首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Of the different oxygenated cholesterol metabolites, 7-ketocholesterol (7KCh) is considered a noxious oxy-sterol implicated in the development of certain pathologies, including those found in the eye. Here we elucidated whether sterol 27-hydroxylase cytochrome P450 27A1 (CYP27A1) is involved in elimination of 7KCh from the posterior part of the eye: the neural retina and underlying retinal pigment epithelium (RPE). We first established that the affinities of purified recombinant CYP27A1 for 7KCh and its endogenous substrate cholesterol are similar, yet 7KCh is metabolized at a 4-fold higher rate than cholesterol in the reconstituted system in vitro. Lipid extracts from bovine neural retina and RPE were then analyzed by isotope dilution GC-MS for the presence of the 7KCh-derived oxysterols. Two metabolites, 3β,27-dihydroxy-5-cholesten-7-one (7KCh-27OH) and 3β-hydroxy-5-cholesten-7-one-26-oic acid (7KCh-27COOH), were detected in the RPE but not in the neural retina. 7KCh-27OH was also formed when RPE homogenates were supplemented with NADPH and the mitochondrial redox system. Quantifications in human RPE showed that CYP27A1 is indeed expressed in the RPE at 2-4-fold higher levels than in the neural retina. The data obtained represent evidence for the role of CYP27A1 in retinal metabolism of 7KCh and suggest that, in addition to cholesterol removal, the functions of this enzyme could also include elimination of toxic endogenous compounds.  相似文献   

2.
The requirement of membrane cholesterol in maintaining ligand binding activity of the hippocampal serotonin(1A) receptor has previously been demonstrated. In order to test the stringency of the requirement of cholesterol, we depleted cholesterol from native hippocampal membranes followed by replenishment with 7-dehydrocholesterol. The latter sterol is an immediate biosynthetic precursor of cholesterol differing only in a double bond at the 7th position in the sterol ring. Our results show, for the first time, that replenishment with 7-dehydrocholesterol does not restore ligand binding activity of the serotonin(1A) receptor, in spite of recovery of the overall membrane order. The requirement for restoration of ligand binding activity therefore is more stringent than the requirement for the recovery of overall membrane order. These novel results have potential implications in understanding the interaction of membrane lipids with this important neuronal receptor under pathogenic conditions such as the Smith-Lemli-Opitz syndrome.  相似文献   

3.
The serotonin1A receptor is an important member of the G-protein coupled receptor family, and is involved in the generation and modulation of a variety of cognitive, behavioral, and developmental functions. Solubilization of the hippocampal serotonin1A receptor by 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CHAPS) is accompanied by loss of membrane cholesterol which results in a reduction in specific agonist binding activity. Replenishment of cholesterol to solubilized membranes restores the cholesterol content of the membrane and significantly enhances specific agonist binding activity. In order to test the stringency of the requirement of cholesterol in this process, we solubilized native hippocampal membranes followed by replenishment with 7-dehydrocholesterol (7-DHC). 7-DHC is an immediate biosynthetic precursor of cholesterol differing only in a double bond at the 7th position in its sterol ring. Our results show, for the first time, that replenishment of solubilized hippocampal membranes with 7-DHC does not restore ligand binding activity of the serotonin1A receptor, in spite of recovery of the overall membrane order. This observation shows that the requirement for restoration of ligand binding activity is more stringent than the requirement for the recovery of overall membrane order. These novel results have potential implications in understanding the interaction of membrane sterols with this important neuronal receptor under pathogenic conditions such as the Smith-Lemli-Opitz syndrome.  相似文献   

