins, DR2263 has an extended N-terminal extension, in both structures presented here, a novel metal binding site was identified in this N-terminal extension and was assigned to bound zinc. The zinc is tetrahedrally coordinated and the ligands, that belong to the N-terminal extension, are two histidines, one glutamate and one aspartate residue, which are unique to this protein within the Dps family. In the iron-soaked crystal structure, a total of three iron sites per monomer were found: one site corresponds to the ferroxidase centre with structural similarities to those found in other Dps family members; the two other sites are located on the two different threefold axes corresponding to small pores in the Dps sphere, which may possibly form the entrance and exit channels for iron storage.  相似文献   

6.
W Jin  H Takagi  B Pancorbo  E C Theil 《Biochemistry》2001,40(25):7525-7532
Ferritin concentrates, stores, and detoxifies iron in most organisms. The iron is a solid, ferric oxide mineral (< or =4500 Fe) inside the protein shell. Eight pores are formed by subunit trimers of the 24 subunit protein. A role for the protein in controlling reduction and dissolution of the iron mineral was suggested in preliminary experiments [Takagi et al. (1998) J. Biol. Chem. 273, 18685-18688] with a proline/leucine substitution near the pore. Localized pore disorder in frog L134P crystals coincided with enhanced iron exit, triggered by reduction. In this report, nine additional substitutions of conserved amino acids near L134 were studied for effects on iron release. Alterations of a conserved hydrophobic pair, a conserved ion pair, and a loop at the ferritin pores all increased iron exit (3-30-fold). Protein assembly was unchanged, except for a slight decrease in volume (measured by gel filtration); ferroxidase activity was still in the millisecond range, but a small decrease indicates slight alteration of the channel from the pore to the oxidation site. The sensitivity of reductive iron exit rates to changes in conserved residues near the ferritin pores, associated with localized unfolding, suggests that the structure around the ferritin pores is a target for regulated protein unfolding and iron release.  相似文献   

7.
Ferritin protein nanocages, self-assembled from four-α-helix bundle subunits, use Fe2+ and oxygen to synthesize encapsulated, ferric oxide minerals. Ferritin minerals are iron concentrates stored for cell growth. Ferritins are also antioxidants, scavenging Fenton chemistry reactants. Channels for iron entry and exit consist of helical hairpin segments surrounding the 3-fold symmetry axes of the ferritin nanocages. We now report structural differences caused by amino acid substitutions in the Fe2+ ion entry and exit channels and at the cytoplasmic pores, from high resolution (1.3–1.8 Å) protein crystal structures of the eukaryotic model ferritin, frog M. Mutations that eliminate conserved ionic or hydrophobic interactions between Arg-72 and Asp-122 and between Leu-110 and Leu-134 increase flexibility in the ion channels, cytoplasmic pores, and/or the N-terminal extensions of the helix bundles. Decreased ion binding in the channels and changes in ordered water are also observed. Protein structural changes coincide with increased Fe2+ exit from dissolved, ferric minerals inside ferritin protein cages; Fe2+ exit from ferritin cages depends on a complex, surface-limited process to reduce and dissolve the ferric mineral. High concentrations of bovine serum albumin or lysozyme (protein crowders) to mimic the cytoplasm restored Fe2+ exit in the variants to wild type. The data suggest that fluctuations in pore structure control gating. The newly identified role of the ferritin subunit N-terminal extensions in gating Fe2+ exit from the cytoplasmic pores strengthens the structural and functional analogies between ferritin ion channels in the water-soluble protein assembly and membrane protein ion channels gated by cytoplasmic N-terminal peptides.  相似文献   

8.
Human gammaD crystallin (HgammaD-Crys) is a two domain, beta-sheet eye lens protein that must remain soluble throughout life for lens transparency. Single amino acid substitutions of HgammaD-Crys are associated with juvenile-onset cataracts. Features of the interface between the two domains conserved among gamma-crystallins are a central six-residue hydrophobic cluster, and two pairs of interacting residues flanking the cluster. In HgammaD-Crys these pairs are Gln54/Gln143 and Arg79/Met147. We previously reported contributions of the hydrophobic cluster residues to protein stability. In this study alanine substitutions of the flanking residue pairs were constructed and analyzed. Equilibrium unfolding/refolding experiments at 37 degrees C revealed a plateau in the unfolding/refolding transitions, suggesting population of a partially folded intermediate with a folded C-terminal domain (C-td) and unfolded N-terminal domain (N-td). The N-td was destabilized by substituting residues from both domains. In contrast, the C-td was not significantly affected by substitutions of either domain. Refolding rates of the N-td were significantly decreased for mutants of either domain. In contrast, refolding rates of the C-td were similar to wild type for mutants of either domain. Therefore, domain interface residues of the folded C-td probably nucleate refolding of the N-td. We suggest that these residues stabilize the native state by shielding the central hydrophobic cluster from solvent. Glutamine and methionine side chains are among the residues covalently damaged in aged and cataractous lenses. Such damage may generate partially unfolded, aggregation- prone conformations of HgammaD-Crys that could be significant in cataract.  相似文献   