4.
There is a significant flux of the neurotoxic oxysterol 27-hydroxycholesterol (27OHC) from the circulation across the blood-brain barrier. Because there is a correlation between 27OHC and cholesterol in the circulation and lipoprotein-bound cholesterol does not pass the blood-brain barrier, we have suggested that 27OHC may mediate the effects of hypercholesterolemia on the brain. We previously demonstrated a modest accumulation of 27OHC in brains of patients with sporadic Alzheimer's disease (AD), consistent with a role of 27OHC as a primary pathogenetic factor. We show here that there is a 4-fold accumulation of 27OHC in different regions of the cortexes of patients carrying the Swedish amyloid precursor protein (APPswe) 670/671 mutation. The brain levels of sitosterol and campesterol were not significantly different in the AD patients compared with the controls, suggesting that the blood-brain barrier was intact in the AD patients. We conclude that accumulation of 27OHC is likely to be secondary to neurodegeneration, possibly a result of reduced activity of CYP7B1, the neuronal enzyme responsible for metabolism of 27OHC. We discuss the possibility of a vicious circle in the brains of the patients with familial AD whereby neurodegenerative changes cause an accumulation of 27OHC that further accelerates neurodegeneration.  相似文献   

5.
Structural complexes of the eukaryotic translation initiation factor 4E (eIF4E) with a series of N(7)-alkylated guanosine derivative mRNA cap analogue structures have been characterised. Mass spectrometry was used to determine apparent gas-phase equilibrium dissociation constants (K(d)) values of 0.15 microM, 13.6 microM, and 55.7 microM for eIF4E with 7-methyl-GTP (m(7)GTP), GTP, and GMP, respectively. For tight and specific binding to the eIF4E mononucleotide binding site, there seems to be a clear requirement for guanosine derivatives to possess both the delocalised positive charge of the N(7)-methylated guanine system and at least one phosphate group. We show that the N(7)-benzylated monophosphates 7-benzyl-GMP (Bn(7)GMP) and 7-(p-fluorobenzyl)-GMP (FBn(7)GMP) bind eIF4E substantially more tightly than non-N(7)-alkylated guanosine derivatives (K(d) values of 7.0 microM and 2.0 microM, respectively). The eIF4E complex crystal structures with Bn(7)GMP and FBn(7)GMP show that additional favourable contacts of the benzyl groups with eIF4E contribute binding energy that compensates for loss of the beta and gamma-phosphates. The N(7)-benzyl groups pack into a hydrophobic pocket behind the two tryptophan side-chains that are involved in the cation-pi stacking interaction between the cap and the eIF4E mononucleotide binding site. This pocket is formed by an induced fit in which one of the tryptophan residues involved in cap binding flips through 180 degrees relative to structures with N(7)-methylated cap derivatives. This and other observations made here will be useful in the design of new families of eIF4E inhibitors, which may have potential therapeutic applications in cancer.  相似文献   

6.
The effect of ferric and manganese ions on the in vitro metabolism of benzo(a)pyrene (BP) to dihydrodihydroxy (diol) metabolites by rat liver microsomal preparations was studied. Of the 3 diols separated by high-pressure liquid chromatography (HPLC) and called diols 1, 2 and 3 in order of elution, diol 1 was identified by its U.V. spectrum as the 9,10-diol; diols 2 and 3 have not yet been identified positively but are probably the 4,5- and 7,8-diols respectively. Higher concentrations of both metals altered the diol profile; 10 and 50 mumol Fe3+ per incubation caused the disappearance of diols 1 and 2 and an increase in diol 3; 10 mumol Mn2+ caused a significant decrease in diol 2 while 50 mumol reduced diol 2 to a negligible amount and inhibited the formation of diol 1; both concentrations caused a relative increase in diol 3. If the tentative identification of diol 3 as the 7,8-diol is correct, manganese and ferric ions could be significant in the metabolism of BP to the active metabolite, the 7,8-diol-9,10-epoxide.  相似文献   

7.
8.
Lysinuric protein intolerance is an autosomal recessive metabolic disorder caused by defective transport of the cationic amino acids lysine, arginine and ornithine in the epithelial cells of the basolateral membrane in the small intestine and renal tubules. Mutations in the solute carrier family 7, member 7, SLC7A7, gene cause this multisystemic disease with a variety of clinical symptoms such as hepatosplenomegaly, osteoporosis, hypotonia, developmental delay, pulmonary insufficiency or end-stage renal disease. In the present study, genomic structure of SLC7A7 in six Turkish patients with lysinuric protein intolerance was examined in order to detect disease causing mutations by denaturing high pressure liquid chromatography and direct sequencing. Four novel mutations were identified in SLC7A7: c.223insGTC, p.Val74_Ile75insVal; c.283insTGG, p.Glu94_Thr95insTrp; c.344_347delTTGC, p.Leu115LeufsX53; and c.1099insT, p.Ile367TyrfsX16. Clinical and biochemical findings were evaluated together with these molecular analyses.  相似文献   