9.
Dps (DNA-binding proteins from starved cells) proteins belong to a widespread bacterial family of proteins expressed under nutritional and oxidative stress conditions. In particular, Dps proteins protect DNA against Fenton-mediated oxidative stress, as they catalyze iron oxidation by hydrogen peroxide at highly conserved ferroxidase centers and thus reduce significantly hydroxyl radical production. This work investigates the possible generation of intraprotein radicals during the ferroxidation reaction by Escherichia coli and Listeria innocua Dps, two representative members of the family. Stopped-flow analyses show that the conserved tryptophan and tyrosine residues located near the metal binding/oxidation center are in a radical form after iron oxidation by hydrogen peroxide. DNA protection assays indicate that the presence of both residues is necessary to limit release of hydroxyl radicals in solution and the consequent oxidative damage to DNA. In general terms, the demonstration that conserved protein residues act as a trap that dissipates free electrons generated during the oxidative process brings out a novel role for the Dps protein cage.  相似文献   

10.
Engineered protein nanopores, such as those based on α-hemolysin from Staphylococcus aureus have shown great promise as components of next-generation DNA sequencing devices. However, before such protein nanopores can be used to their full potential, the conformational dynamics and translocation pathway of the DNA within them must be characterized at the individual molecule level. Here, we employ atomistic molecular dynamics simulations of single-stranded DNA movement through a model α-hemolysin pore under an applied electric field. The simulations enable characterization of the conformations adopted by single-stranded DNA, and allow exploration of how the conformations may impact on translocation within the wild-type model pore and a number of mutants. Our results show that specific interactions between the protein nanopore and the DNA can have a significant impact on the DNA conformation often leading to localized coiling, which in turn, can alter the order in which the DNA bases exit the nanopore. Thus, our simulations show that strategies to control the conformation of DNA within a protein nanopore would be a distinct advantage for the purposes of DNA sequencing.  相似文献   

11.
Cardiolipin (CL) is the signature phospholipid of mitochondrial membranes, where it is synthesized locally and plays a critical role in mitochondrial bioenergetic functions. The importance of CL in human health is underscored by the observation that perturbation of CL biosynthesis causes the severe genetic disorder Barth syndrome. To fully understand the cellular response to the loss of CL, we carried out genome-wide expression profiling of the yeast CL mutant crd1Δ. Our results show that the loss of CL in this mutant leads to increased expression of iron uptake genes accompanied by elevated levels of mitochondrial iron and increased sensitivity to iron and hydrogen peroxide. Previous studies have shown that increased mitochondrial iron levels result from perturbations in iron-sulfur (Fe-S) cluster biogenesis. Consistent with an Fe-S defect, deletion of ISU1, one of two ISU genes that encode the mitochondrial Fe-S scaffolding protein essential for the synthesis of Fe-S clusters, led to synthetic growth defects with the crd1Δ mutant. We further show that crd1Δ cells have reduced activities of mitochondrial Fe-S enzymes (aconitase, succinate dehydrogenase, and ubiquinol-cytochrome c oxidoreductase), as well as cytosolic Fe-S enzymes (sulfite reductase and isopropylmalate isomerase). Increased expression of ATM1 or YAP1 did not rescue the Fe-S defects in crd1Δ. These findings show for the first time that CL is required for Fe-S biogenesis to maintain mitochondrial and cellular iron homeostasis.  相似文献   