9.
Cytochrome P450 3A4 (CYP3A4) is the most abundant CYP enzyme in the liver and metabolizes approximately 50% of the drugs, including antiretrovirals. Although CYP3A4 induction by ethanol and impact of CYP3A4 on drug metabolism and toxicity is known, CYP3A4-ethanol physical interaction and its impact on drug binding, inhibition, or metabolism is not known. Therefore, we studied the effect of ethanol on binding and inhibition of CYP3A4 with a representative protease inhibitor, nelfinavir, followed by the effect of alcohol on nelfinavir metabolism. Our initial results showed that methanol, ethanol, isopropanol, isobutanol, and isoamyl alcohol bind in the active site of CYP3A4 and exhibit type I spectra. Among these alcohol compounds, ethanol showed the lowest KD (5.9 ± 0.34 mM), suggesting its strong binding affinity with CYP3A4. Ethanol (20 mM) decreased the KD of nelfinavir by >5-fold (0.041 ± 0.007 vs. 0.227 ± 0.038 μM). Similarly, 20 mM ethanol decreased the IC50 of nelfinavir by >3-fold (2.6 ± 0.5 vs. 8.3 ± 3.1 μM). These results suggest that ethanol facilitates binding of nelfinavir with CYP3A4. Furthermore, we performed nelfinavir metabolism using LCMS. Although ethanol did not alter kcat, it decreased the Km of nelfinavir, suggesting a decrease in catalytic efficiency (kcat/Km). This is an important finding because alcoholism is prevalent in HIV-1-infected persons and alcohol is shown to decrease the response to antiretroviral therapy.  相似文献   

10.
Aiqun Li 《Steroids》2010,75(6):404-410
Dehydroepiandrosterone (DHEA) is an important neurosteroid with multiple functions in the central nervous system including neuroprotection. How DHEA exerts its neuroprotection function has not been fully elucidated. One possible mechanism is via its active metabolites, 7α-OH DHEA and 7β-OH DHEA. The purpose of this research is to understand how DHEA is metabolized to 7α-OH DHEA and 7β-OH DHEA by brain tissue. DHEA was incubated with rat brain microsomes and mitochondria and the 7α-OH DHEA and 7β-OH DHEA formed by these fractions were analyzed by LC/MS. For the first time, we observed that DHEA could be metabolized to 7α-OH DHEA and 7β-OH DHEA in mitochondria but the formation of 7α-OH DHEA and 7β-OH DHEA demonstrated different enzymatic kinetic properties. Adding NADPH, an essential cofactor, to mitochondria incubation mixtures increased only the formation of 7α-OH DHEA, but not that of 7β-OH DHEA. Addition of estradiol to the incubation mixtures inhibited only the formation of 7α-OH DHEA, but not that of 7β-OH DHEA. Western blot analysis showed that both microsomes and mitochondria contained cytochrome P450 7B. We also found that 7α-OH DHEA could be converted to 7β-OH DHEA by rat brain homogenates. Our data suggest that 7α-OH DHEA and 7β-OH DHEA are formed by different enzymes and that 7β-OH DHEA can be formed from both DHEA and 7α-OH DHEA, although the overall level of 7β-OH DHEA was very low.  相似文献   