12.
In the uropathogenic Escherichia coli strain F11, in silico genome analysis revealed the dicistronic iron uptake operon fetMP, which is under iron-regulated control mediated by the Fur regulator. The expression of fetMP in a mutant strain lacking known iron uptake systems improved growth under iron depletion and increased cellular iron accumulation. FetM is a member of the iron/lead transporter superfamily and is essential for iron uptake by the Fet system. FetP is a periplasmic protein that enhanced iron uptake by FetM. Recombinant FetP bound Cu(II) and the iron analog Mn(II) at distinct sites. The crystal structure of the FetP dimer reveals a copper site in each FetP subunit that adopts two conformations: CuA with a tetrahedral geometry composed of His44, Met90, His97, and His127, and CuB, a second degenerate octahedral geometry with the addition of Glu46. The copper ions of each site occupy distinct positions and are separated by ∼1.3 Å. Nearby, a putative additional Cu(I) binding site is proposed as an electron source that may function with CuA/CuB displacement to reduce Fe(III) for transport by FetM. Together, these data indicate that FetMP is an additional iron uptake system composed of a putative iron permease and an iron-scavenging and potentially iron-reducing periplasmic protein.  相似文献   

13.
Properties of ferritin gated pores control rates of FMNH2 reduction of ferric iron in hydrated oxide minerals inside the protein nanocage, and are discussed in terms of: (1) the conserved pore gate residues (ion pairs: arginine 72, aspartate 122, and a hydrophobic pair, leucine 110-leucine 134), (2) pore sensitivity to heat at temperatures 30 °C below that of the nanocage itself, and (3) pore sensitivity to physiological changes in urea (1-10 mM). Conditions which alter ferritin pore structure/function in solution, coupled with the high evolutionary conservation of the pore gates, suggest the presence of molecular regulators in vivo that recognize the pore gates and hold them either closed or open, depending on biological iron need. The apparent homology between ferrous ion transport through gated pores in the ferritin nanocage and ion transport through gated pores in ion channel proteins embedded in cell membranes, make studies of water soluble ferritin and the pore gating folding/unfolding a useful model for other gated pores.  相似文献   

14.
Pentameric ligand-gated ion channels are activated by the binding of agonists to a site distant from the ion conduction path. These membrane proteins consist of distinct ligand-binding and pore domains that interact via an extended interface. Here, we have investigated the role of residues at this interface for channel activation to define critical interactions that couple conformational changes between the two structural units. By characterizing point mutants of the prokaryotic channels ELIC and GLIC by electrophysiology, X-ray crystallography and isothermal titration calorimetry, we have identified conserved residues that, upon mutation, apparently prevent activation but not ligand binding. The positions of nonactivating mutants cluster at a loop within the extracellular domain connecting β-strands 6 and 7 and at a loop joining the pore-forming helix M2 with M3 where they contribute to a densely packed core of the protein. An ionic interaction in the extracellular domain between the turn connecting β-strands 1 and 2 and a residue at the end of β-strand 10 stabilizes a state of the receptor with high affinity for agonists, whereas contacts of this turn to a conserved proline residue in the M2-M3 loop appear to be less important than previously anticipated. When mapping residues with strong functional phenotype on different channel structures, mutual distances are closer in conducting than in nonconducting conformations, consistent with a potential role of contacts in the stabilization of the open state. Our study has revealed a pattern of interactions that are crucial for the relay of conformational changes from the extracellular domain to the pore region of prokaryotic pentameric ligand-gated ion channels. Due to the strong conservation of the interface, these results are relevant for the entire family.  相似文献   

15.
Dps(DNAprotection during starvation)蛋白是原核生物中特有的一类具有铁离子结合和抗氧化损伤功能的重要蛋白。利用体外PCR扩增技术和体内同源重组方法,获得了耐辐射奇球菌(Deinococcus radiodurans)dps全基因(DRB0092)缺失突变株。对突变株和野生型分别进行不同浓度过氧化氢(H2O2)处理,结果表明:与野生型菌株R1相比,dps突变株在低浓度H2O2(≤10mmol/L)条件下存活率急剧下降,而高浓度(≥30mmol/L)下则完全致死。Native-PAGE活性染色结果显示,稳定生长期dps突变株体内两种过氧化氢酶(KatA和KatB)的活性较野生型R1分别上调2.3倍和2.6倍。通过质粒构建和大肠杆菌诱导表达,获得可溶性Dps蛋白。体外结合和DNA保护实验结果显示:Dps具有明显的DNA结合功能,并能保护质粒DNA免受羟自由基攻击。本研究证明,Dps蛋白在耐辐射奇球菌抗氧化体系中发挥重要作用,可能对该菌极端抗性机制有重要贡献。  相似文献   