11.
Summary Neuronal pathways immunoreactive to antisera against the extended-enkephalins, Met-enkephalin-Arg6-Phe7 (Met-7) and Met-enkephalin-Arg6-Gly7-Leu8 (Met-8), have been identified in the brain of the blowfly Calliphora vomitoria. Co-localisation with other enkephalins in certain neurons suggests that a precursor similar to preproenkephalin A exists in insects and that differential enzymatic processing occurs as in vertebrates. Co-localisations of the extended-enkephalin-like peptides with other vertebrate-type peptides, including cholecystokinin and pancreatic polypeptide, also occur. The enkephalinergic pathways are specific, comprising a few groups of highly characteristic neurons and areas of neuropil. Of special interest is the finding that parts of the antennal chemosensory and the optic lobe visual systems contain Met-8 immunoreactive neurons. Within the median neurosecretory cell groups, some of the giant neurons show immunoreactivity to Met-8 and others to both Met-8 and Met-7. Fibres from these cells project to the corpus cardiacum and also to the suboesophageal ganglion, where arborisations occur in the tritocerebral neuropil. Co-localisation studies of these cells have shown that at certain terminals, one particular type of peptide is the dominant neuroregulator, whilst at other terminals, within the same cell, a different co-synthesised peptide predominates. Several groups of lateral neurosecretory cells show clearly defined enkephalinergic pathways, most of which have connections with the central body. The complex patterns of immunoreactivity seen in terminals in the different parts of the central body, suggest an important role for the enkephalin-like peptides in the integration of multimodal sensory inputs. The physiological functions of the extended-enkephalin-like peptides in the brain of Calliphora is still unknown, but the anatomical evidence suggests they may have a role similar to that in mammals, where they are thought to control aspects of feeding behaviour.  相似文献   

12.
13.
Biosynthesis of the leukotriene A (LTA) class of epoxide is a lipoxygenase-catalyzed transformation requiring a fatty acid hydroperoxide substrate containing at least three double bonds. Here, we report on biosynthesis of a dienoic analog of LTA epoxides via a different enzymatic mechanism. Beginning with homolytic cleavage of the hydroperoxide moiety, a catalase/peroxidase-related hemoprotein from Anabaena PCC 7120, which occurs in a fusion protein with a linoleic acid 9R-lipoxygenase, dehydrates 9R-hydroperoxylinoleate to a highly unstable epoxide. Using methods we developed for isolating extremely labile compounds, we prepared and purified the epoxide and characterized its structure as 9R,10R-epoxy-octadeca-11E,13E-dienoate. This epoxide hydrolyzes to stable 9,14-diols that were reported before in linoleate autoxidation (Hamberg, M. 1983. Autoxidation of linoleic acid: Isolation and structure of four dihydroxy octadecadienoic acids. Biochim. Biophys. Acta 752: 353–356) and in incubations with the Anabaena enzyme (Lang, I., C. Göbel, A. Porzel, I. Heilmann, and I. Feussner. 2008. A lipoxygenase with linoleate diol synthase activity from Nostoc sp. PCC 7120. Biochem. J. 410: 347–357). We also prepared an equivalent epoxide from 13S-hydroperoxylinoleate using a “biomimetic” chemical method originally described for LTA4 synthesis and showed that like LTA4, the C18.2 epoxide conjugates readily with glutathione, a potential metabolic fate in vivo. We compare and contrast the mechanisms of LTA-type allylic epoxide synthesis by lipoxygenase, catalase/peroxidase, and chemical transformations. These findings provide new insights into the reactions of linoleic acid hydroperoxides and extend the known range of catalytic activities of catalase-related hemoproteins.  相似文献   

14.
Copper-transporting ATPase ATP7B is essential for human copper homeostasis and normal liver function. ATP7B has six N-terminal metal-binding domains (MBDs) that sense cytosolic copper levels and regulate ATP7B. The mechanism of copper sensing and signal integration from multiple MBDs is poorly understood. We show that MBDs communicate and that this communication determines the oxidation state and conformation of the entire N-terminal domain of ATP7B (N-ATP7B). Mutations of copper-coordinating Cys to Ala in any MBD (2, 3, 4, or 6) change the N-ATP7B conformation and have distinct functional consequences. Mutating MBD2 or MBD3 causes Cys oxidation in other MBDs and loss of copper binding. In contrast, mutation of MBD4 and MBD6 does not alter the redox status and function of other sites. Our results suggest that MBD2 and MBD3 work together to regulate access to other metal-binding sites, whereas MBD4 and MBD6 receive copper independently, downstream of MBD2 and MBD3. Unlike Ala substitutions, the Cys-to-Ser mutation in MBD2 preserves the conformation and reduced state of N-ATP7B, suggesting that hydrogen bonds contribute to interdomain communications. Tight coupling between MBDs suggests a mechanism by which small changes in individual sites (induced by copper binding or mutation) result in stabilization of distinct conformations of the entire N-ATP7B and altered exposure of sites for interactions with regulatory proteins.  相似文献   

15.
Chronic myeloid leukemia (CML) is characterized by a Ph1 chromosome that derives through a translocation between chromosomes 9 and 22, i.e., t (9;22). Identifying the Ph1 chromosome through cytogenetic analysis is an important aspect of CML diagnosis. The aim of this study was to determine the significance of cytogenetic analysis in the diagnosis of CML as well as to find out a relationship between chromosomal abnormalities and CML patients in different stages of treatment. Six CML patients were investigated for this study. The presence of Ph1 chromosome was detected at different times of treatment using GTG banding on peripheral blood or bone marrow aspirations, and the results were analyzed using cytovision workstation. Hematological features were compared between newly diagnosed patients and patients under treatment. The Ph1 chromosome was strongly associated with all cases of CML. The regression of Ph1 chromosomes differed for each patient depending on the treatments and individual response to specific treatments.  相似文献   

16.
Summary Neuronal pathways in the retrocerebral complex and thoracico-abdominal ganglionic mass of the blowflyCalliphora vomitoria have been identified immunocytochemically with antisera against the extended-enkephalins, Met-enkephalin-Arg6-Phe7 (Met-7) and Met-enkephalin-Arg6-Gly7-Leu8 (Met-8). Neurons of the hypocerebral ganglion, immunoreactive to Met-8, have axons in the crop duct nerve and terminals in muscles of the crop and its duct. Certain neurons of the hypocerebral ganglion are also immunoreactive to Met-7, and axons from these cells innervate the heart. Met-8 immunoreactive nerve terminals invest the cells of the corpus allatum. The source of this material is believed to ve a single pair of lateral neurosecretory cells in the brain. There is no Met-7 immunoreactive material in the corpus allatum. In the corpus cardiacum neither Met-7 nor Met-8 immunoreactivity is present in the cells. However, in the neuropil of the gland certain fibres, with their origins elsewhere, do contain Met-8 immunoreactivity. The most prominent neurons in the thoracic ganglion are the Met-7 immunoreactive ventral thoracic neurosecretory cells, axons from which project to neurohaemal areas in the dorsal neural sheath and also, via the ventral connective, to the brain. Co-localisation studies show that the perikarya of these cells are immunoreactive to antisera raised against several vertebrate-type peptides, such as Met-7, gastrin/cholecystokinin and pancreatic polypeptide. However, their axons and terminals show varying amounts of the peptides, suggesting differential transport and utilisation. Only a few cells in the thoracic ganglion are immunoreactive to Met-8 antisera. These lie close to the nerve bundles suppling the legs. In the abdominal ganglion, Met-8 immunoreactive neurons project to the muscles of the hindgut. This study suggests that the extended enkephalin-like peptides ofCalliphora may have a variety of different roles: as neurotransmitter or neuromodulator substances; in the direct innervation of effector organs; and as neurohormones.  相似文献   

17.
The genus Streptomyces produces two-thirds of microbially derived antibiotics. Polyketides form the largest and most diverse group of these natural products. Antibiotic diversity of polyketides is generated during their biosynthesis by several means, including postpolyketide modification performed by oxidoreductases, a broad group of enzymes including cytochrome P450 monooxygenases (CYPs). CYPs catalyze site-specific oxidation of macrolide antibiotic precursors significantly affecting antibiotic activity. Efficient manipulation of Streptomyces CYPs in generating new antibiotics will require identification and/or engineering of monooxygenases with activities toward a diverse array of chemical substrates. To begin to link structure to function of CYPs involved in secondary metabolic pathways of industrially important species, we determined the X-ray structure of Streptomyces coelicolor A3(2) CYP154A1 at 1.85 A and analyzed it in the context of the closely related CYP154C1 and more distant CYPs from polyketide synthase (EryF) and nonribosomal peptide synthetase (OxyB) biosynthetic pathways. In contrast to CYP154C1, CYP154A1 reveals an active site inaccessible from the molecular surface, and an absence of catalytic activities observed for CYP154C1. Systematic variations in the amino acid patterns and length of the surface HI loop correlate with degree of rotation of the F and G helices relative to the active site in CYP154A1-related CYPs, presumably regulating the degree of active site accessibility and its dimensions. Heme in CYP154A1 is in a 180 degrees flipped orientation compared with most other structurally determined CYPs.  相似文献   