16.
17.
《Journal of molecular biology》2019,431(8):1619-1632
Membrane-embedded pyrophosphatase (M-PPase) hydrolyzes pyrophosphate to drive ion (H+ and/or Na+) translocation. We determined crystal structures and functions of Vigna radiata M-PPase (VrH+-PPase), the VrH+-PPase–2Pi complex and mutants at hydrophobic gate (residue L555) and exit channel (residues T228 and E225). Ion pore diameters along the translocation pathway of three VrH+-PPases complexes (Pi-, 2Pi- and imidodiphosphate-bound states) present a unique wave-like profile, with different pore diameters at the hydrophobic gate and exit channel, indicating that the ligands induced pore size alterations. The 2Pi-bound state with the largest pore diameter might mimic the hydrophobic gate open. In mutant structures, ordered waters detected at the hydrophobic gate among VrH+-PPase imply the possibility of solvation, and numerous waters at the exit channel might signify an open channel. A salt-bridge, E225–R562 is at the way out of the exit channel of VrH+-PPase; E225A mutant makes the interaction eliminated and reveals a decreased pumping ability. E225–R562 might act as a latch to regulate proton release. A water wire from the ion gate (R-D-K-E) through the hydrophobic gate and into the exit channel may reflect the path of proton transfer.  相似文献   

18.
The ferritin-like DNA-binding protein from starved cells (Dps) family proteins are present in a number of pathogenic bacteria. Dps in the enterohepatic pathogen, Helicobacter hepaticus is characterized and a H. hepaticus dps mutant was generated by insertional mutagenesis. While the wild type H. hepaticus cells were able to survive in an atmosphere containing up to 6.0% O2, the dps mutant failed to grow in 3.0% O2, and it was also more sensitive to oxidative reagents like H2O2, cumene hydroperoxide and t-butyl hydroperoxide. Upon air exposure, the dps cells had more damaged DNA than the wild type; they became coccoid or lysed and they contained ∼6-fold higher amount of 8-oxoguanine (8-oxoG) DNA lesions than wild type cells. Purified H. hepaticus Dps was shown to be able to bind both iron and DNA. The iron-loaded form of Dps protein had much greater DNA binding ability than the native Dps or the iron-free Dps.  相似文献   

19.
Iron-sulfur (Fe-S) clusters are essential cofactors, and mitochondria contain several Fe-S proteins, including the [4Fe-4S] protein aconitase and the [2Fe-2S] protein ferredoxin. Fe-S cluster assembly of these proteins occurs within mitochondria. Although considerable data exist for yeast mitochondria, this biosynthetic process has never been directly demonstrated in mammalian mitochondria. Using [35S]cysteine as the source of sulfur, here we show that mitochondria isolated from Cath.A-derived cells, a murine neuronal cell line, can synthesize and insert new Fe-35S clusters into aconitase and ferredoxins. The process requires GTP, NADH, ATP, and iron, and hydrolysis of both GTP and ATP is necessary. Importantly, we have identified the 35S-labeled persulfide on the NFS1 cysteine desulfurase as a genuine intermediate en route to Fe-S cluster synthesis. In physiological settings, the persulfide sulfur is released from NFS1 and transferred to a scaffold protein, where it combines with iron to form an Fe-S cluster intermediate. We found that the release of persulfide sulfur from NFS1 requires iron, showing that the use of iron and sulfur for the synthesis of Fe-S cluster intermediates is a highly coordinated process. The release of persulfide sulfur also requires GTP and NADH, probably mediated by a GTPase and a reductase, respectively. ATP, a cofactor for a multifunctional Hsp70 chaperone, is not required at this step. The experimental system described here may help to define the biochemical basis of diseases that are associated with impaired Fe-S cluster biogenesis in mitochondria, such as Friedreich ataxia.  相似文献   

20.
The widely expressed DNA-protective protein from starved-cells (Dps) family proteins are considered major contributors to prokaryotic resistance to stress. We show here that Porphyromonas gingivalis Dps (PgDps), previously described as an iron-storage and DNA-binding protein, also mediates heme sequestration. We determined that heme binds strongly to PgDps with an apparent Kd of 3.7 × 10−8 m and is coordinated by a single surface-located cysteine at the fifth axial ligand position. Heme and iron sequestered in separate sites by PgDps provide protection of DNA from H2O2-mediated free radical damage and were found to be important for growth of P. gingivalis under excess heme as the only iron source. Conservation of the heme-coordinating cysteine among Dps isoforms from the Bacteroidales order suggests that this function may be a common feature within these anaerobic bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号