18.
Prosser DE  Guo Y  Jia Z  Jones G 《Biophysical journal》2006,90(10):3389-3409
Human CYP27A1 is a mitochondrial cytochrome P450, which is principally found in the liver and plays important roles in the biological activation of vitamin D(3) and in the biosynthesis of bile acids. We have applied a systematic analysis of hydrogen bonding patterns in 11 prokaryotic and mammalian CYP crystal structures to construct a homology-based model of CYP27A1. Docking of vitamin D(3) structures into the active site of this model identified potential substrate contact residues in the F-helix, the beta-3 sheet, and the beta-5 sheet. Site-directed mutagenesis and expression in COS-1 cells confirmed that these positions affect enzymatic activity, in some cases shifting metabolism of 1alpha-hydroxyvitamin D(3) to favor 25- or 27-hydroxylation. The results suggest that conserved hydrophobic residues in the beta-5 hairpin help define the shape of the substrate binding cavity and that this structure interacts with Phe-248 in the F-helix. Mutations directed toward the beta-3a strand suggested a possible heme-binding interaction centered on Asn-403 and a structural role for substrate contact residues Thr-402 and Ser-404.  相似文献   

19.
Messenger RNA translation is regulated by RNA-binding proteins and small non-coding RNAs called microRNAs. Even though we know the majority of RNA-binding proteins and microRNAs that regulate messenger RNA expression, evidence of interactions between the two remain elusive. The role of the RNA-binding protein GLD-1 as a translational repressor is well studied during Caenorhabditis elegans germline development and maintenance. Possible functions of GLD-1 during somatic development and the mechanism of how GLD-1 acts as a translational repressor are not known. Its human homologue, quaking (QKI), is essential for embryonic development. Here, we report that the RNA-binding protein GLD-1 in C. elegans affects multiple microRNA pathways and interacts with proteins required for microRNA function. Using genome-wide RNAi screening, we found that nhl-2 and vig-1, two known modulators of miRNA function, genetically interact with GLD-1. gld-1 mutations enhance multiple phenotypes conferred by mir-35 and let-7 family mutants during somatic development. We used stable isotope labelling with amino acids in cell culture to globally analyse the changes in the proteome conferred by let-7 and gld-1 during animal development. We identified the histone mRNA-binding protein CDL-1 to be, in part, responsible for the phenotypes observed in let-7 and gld-1 mutants. The link between GLD-1 and miRNA-mediated gene regulation is further supported by its biochemical interaction with ALG-1, CGH-1 and PAB-1, proteins implicated in miRNA regulation. Overall, we have uncovered genetic and biochemical interactions between GLD-1 and miRNA pathways.  相似文献   

20.
Phytochromes are photoreceptors that occur in plants, fungi and bacteria, among others in the phytopathogen Agrobacterium tumefaciens. We constructed single and double knockout mutants of the two A. tumefaciens phytochromes Agp1 and Agp2. In liquid culture, the double mutant revealed a reduced growth rate, whereas the growth rates of the single mutants did not differ significantly from that of the wild type. Using these mutants, we analyzed the spectral properties of native A. tumefaciens phytochromes. A wild-type A. tumefaciens cell contains about 10 molecules of Agp1 and about 19 molecules of Agp2. Dark conversion of native Agp1 and Agp2 proceeds from Pfr to Pr and from Pr to Pfr, respectively, as has already been reported for the recombinant proteins. The spectral properties of recombinant and native Agp2 were significantly different. Mixing experiments with extracts from the double mutant and recombinant Agp2 imply that the spectral properties of Agp2 are modulated by components of the extract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号